Articles | Volume 17, issue 4
https://doi.org/10.5194/cp-17-1443-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1443-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precise timing of MIS 7 substages from the Austrian Alps
Kathleen A. Wendt
CORRESPONDING AUTHOR
Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
current address: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Xianglei Li
Department of Earth Sciences, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
R. Lawrence Edwards
Department of Earth Sciences, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Hai Cheng
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Department of Earth Sciences, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Christoph Spötl
Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Related authors
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Timothy J. Pollard, Jon D. Woodhead, Russell N. Drysdale, R. Lawrence Edwards, Xianglei Li, Ashlea N. Wainwright, Mathieu Pythoud, Hai Cheng, John C. Hellstrom, Ilaria Isola, Eleonora Regattieri, Giovanni Zanchetta, and Dylan S. Parmenter
Geochronology, 7, 335–355, https://doi.org/10.5194/gchron-7-335-2025, https://doi.org/10.5194/gchron-7-335-2025, 2025
Short summary
Short summary
The uranium–thorium (U–Th) and uranium–lead (U–Pb) radiometric dating methods are both suitable for dating carbonate samples ranging in age from about 400 000 to 650 000 years. Here we test agreement between the two methods by dating speleothems (i.e. secondary cave mineral deposits) that are well-suited to both methods. We demonstrate excellent agreement between them and discuss their relative strengths and weaknesses.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
Clim. Past, 21, 1235–1261, https://doi.org/10.5194/cp-21-1235-2025, https://doi.org/10.5194/cp-21-1235-2025, 2025
Short summary
Short summary
In this paper we present a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe in the last 16 500 years before present.
Carlos Sancho, Ánchel Belmonte, Maria Leunda, Marc Luetscher, Christoph Spötl, Juan Ignacio López-Moreno, Belén Oliva-Urcia, Jerónimo López-Martínez, Ana Moreno, and Miguel Bartolomé
EGUsphere, https://doi.org/10.5194/egusphere-2025-8, https://doi.org/10.5194/egusphere-2025-8, 2025
Short summary
Short summary
Ice caves, vital for paleoclimate studies, face rapid ice loss due to global warming. A294 cave, home to the oldest firn deposit (6100 years BP), shows rising air temperatures (~1.07–1.56 °C in 12 years), fewer freezing days, and melting rates (15–192 cm/year). Key factors include warmer winters, increased rainfall, and reduced snowfall. This study highlights the urgency of recovering data from these unique ice archives before they vanish forever.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Maria Wind, Friedrich Obleitner, Tanguy Racine, and Christoph Spötl
The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, https://doi.org/10.5194/tc-16-3163-2022, 2022
Short summary
Short summary
We present a thorough analysis of the thermal conditions of a sag-type ice cave in the Austrian Alps using temperature measurements for the period 2008–2021. Apart from a long-term increasing temperature trend in all parts of the cave, we find strong interannual and spatial variations as well as a characteristic seasonal pattern. Increasing temperatures further led to a drastic decrease in cave ice. A first attempt to model ablation based on temperature shows promising results.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Chao-Jun Chen, Dao-Xian Yuan, Jun-Yun Li, Xian-Feng Wang, Hai Cheng, You-Feng Ning, R. Lawrence Edwards, Yao Wu, Si-Ya Xiao, Yu-Zhen Xu, Yang-Yang Huang, Hai-Ying Qiu, Jian Zhang, Ming-Qiang Liang, and Ting-Yong Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-20, https://doi.org/10.5194/cp-2021-20, 2021
Manuscript not accepted for further review
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Cited articles
Andersen, M. B., Stirling, C. H., Potter, E. K., Halliday, A. N., Blake, S. G., McCulloch, M. T., Ayling, B. F., and O'Leary, M. J.:
The timing of sea-level high-stands during Marine Isotope Stages 7.5 and 9: constraints from the uranium-series dating of fossil corals from Henderson Island,
Geochim. Cosmochim. Ac.,
74, 3598–3620, https://doi.org/10.1016/j.gca.2010.03.020, 2010.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.:
HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region,
Int. J. Climatol.,
27, 17–46, https://doi.org/10.1002/joc.1377, 2007.
Badertscher, S., Fleitmann, D., Cheng, H., Edwards, R. L., Göktürk, O. M., Zumbühl, A., Leuenberger, M., and Tüysüz, O.:
Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea,
Nat. Geosci.,
4, 236–239, https://doi.org/10.1038/ngeo1106, 2011.
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. J.:
Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals,
Geochim. Cosmochim. Ac.,
67, 3181–3199, https://doi.org/10.1016/S0016-7037(02)01031-1, 2003.
Bard, E., Antonioli, F., and Silenzi, S.:
Sea-level during the penultimate interglacial period based on a submerged stalagmite from Argentarola Cave (Italy),
Earth Planet. Sc. Lett.,
196, 135–146, https://doi.org/10.1016/S0012-821X(01)00600-8, 2002.
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013.
Berger, A.:
Long-term variations of daily insolation and Quaternary climatic changes,
J. Atmos. Sci.,
35, 2362–2367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
Boch, R., Cheng, H., Spötl, C., Edwards, R. L., Wang, X., and Häuselmann, Ph.: NALPS: a precisely dated European climate record 120–60 ka, Clim. Past, 7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, 2011.
Channell, J. E., Hodell, D. A., Romero, O., Hillaire-Marcel, C., de Vernal, A., Stoner, J. S., Mazaud, A., and Röhl, U.:
A 750-kyr detrital-layer stratigraphy for the North Atlantic (IODP sites U1302–U1303, Orphan Knoll, Labrador Sea),
Earth Planet. Sc. Lett.,
317, 218–230, https://doi.org/10.1016/j.epsl.2011.11.029, 2012.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y., Zhang, R., and Wang, X.:
Ice age terminations,
Science,
326, 248–252, https://doi.org/10.1126/science.1177840, 2009.
Cheng, H., Edwards, R. L., Shen, C. C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Alexander, E. C.:
Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry,
Earth Planet. Sc. Lett.,
371, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Cheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X., Li, X., Kong, X., Wang, Y., Ning, Y., and Zhang, H.:
The Asian monsoon over the past 640,000 years and ice age terminations,
Nature,
534, 640–646, https://doi.org/10.1038/nature18591, 2016.
Columbu, A., Spötl, C., De Waele, J., Yu, T. L., Shen, C. C., and Gázquez, F.:
A long record of MIS 7 and MIS 5 climate and environment from a western Mediterranean speleothem (SW Sardinia, Italy),
Quaternary Sci. Rev.,
220, 230–243, https://doi.org/10.1016/j.quascirev.2019.07.023, 2019.
Craig, G., Bouman, C., Lloyd, N., Trinquier, A., and Schwieters, J. B.:
Dynamic response time correction algorithms for high precision isotope ratio measurements using high gain current amplifier technology,
Goldschmidt Conf. Abstr. 554, 2016.
Craig, G., Hu, Z., Zhang A., Lloyd N. S., Bouman C., and Schwieters J. B.:
Dynamic time correction for high precision isotope ratio measurements: Thermo Scientifc Neptune Plus MC-ICP-MS with 1013 Ω amplifer technology, Thermo Scientific technical note 30396, Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA, 2017.
Denniston, R. F., Houts, A. N., Asmerom, Y., Wanamaker Jr., A. D., Haws, J. A., Polyak, V. J., Thatcher, D. L., Altan-Ochir, S., Borowske, A. C., Breitenbach, S. F. M., Ummenhofer, C. C., Regala, F. T., Benedetti, M. M., and Bicho, N. F.: A stalagmite test of North Atlantic SST and Iberian hydroclimate linkages over the last two glacial cycles, Clim. Past, 14, 1893–1913, https://doi.org/10.5194/cp-14-1893-2018, 2018.
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M. and Putnam, A. E.:
The last glacial termination,
Science,
328, 5986, 1652–1656, https://doi.org/10.1126/science.1184119, 2010.
Desprat, S., Sánchez Goñi, M. F.., Turon, J. L., Duprat, J., Malaizé, B., and Peypouquet, J. P.:
Climatic variability of Marine Isotope Stage 7: direct land–sea–ice correlation from a multiproxy analysis of a north-western Iberian margin deep-sea core,
Quaternary Sci. Rev.,
25, 1010–1026, https://doi.org/10.1016/j.quascirev.2006.01.001, 2006.
Dutton, A., Bard, E., Antonioli, F., Esat, T. M., Lambeck, K., and McCulloch, M. T.:
Phasing and amplitude of sea-level and climate change during the penultimate interglacial,
Nat. Geosci.,
2, 355–359, https://doi.org/10.1038/ngeo470, 2009.
Drysdale, R. N., Hellstrom, J. C., Zanchetta, G., Fallick, A. E., Goñi, M. S., Couchoud, I., McDonald, J., Maas, R., Lohmann, G. and Isola, I.:
Evidence for obliquity forcing of glacial termination II,
Science,
325, 5947, 1527–1531, https://doi.org/10.1126/science.1170371, 2009.
Edwards, R. L., Chen, J. H., and Wasserburg, G. J.:
238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years,
Earth Planet. Sc. Lett.,
81, 175–192, https://doi.org/10.1016/0012-821X(87)90154-3, 1987.
Field, R.:
Observed and modeled controls on precipitation δ18O over Europe: From local temperature to the Northern Annular Mode,
J. Geophys. Res.-Atmos.,
115, D12101, https://doi.org/10.1029/2009JD013370, 2010.
Francke, A., Wagner, B., Just, J., Leicher, N., Gromig, R., Baumgarten, H., Vogel, H., Lacey, J. H., Sadori, L., Wonik, T., Leng, M. J., Zanchetta, G., Sulpizio, R., and Giaccio, B.: Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 637 ka and the present, Biogeosciences, 13, 1179–1196, https://doi.org/10.5194/bg-13-1179-2016, 2016.
Hager, B. and Foelsche, U.:
Stable isotope composition of precipitation in Austria,
Austrian J. Earth Sci.,
108, 2–13, https://doi.org/10.17738/ajes.2015.0012, 2015.
Hodell, D. A., Channell, J. E., Curtis, J. H., Romero, O. E., and Röhl, U.:
Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (∼ 640 ka)?,
Paleoceanography, 23, PA4218, https://doi.org/10.1029/2008PA001591, 2008.
Holzkämper, S., Mangini, A., Spötl, C., and Mudelsee, M.: Timing and progression of the Last Interglacial derived from a high alpine stalagmite, Geophys. Res. Lett., 31, L07201, https://doi.org/10.1029/2003GL019112, 2004.
Holzkämper, S., Spötl, C., and Mangini, A.:
High-precision constraints on timing of Alpine warm periods during the middle to late Pleistocene using speleothem growth periods,
Earth Planet. Sc. Lett.,
236, 751–764, https://doi.org/10.1016/j.epsl.2005.06.002, 2005.
Huss, M.: Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100, The Cryosphere, 6, 713–727, https://doi.org/10.5194/tc-6-713-2012, 2012.
Huybers, P.:
Early Pleistocene glacial cycles and the integrated summer insolation forcing,
Science,
313, 508–511, https://doi.org/10.1126/science.1125249, 2006.
Johnston, V. E., Borsato, A., Frisia, S., Spötl, C., Dublyansky, Y., Töchterle, P., Hellstrom, J. C., Bajo, P., Edwards, R. L., and Cheng, H.:
Evidence of thermophilisation and elevation-dependent warming during the Last Interglacial in the Italian Alps,
Sci. Rep.-UK,
8, 2680, https://doi.org/10.1038/s41598-018-21027-3, 2018.
Kaiser, A., Scheifinger, H., Kralik, M., Papesch, W., Rank, D., and Stichler, W.:
Links between meteorological conditions and spatial/temporal variations in long-term isotope records from the Austrian precipitation network,
in: Study of Environmental Change using Isotope Techniques,
Intern. Atomic Energy Agency, Vienna, 67–76, 2002.
Lisiecki, L. E. and Raymo, M. E.:
A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records,
Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Mangini, A., Spötl, C., and Verdes, P.:
Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record,
Earth Planet. Sc. Lett.,
235, 741–751, https://doi.org/10.1016/j.epsl.2005.05.010, 2005.
Mangini, A., Verdes, P., Spötl, C., Scholz, D., Vollweiler, N., and Kromer, B.:
Persistent influence of the North Atlantic hydrography on central European winter temperature during the last 9000 years,
Geophys. Res. Lett.,
34, L02704, https://doi.org/10.1029/2006GL028600, 2007.
Martrat, B., Grimalt, J. O., Lopez-Martinez, C., Cacho, I., Sierro, F. J., Flores, J. A., Zahn, R., Canals, M., Curtis, J. H. and Hodell, D. A.:
Abrupt temperature changes in the Western Mediterranean over the past 250,000 years,
Science,
306, 1762–1765, https://doi.org/10.1126/science.1101706, 2004.
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F.:
Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin,
Science,
317, 502–507, https://doi.org/10.1126/science.1139994, 2007.
Mayr, C., Stojakowits, P., Lempe, B., Blaauw, M., Diersche, V., Grohganz, M., Correa, M. L., Ohlendorf, C., Reimer, P. and Zolitschka, B.:
High-resolution geochemical record of environmental changes during MIS 3 from the northern Alps (Nesseltalgraben, Germany),
Quaternary Sci. Rev.,
218, 122–136, https://doi.org/10.1016/j.quascirev.2019.06.013, 2019.
Moseley, G. E., Spötl, C., Svensson, A., Cheng, H., Brandstätter, S. and Edwards, R. L.:
Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3,
Geology,
42, 1043–1046, https://doi.org/10.1130/G36063.1, 2014.
Moseley, G. E., Spötl, C., Cheng, H., Boch, R., Min, A., and Edwards, R. L.:
Termination-II interstadial/stadial climate change recorded in two stalagmites from the north European Alps,
Quaternary Sci. Rev.,
127, 229–239, https://doi.org/10.1016/j.quascirev.2015.07.012, 2015.
Murray-Wallace, C. V.:
Pleistocene coastal stratigraphy, sea-level highstands and neotectonism of the southern Australian passive continental margin – a review,
J. Quaternary Sci.,
17, 469–489, https://doi.org/10.1002/jqs.717, 2002.
Past Interglacials Working Group of PAGES:
Interglacials of the last 800,000 years,
Rev. Geophys.,
54, 162–219, https://doi.org/10.1002/2015RG000482, 2016.
Penaud, A., Eynaud, F., Turon, J. L., Zaragosi, S., Marret, F., and Bourillet, J. F.:
Interglacial variability (MIS 5 and MIS 7) and dinoflagellate cyst assemblages in the Bay of Biscay (North Atlantic),
Mar. Micropaleontol.,
68, 136–155, https://doi.org/10.1016/j.marmicro.2008.01.007, 2008.
Pérez-Mejías, C., Moreno, A., Sancho, C., Bartolomé, M., Stoll, H., Cacho, I., Cheng, H., and Edwards, R. L.:
Abrupt climate changes during Termination III in Southern Europe,
P. Natl. Acad. Sci. USA,
114, 10047–10052, https://doi.org/10.1073/pnas.1619615114, 2017.
Renssen, H. and Isarin, R. F. B.:
The two major warming phases of the last deglaciation at ∼ 14.7 and ∼ 11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments,
Global Planet. Change,
30, 117–153, https://doi.org/10.1016/S0921-8181(01)00082-0, 2001.
Robinson, L. F., Henderson, G. M., and Slowey, N. C.:
U–Th dating of marine isotope stage 7 in Bahamas slope sediments,
Earth Planet. Sc. Lett.,
196, 175–187, https://doi.org/10.1016/S0012-821X(01)00610-0, 2002.
Roucoux, K. H., Tzedakis, P. C., Frogley, M. R., Lawson, I. T., and Preece, R. C.:
Vegetation history of the marine isotope stage 7 interglacial complex at Ioannina, NW Greece,
Quaternary Sci. Rev.,
27, 1378–1395, https://doi.org/10.1016/j.quascirev.2008.04.002, 2008.
Schürch, M., Kozel, R., Schotterer, U., and Tripet, J. P:
Observation of isotopes in the water cycle – the Swiss National Network (NISOT),
Environ. Geol.,
45, 1–11, 2003.
Shen, C. C., Edwards, R. L., Cheng, H., Dorale, J. A., Thomas, R. B., Moran, S. B., Weinstein, S. E., and Edmonds, H. N.:
Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry,
Chem. Geol.,
185, 165–178, https://doi.org/10.1016/S0009-2541(01)00404-1, 2002.
Sodemann, H. and Zubler, E.:
Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002,
Int. J. Climatol.,
30, 947–961, https://doi.org/10.1002/joc.1932, 2010.
Spötl, C. and Mangini, A.:
Stalagmite from the Austrian Alps reveals Dansgaard–Oeschger events during isotope stage 3: Implications for the absolute chronology of Greenland ice cores,
Earth Planet. Sc. Lett.,
203, 507–518, https://doi.org/10.1016/S0012-821X(02)00837-3, 2002.
Spötl, C. and Mangini, A.:
Speleothems and paleoglaciers,
Earth Planet. Sc. Lett.,
254, 323–331, https://doi.org/10.1016/j.epsl.2006.11.041, 2007.
Spötl, C. and Mangini, A.:
Paleohydrology of high-elevation, glacier-influenced karst system in the central Alps (Austria),
Austrian J. Earth Sci.,
103, 92–105, 2010.
Spötl, C. and Pavuza, R.:
Höhlenatmosphäre,
in: Höhlen und Karst in Österreich,
edited by: Spötl, C., Plan, L. and Christian, E.,
Oberösterreichisches Landesmuseum, Linz, 123–138, 2016.
Spötl, C., Mangini, A., Bums, S. J., Frank, N., and Pavuza, R.:
Speleothems from the high-alpine Spannagel cave, Zillertal Alps (Austria),
in: Studies of cave sediments, edited by: Sasowsky, I. D. and Mylroie, J.,
Springer, Boston, MA, USA, 243–256, https://doi.org/10.1007/978-1-4419-9118-8_13, 2004.
Spötl, C., Mangini, A., and Richards, D. A.:
Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps,
Quaternary Sci. Rev.,
25, 1127–1136, https://doi.org/10.1016/j.quascirev.2005.10.006, 2006.
Spötl, C., Holzkämper, S., and Mangini, A.:
The Last and the Penultimate Interglacial as recorded by speleothems from a climatically sensitive high-elevation cave site in the Alps,
Developments in Quaternary Science,
7, 471–491, https://doi.org/10.1016/S1571-0866(07)80056-X, 2007.
Spötl, C., Scholz, D., and Mangini, A.:
A terrestrial U/Th-dated stable isotope record of the Penultimate Interglacial,
Earth Planet. Sc. Lett.,
276, 283–292, https://doi.org/10.1016/j.epsl.2008.09.029, 2008.
Thompson, W. G. and Goldstein, S. L.:
Open-system coral ages reveal persistent suborbital sea-level cycles,
Science,
308, 401–404, https://doi.org/10.1126/science.1104035, 2005.
Tzedakis, P. C., McManus, J. F., Hooghiemstra, H., Oppo, D. W., and Wijmstra, T. A.: Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years, Earth Planet. Sc. Lett., 212, 197–212, https://doi.org/10.1016/S0012-821X(03)00233-4, 2003.
van Husen, D.:
Die Ostalpen in den Eiszeiten,
Geologische Bundesanstalt, Vienna, 1–24, 1987.
Wendt, K. A., Li, X. L., Edwards, R. L., Cheng, H., and Spötl, C.: Spannagel Cave, Austria MIS 7 (247–182 ka) Stalagmite Oxygen Isotope Data, NOAA/World Data Service for Paleoclimatology archives, available at: https://www.ncdc.noaa.gov/paleo/study/33653, last access: 1 July 2021.
Wilcox, P. S., Honiat, C., Trüssel, M., Edwards, R. L. and Spötl, C.:
Exceptional warmth and climate instability occurred in the European Alps during the Last Interglacial period, Communications Earth & Environment,
1, 1–6, https://doi.org/10.1038/s43247-020-00063-w, 2020.
Ziegler, M., Tuenter, E., and Lourens, L. J.:
The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968),
Quaternary Sci. Rev.,
29, 1481–1490, https://doi.org/10.1016/j.quascirev.2010.03.011, 2010.
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
In this study, we tested the upper limits of U–Th dating precision by analyzing three...