Articles | Volume 17, issue 3
https://doi.org/10.5194/cp-17-1315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1315-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimizing sampling strategies in high-resolution paleoclimate records
Department of Earth Sciences, Utrecht University, Princetonlaan 8a,
3584 CB Utrecht, the Netherlands
AMGC research group, Vrije Universiteit Brussel, Pleinlaan 2, 1050
Brussels, Belgium
Tobias Agterhuis
Department of Earth Sciences, Utrecht University, Princetonlaan 8a,
3584 CB Utrecht, the Netherlands
Martin Ziegler
Department of Earth Sciences, Utrecht University, Princetonlaan 8a,
3584 CB Utrecht, the Netherlands
Related authors
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Niels J. de Winter
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-137, https://doi.org/10.5194/gmd-2017-137, 2017
Revised manuscript not accepted
Short summary
Short summary
Bivalves grow by expanding their shells incrementally and record environmental conditions in the chemistry of their carbonate. To reconstruct these conditions, it is important to constrain the growth and trace element uptake rates in these bivalve shells. The present study models the development and chemical composition of the shells of bivalves based on XRF mapping of shell cross sections and allows changes in trace element uptake rates to be interpreted to reconstruct palaeoenvironment.
N. J. de Winter, C. Zeeden, and F. J. Hilgen
Clim. Past, 10, 1001–1015, https://doi.org/10.5194/cp-10-1001-2014, https://doi.org/10.5194/cp-10-1001-2014, 2014
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
EGUsphere, https://doi.org/10.5194/egusphere-2024-1648, https://doi.org/10.5194/egusphere-2024-1648, 2024
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Niels J. de Winter
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-137, https://doi.org/10.5194/gmd-2017-137, 2017
Revised manuscript not accepted
Short summary
Short summary
Bivalves grow by expanding their shells incrementally and record environmental conditions in the chemistry of their carbonate. To reconstruct these conditions, it is important to constrain the growth and trace element uptake rates in these bivalve shells. The present study models the development and chemical composition of the shells of bivalves based on XRF mapping of shell cross sections and allows changes in trace element uptake rates to be interpreted to reconstruct palaeoenvironment.
N. J. de Winter, C. Zeeden, and F. J. Hilgen
Clim. Past, 10, 1001–1015, https://doi.org/10.5194/cp-10-1001-2014, https://doi.org/10.5194/cp-10-1001-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Decadal-Seasonal
A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives
Qualitative and quantitative reconstructions of surface water characteristics and recent hydrographical changes in the Trondheimsfjord, central Norway
Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: implications for interpreting coral stable oxygen isotope records of ENSO
Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations: paleotemperature from mollusk and coral geochemistry
Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years
Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California
M. Comboul, J. Emile-Geay, M. N. Evans, N. Mirnateghi, K. M. Cobb, and D. M. Thompson
Clim. Past, 10, 825–841, https://doi.org/10.5194/cp-10-825-2014, https://doi.org/10.5194/cp-10-825-2014, 2014
G. Milzer, J. Giraudeau, S. Schmidt, F. Eynaud, and J. Faust
Clim. Past, 10, 305–323, https://doi.org/10.5194/cp-10-305-2014, https://doi.org/10.5194/cp-10-305-2014, 2014
T. Russon, A. W. Tudhope, G. C. Hegerl, M. Collins, and J. Tindall
Clim. Past, 9, 1543–1557, https://doi.org/10.5194/cp-9-1543-2013, https://doi.org/10.5194/cp-9-1543-2013, 2013
M. Carré, J. P. Sachs, J. M. Wallace, and C. Favier
Clim. Past, 8, 433–450, https://doi.org/10.5194/cp-8-433-2012, https://doi.org/10.5194/cp-8-433-2012, 2012
G. M. Ganssen, F. J. C. Peeters, B. Metcalfe, P. Anand, S. J. A. Jung, D. Kroon, and G.-J. A. Brummer
Clim. Past, 7, 1337–1349, https://doi.org/10.5194/cp-7-1337-2011, https://doi.org/10.5194/cp-7-1337-2011, 2011
J. D. Carriquiry and J. A. Villaescusa
Clim. Past, 6, 401–410, https://doi.org/10.5194/cp-6-401-2010, https://doi.org/10.5194/cp-6-401-2010, 2010
Cited articles
Bahr, K. D., Jokiel, P. L., and Rodgers, K. S.: Seasonal and annual
calcification rates of the Hawaiian reef coral, Montipora capitata, under
present and future climate change scenarios, ICES J. Mar. Sci., 74,
1083–1091, https://doi.org/10.1093/icesjms/fsw078, 2017.
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F.,
Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and
Ziegler, M.: Reducing uncertainties in carbonate clumped isotope analysis
through consistent carbonate-based standardization, Geochemistry,
Geophysics, Geosystems, 19, 2895–2914, 2018.
Boutin, J., Vergely, J.-L., Koehler, J., Rouffi, F., and Reul, N.: ESA Sea Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_cci): Weekly Sea Surface Salinity product v1.8, Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/e5666094722c4ca787e323a9585b0a92 (last access: 10 June 2021), 2019.
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T.:
Assessment of international reference materials for isotope-ratio analysis
(IUPAC Technical Report), Pure Appl. Chem., 86, 425–467,
https://doi.org/10.1515/pac-2013-1023, 2014.
Briard, J., Pucéat, E., Vennin, E., Daëron, M., Chavagnac, V.,
Jaillet, R., Merle, D., and de Rafélis, M.: Seawater paleotemperature and
paleosalinity evolution in neritic environments of the Mediterranean margin:
Insights from isotope analysis of bivalve shells, Palaeogeogr.
Palaeocl., 543, 109582,
https://doi.org/10.1016/j.palaeo.2019.109582, 2020.
Bowen, G. J.: WaterIsotopes.org, available at: http://wateriso.utah.edu/waterisotopes/index.html, last access: 28 July 2020.
Caldarescu, D. E., Sadatzki, H., Andersson, C., Schäfer, P., Fortunato,
H., and Meckler, A. N.: Clumped isotope thermometry in bivalve shells: A tool
for reconstructing seasonal upwelling, Geochim. Cosmochim. Ac., 294,
174–191, https://doi.org/10.1016/j.gca.2020.11.019, 2021.
Charles, C. D., Hunter, D. E., and Fairbanks, R. G.: Interaction between the
ENSO and the Asian monsoon in a coral record of tropical climate, Science,
277, 925–928, 1997.
Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., and Thompson, D. M.: A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives, Clim. Past, 10, 825–841, https://doi.org/10.5194/cp-10-825-2014, 2014.
Compton, T. J., Rijkenberg, M. J. A., Drent, J., and Piersma, T.: Thermal
tolerance ranges and climate variability: A comparison between bivalves from
differing climates, J. Exp. Mar. Biol. Ecol.,
352, 200–211, https://doi.org/10.1016/j.jembe.2007.07.010, 2007.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K.
G.: Ocean overturning since the Late Cretaceous: Inferences from a new
benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216,
https://doi.org/10.1029/2008PA001683, 2009.
Crossland, C.: Seasonal variations in the rates of calcification and
productivity in the coral Acropora formosa on a high-latitude reef, Mar.
Ecol. Prog. Ser., 15, 135–140, https://doi.org/10.3354/meps015135,
1984.
Dattalo, P.: Determining Sample Size: Balancing Power, Precision, and
Practicality, Oxford University Press, New York, USA, https://doi.org/10.1093/acprof:oso/9780195315493.001.0001, 2008.
Dayem, K. E., Molnar, P., Battisti, D. S., and Roe, G. H.: Lessons learned
from oxygen isotopes in modern precipitation applied to interpretation of
speleothem records of paleoclimate from eastern Asia, Earth Planet.
Sc. Lett., 295, 219–230, 2010.
Denton, G. H., Alley, R. B., Comer, G. C., and Broecker, W. S.: The role of
seasonality in abrupt climate change, Quaternary Sci. Rev., 24,
1159–1182, https://doi.org/10.1016/j.quascirev.2004.12.002, 2005.
De Ridder, F., de Brauwere, A., Pintelon, R., Schoukens, J., Dehairs, F.,
Baeyens, W., and Wilkinson, B. H.: Comment on: Paleoclimatic inference from
stable isotope profiles of accretionary biogenic hardparts – a quantitative
approach to the evaluation of incomplete data, by Wilkinson, B. H., Ivany,
L. C., 2002, Palaeogeogr. Palaeocl. Palaeoecol. 185, 95–114,
Palaeogeogr. Palaeocl., 248, 473–476,
https://doi.org/10.1016/j.palaeo.2006.08.004, 2007.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., and Pälike, H.:
Alternating Southern and Northern Hemisphere climate response to
astronomical forcing during the past 35 my, Geology, 45, 375–378, 2017.
de Winter, N. J.: seasonalclumped: Toolbox for Clumped Isotope Seasonality
Reconstructions, available at: https://cran.r-project.org/web/packages/seasonalclumped, last
access: 4 February 2021a.
de Winter, N. J.: ShellChron 0.2.8: A new tool for constructing chronologies in accretionary carbonate archives from stable oxygen isotope profiles, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-401, in review, 2021b.
de Winter, N. J., Snoeck, C., and Claeys, P.: Seasonal Cyclicity in Trace
Elements and Stable Isotopes of Modern Horse Enamel, PloS One, 11,
e0166678, https://doi.org/10.1371/journal.pone.0166678, 2016.
de Winter, N., Sinnesael, M., Makarona, C., Vansteenberge, S., and Claeys,
P.: Trace element analyses of carbonates using portable and micro-X-ray
fluorescence: Performance and optimization of measurement parameters and
strategies, J. Anal. Atom. Spectrom., 32, 1211–1223,
https://doi.org/10.1039/C6JA00361C, 2017.
de Winter, N. J., Vellekoop, J., Vorsselmans, R., Golreihan, A., Soete, J., Petersen, S. V., Meyer, K. W., Casadio, S., Speijer, R. P., and Claeys, P.: An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation, Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, 2018.
de Winter, N. J., Goderis, S., Malderen, S. J. M. V., Sinnesael, M.,
Vansteenberge, S., Snoeck, C., Belza, J., Vanhaecke, F., and Claeys, P.:
Subdaily-Scale Chemical Variability in a Torreites Sanchezi Rudist Shell: Implications for
Rudist Paleobiology and the Cretaceous Day-Night Cycle, Paleoceanography and
Paleoclimatology, 35, e2019PA003723,
https://doi.org/10.1029/2019PA003723, 2020a.
de Winter, N. J., Ullmann, C. V., Sørensen, A. M., Thibault, N., Goderis, S., Van Malderen, S. J. M., Snoeck, C., Goolaerts, S., Vanhaecke, F., and Claeys, P.: Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster, Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, 2020b.
de Winter, N. J., Vellekoop, J., Clark, A. J., Stassen, P., Speijer, R. P.,
and Claeys, P.: The giant marine gastropod Campanile giganteum (Lamarck,
1804) as a high-resolution archive of seasonality in the Eocene greenhouse
world, Geochemistry, Geophysics, Geosystems, 21, e2019GC008794,
https://doi.org/10.1029/2019GC008794, 2020c.
de Winter, N. J., Agterhuis, T., and Ziegler, M.: Supplementary data to: “Optimizing sampling strategies in high-resolution paleoclimate records: A statistical evaluation” (Version 2.1), Zenodo, https://doi.org/10.5281/zenodo.3899926, 2020d.
de Winter, N. J., Müller, I. A., Kocken, I. J., Thibault, N., Ullmann, C. V., Farnsworth, A., Lunt, D. J., Claeys, P., and Ziegler, M.: Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate, Commun. Earth Environ., 2, 121, https://doi.org/10.1038/s43247-021-00193-9, 2021.
Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope
thermometry, Quaternary Sci. Rev., 30, 3575–3588, 2011.
Fairbanks, R. G., Evans, M. N., Rubenstone, J. L., Mortlock, R. A., Broad,
K., Moore, M. D., and Charles, C. D.: Evaluating climate indices and their
geochemical proxies measured in corals, Coral Reefs, 16, S93–S100,
https://doi.org/10.1007/s003380050245, 1997.
Fernandez, A., Müller, I. A., Rodríguez-Sanz, L., van Dijk, J.,
Looser, N., and Bernasconi, S. M.: A reassessment of the precision of
carbonate clumped isotope measurements: implications for calibrations and
paleoclimate reconstructions, Geochemistry, Geophysics, Geosystems, 18,
4375–4386, 2017.
Gaspar, M. B., Ferreira, R., and Monteiro, C. C.: Growth and reproductive
cycle of Donax trunculus L., (Mollusca: Bivalvia) off Faro, southern
Portugal, Fish. Res., 41, 309–316,
https://doi.org/10.1016/S0165-7836(99)00017-X, 1999.
Goodwin, D. H., Schöne, B. R., and Dettman, D. L.: Resolution and
fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk
shells: models and observations, Palaios, 18, 110–125, 2003.
Goodwin, D. H., Paul, P., and Wissink, C. L.: MoGroFunGen: A numerical model
for reconstructing intra-annual growth rates of bivalve molluscs,
Palaeogeogr. Palaeocl., 276, 47–55,
https://doi.org/10.1016/j.palaeo.2009.02.026, 2009.
Harwood, A. J. P., Dennis, P. F., Marca, A. D., Pilling, G. M., and Millner,
R. S.: The oxygen isotope composition of water masses within the North Sea,
Estuarine, Coastal and Shelf Science, 78, 353–359,
https://doi.org/10.1016/j.ecss.2007.12.010, 2008.
Hendriks, I. E., Basso, L., Deudero, S., Cabanellas-Reboredo, M., and
Álvarez, E.: Relative growth rates of the noble pen shell Pinna nobilis
throughout ontogeny around the Balearic Islands (Western Mediterranean,
Spain), J. Shellfish Res., 31, 749–756, 2012.
Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Yancey, T. E.,
and Pérez-Huerta, A.: Temperature evolution and the oxygen isotope
composition of Phanerozoic oceans from carbonate clumped isotope
thermometry, Earth Planet. Sci. Lett., 490, 40–50,
https://doi.org/10.1016/j.epsl.2018.02.001, 2018.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: regional
temperatures and precipitation, Science, 269, 676–679, 1995.
Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum
temperature variability, Nature, 441, 329–332,
https://doi.org/10.1038/nature04745, 2006.
Huyghe, D., Lartaud, F., Emmanuel, L., Merle, D., and Renard, M.: Palaeogene
climate evolution in the Paris Basin from oxygen stable isotope (δ18O) compositions of marine molluscs, J. Geol. Soc. London,
172, 576–587, 2015.
Huyghe, D., de Rafélis, M., Ropert, M., Mouchi, V., Emmanuel, L.,
Renard, M., and Lartaud, F.: New insights into oyster high-resolution hinge
growth patterns, Mar. Biol., 166, 48, https://doi.org/10.1007/s00227-019-3496-2, 2019.
IPCC: IPCC, 2013: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge Univ. Press,
Cambridge, UK, and New York, https://doi.org/10.1017/CBO9781107415324, 1535 pp., 2013.
Ivany, L. C.: Reconstructing paleoseasonality from accretionary skeletal
carbonates – challenges and opportunities, The Paleontological Society
Papers, 18, 133–166, 2012.
Jaffrés, J. B. D., Shields, G. A., and Wallmann, K.: The oxygen isotope
evolution of seawater: A critical review of a long-standing controversy and
an improved geological water cycle model for the past 3.4 billion years,
Earth-Sci. Rev., 83, 83–122,
https://doi.org/10.1016/j.earscirev.2007.04.002, 2007.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochemistry,
Geophysics, Geosystems, 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Johnson, A. L. A., Valentine, A. M., Leng, M. J., Schöne, B. R., and
Sloane, H. J.: Life history, environment and extinction of the scallop
Carolinapecten eboreus (Conrad) In the Plio-Pleistocene of the U.S. eastern seaboard, PALAIOS, 34,
49–70, https://doi.org/10.2110/palo.2018.056, 2019.
Jones, A. M., Iacumin, P., and Young, E. D.: High-resolution δ18O analysis of
tooth enamel phosphate by isotope ratio monitoring gas chromatography mass
spectrometry and ultraviolet laser fluorination, Chem. Geol., 153, 241–248, https://doi.org/10.1016/S0009-2541(98)00162-4, 1999.
Judd, E. J., Wilkinson, B. H., and Ivany, L. C.: The life and time of clams:
Derivation of intra-annual growth rates from high-resolution oxygen isotope
profiles, Palaeogeogr. Palaeocl., 490, 70–83,
2018.
Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson,
S. D.: Warm, not super-hot, temperatures in the early Eocene subtropics,
Geology, 39, 771–774, https://doi.org/10.1130/G32054.1, 2011.
Kele, S., Breitenbach, S. F., Capezzuoli, E., Meckler, A. N., Ziegler, M.,
Millan, I. M., Kluge, T., Deák, J., Hanselmann, K., and John, C. M.:
Temperature dependence of oxygen-and clumped isotope fractionation in
carbonates: a study of travertines and tufas in the 6–95 C temperature
range, Geochim. Cosmochim. Ac., 168, 172–192, 2015.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61,
3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Kocken, I. J., Müller, I. A., and Ziegler, M.: Optimizing the Use of
Carbonate Standards to Minimize Uncertainties in Clumped Isotope Data,
Geochemistry, Geophysics, Geosystems, 20, 5565–5577,
https://doi.org/10.1029/2019GC008545, 2019.
Kohn, M. J.: Comment: tooth enamel mineralization in ungulates: implications
for recovering a primary isotopic time-series, by BH Passey and TE Cerling
(2002), Geochim. Cosmochim. Ac., 68, 403–405, 2004.
Lauretano, V., Zachos, J. C., and Lourens, L. J.: Orbitally Paced Carbon and
Deep-Sea Temperature Changes at the Peak of the Early Eocene Climatic
Optimum, Paleoceanography and Paleoclimatology, 33, 1050–1065,
https://doi.org/10.1029/2018PA003422, 2018.
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y.:
Cooling and ice growth across the Eocene-Oligocene transition, Geology,
36, 251–254, 2008.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, L12604,
https://doi.org/10.1029/2006GL026011,
2006.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Lourens, L. J., Becker, J., Bintanja, R., Hilgen, F. J., Tuenter, E., Van de
Wal, R. S., and Ziegler, M.: Linear and non-linear response of late Neogene
glacial cycles to obliquity forcing and implications for the Milankovitch
theory, Quaternary Sci. Rev., 29, 352–365, 2010.
McArthur, J. M., Howarth, R. J., and Shields, G. A.: Strontium isotope
stratigraphy, The Geologic Time Scale, 1, 127–144, 2012.
Meckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F., and
Bernasconi, S. M.: Long-term performance of the Kiel carbonate device with a
new correction scheme for clumped isotope measurements, Rapid Commun.
Mass Sp., 28, 1705–1715, 2014.
Merz, B. and Thieken, A. H.: Separating natural and epistemic uncertainty in
flood frequency analysis, J. Hydrol., 309, 114–132, 2005.
Meyers, S. R.: Cyclostratigraphy and the problem of astrochronologic
testing, Earth-Sci. Rev., 190, 190–223,
https://doi.org/10.1016/j.earscirev.2018.11.015, 2019.
Miyaji, T., Tanabe, K., Matsushima, Y., Sato, S., Yokoyama, Y., and
Matsuzaki, H.: Response of daily and annual shell growth patterns of the
intertidal bivalve Phacosoma japonicum to Holocene coastal climate change in
Japan, Palaeogeogr. Palaeocl., 286, 107–120,
https://doi.org/10.1016/j.palaeo.2009.11.032, 2010.
Mook, W. G.: Stable carbon and oxygen isotopes of natural waters in the
Netherlands, Isotope Hydrology, 1970, 163–190, 1970.
Morgan, V. and van Ommen, T. D.: Seasonality in late-Holocene climate from
ice-core records, Holocene, 7, 351–354,
https://doi.org/10.1177/095968369700700312, 1997.
Mosley-Thompson, E., Thompson, L. G., Dai, J., Davis, M., and Lin, P. N.:
Climate of the last 500 years: High resolution ice core records, Quaternary
Sci. Rev., 12, 419–430,
https://doi.org/10.1016/S0277-3791(05)80006-X, 1993.
Müller, I. A., Fernandez, A., Radke, J., van Dijk, J., Bowen, D.,
Schwieters, J., and Bernasconi, S. M.: Carbonate clumped isotope analyses
with the long-integration dual-inlet (LIDI) workflow: scratching at the
lower sample weight boundaries: LIDI as key for more precise analyses on
much less carbonate material, Rapid Commun. Mass Sp.,
31, 1057–1066, https://doi.org/10.1002/rcm.7878, 2017.
NOAA Physical Sciences Laboratory: Homepage, available at: https://psl.noaa.gov/, last access: 10 June 2021.
Noorbergen, L. J., Abels, H. A., Hilgen, F. J., Robson, B. E., Jong, E. de,
Dekkers, M. J., Krijgsman, W., Smit, J., Collinson, M. E., and Kuiper, K. F.:
Conceptual models for short-eccentricity-scale climate control on peat
formation in a lower Palaeocene fluvial system, north-eastern Montana (USA),
Sedimentology, 65, 775–808, https://doi.org/10.1111/sed.12405, 2018.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J.
S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C.,
Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N.,
Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A.,
Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond,
N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous
sea-surface temperature evolution: Constraints from TEX 86 and planktonic
foraminiferal oxygen isotopes, Earth-Sci. Rev., 172, 224–247,
https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
O’Donnell, M. S. and Ignizio, D. A.: Bioclimatic predictors for supporting ecological applications in the conterminous
United States, U.S. Geological Survey Data Series, 691, 10 pp., 2012.
Passey, B. H. and Cerling, T. E.: Tooth enamel mineralization in ungulates:
implications for recovering a primary isotopic time-series, Geochim.
Cosmochim. Ac., 66, 3225–3234, 2002.
Petersen, S. V., Tabor, C. R., Lohmann, K. C., Poulsen, C. J., Meyer, K. W.,
Carpenter, S. J., Erickson, J. M., Matsunaga, K. K., Smith, S. Y., and
Sheldon, N. D.: Temperature and salinity of the Late Cretaceous western
interior seaway, Geology, 44, 903–906, 2016.
Philander, S. G. H.: El Nino southern oscillation phenomena, Nature,
302, 295–301, 1983.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/ (last access: 10 June 2021), 2013.
Rodríguez-Sanz, L., Bernasconi, S. M., Marino, G., Heslop, D.,
Müller, I. A., Fernandez, A., Grant, K. M., and Rohling, E. J.:
Penultimate deglacial warming across the Mediterranean Sea revealed by
clumped isotopes in foraminifera, Scientific Reports, 7, 16572,
https://doi.org/10.1038/s41598-017-16528-6, 2017.
Rohling, E. J.: Oxygen Isotope Composition of Seawater, in: The Encyclopedia
of Quaternary Science, edited by: Elias, S. A., vol. 2, Amsterdam: Elsevier, 915–922 pp., 2013.
Sano, Y., Kobayashi, S., Shirai, K., Takahata, N., Matsumoto, K., Watanabe,
T., Sowa, K., and Iwai, K.: Past daily light cycle recorded in the
strontium/calcium ratios of giant clam shells, Nat. Commun., 3,
761, https://doi.org/10.1038/ncomms1763, 2012.
Sato, S.: Temporal change of life-history traits in fossil bivalves: an
example of Phacosoma japonicum from the Pleistocene of Japan,
Palaeogeogr. Palaeocl., 154, 313–323,
https://doi.org/10.1016/S0031-0182(99)00106-6, 1999.
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A.,
Chappellaz, J., Kohler, P., Joos, F., Stocker, T. F., Leuenberger, M., and
Fischer, H.: Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice
Cores, Science, 336, 711–714,
https://doi.org/10.1126/science.1217161, 2012.
Scholz, D. and Hoffmann, D. L.: StalAge – An algorithm designed for
construction of speleothem age models, Quat. Geochronol., 6,
369–382, 2011.
Schöne, B. R.: The curse of physiology – challenges and opportunities in
the interpretation of geochemical data from mollusk shells, Geo-Mar.
Lett., 28, 269–285, 2008.
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J.,
Johnson, A. L., Dreyer, W., and Oschmann, W.: Climate records from a bivalved
Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeogr.
Palaeocl., 228, 130–148, 2005.
Schöne, B. R., Rodland, D. L., Fiebig, J., Oschmann, W., Goodwin, D.,
Flessa, K. W., and Dettman, D.: Reliability of multitaxon, multiproxy
reconstructions of environmental conditions from accretionary biogenic
skeletons, J. Geol., 114, 267–285, 2006.
Scourse, J., Richardson, C., Forsythe, G., Harris, I., Heinemeier, J.,
Fraser, N., Briffa, K., and Jones, P.: First cross-matched floating
chronology from the marine fossil record: data from growth lines of the
long-lived bivalve mollusc Arctica islandica, Holocene, 16, 967–974,
https://doi.org/10.1177/0959683606hl987rp, 2006.
Sha, L., Mahata, S., Duan, P., Luz, B., Zhang, P., Baker, J., Zong, B.,
Ning, Y., Brahim, Y. A., Zhang, H., Edwards, R. L., and Cheng, H.: A novel
application of triple oxygen isotope ratios of speleothems, Geochim.
Cosmochim. Ac., 270, 360–378, https://doi.org/10.1016/j.gca.2019.12.003,
2020.
Shao, D., Mei, Y., Yang, Z., Wang, Y., Yang, W., Gao, Y., Yang, L., and Sun,
L.: Holocene ENSO variability in the South China Sea recorded by
high-resolution oxygen isotope records from the shells of Tridacna spp.,
Scientific Reports, 10, 3921, https://doi.org/10.1038/s41598-020-61013-2,
2020.
Sinnesael, M., De Vleeschouwer, D., Zeeden, C., Batenburg, S. J., Da Silva,
A.-C., de Winter, N. J., Dinarès-Turell, J., Drury, A. J., Gambacorta,
G., and Hilgen, F. J.: The Cyclostratigraphy Intercomparison Project (CIP):
consistency, merits and pitfalls, Earth-Sci. Rev., 199, 102965,
https://doi.org/10.1016/j.earscirev.2019.102965, 2019.
Stap, L., Lourens, L. J., Thomas, E., Sluijs, A., Bohaty, S., and Zachos, J.
C.: High-resolution deep-sea carbon and oxygen isotope records of Eocene
Thermal Maximum 2 and H2, Geology, 38, 607–610, 2010.
Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen,
D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S. J., and Jouzel, J.:
High-resolution Greenland ice core data show abrupt climate change happens
in few years, Science, 321, 680–684, 2008.
Steuber, T., Rauch, M., Masse, J.-P., Graaf, J., and Malkoč, M.:
Low-latitude seasonality of Cretaceous temperatures in warm and cold
episodes, Nature, 437, 1341–1344,
https://doi.org/10.1038/nature04096, 2005.
Surge, D., Lohmann, K. C., and Dettman, D. L.: Controls on isotopic chemistry
of the American oyster, Crassostrea virginica: implications for growth
patterns, Palaeogeogr. Palaeocl., 172,
283–296, 2001.
Tagliavento, M., John, C. M., and Stemmerik, L.: Tropical temperature in the
Maastrichtian Danish Basin: Data from coccolith Δ47 and δ18O, 47, 1074–1078, 2019.
Titschack, J., Zuschin, M., Spötl, C., and Baal, C.: The giant oyster
Hyotissa hyotis from the northern Red Sea as a decadal-scale archive for
seasonal environmental fluctuations in coral reef habitats, Coral Reefs,
29, 1061–1075, 2010.
Treble, P., Shelley, J. M. G., and Chappell, J.: Comparison of high
resolution sub-annual records of trace elements in a modern (1911–1992)
speleothem with instrumental climate data from southwest Australia, Earth
Planet. Sc. Lett., 216, 141–153,
https://doi.org/10.1016/S0012-821X(03)00504-1, 2003.
Tsukakoshi, Y.: Sampling variability and uncertainty in total diet studies,
Analyst, 136, 533–539, https://doi.org/10.1039/C0AN00397B, 2011.
Tudhope, A. W.: Variability in the El Nino-Southern Oscillation Through a
Glacial-Interglacial Cycle, Science, 291, 1511–1517,
https://doi.org/10.1126/science.1057969, 2001.
Ullmann, C. V., Wiechert, U., and Korte, C.: Oxygen isotope fluctuations in a
modern North Sea oyster (Crassostrea gigas) compared with annual variations
in seawater temperature: Implications for palaeoclimate studies, Chem.
Geol., 277, 160–166, 2010.
van Dam, J. A. and Reichart, G. J.: Oxygen and carbon isotope signatures in
late Neogene horse teeth from Spain and application as temperature and
seasonality proxies, Palaeogeogr. Palaeocl.,
274, 64–81, https://doi.org/10.1016/j.palaeo.2008.12.022, 2009.
Van Rampelbergh, M., Verheyden, S., Allan, M., Quinif, Y., Keppens, E., and Claeys, P.: Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite, Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, 2014.
Vansteenberge, S., Verheyden, S., Cheng, H., Edwards, R. L., Keppens, E., and Claeys, P.: Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–97 ka): insights from a Belgian speleothem, Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, 2016.
Vansteenberge, S., de Winter, N. J., Sinnesael, M., Verheyden, S., Goderis, S., Van Malderen, S. J. M., Vanhaecke, F., and Claeys, P.: Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: indications for climate-driven changes during the last 400 years, Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, 2020.
Veizer, J. and Prokoph, A.: Temperatures and oxygen isotopic composition of
Phanerozoic oceans, Earth-Sci. Rev., 146, 92–104,
https://doi.org/10.1016/j.earscirev.2015.03.008, 2015.
Vleeschouwer, D. D., Vahlenkamp, M., Crucifix, M., and Pälike, H.:
Alternating Southern and Northern Hemisphere climate response to
astronomical forcing during the past 35 m.y., Geology, 45, 375–378,
https://doi.org/10.1130/G38663.1, 2017.
Warter, V. and Müller, W.: Daily growth and tidal rhythms in Miocene and
modern giant clams revealed via ultra-high resolution LA-ICPMS analysis – A
novel methodological approach towards improved sclerochemistry,
Palaeogeogr. Palaeocl., 465, 362–375, 2017.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., and
Florindo, F.: An astronomically dated record of Earth's climate and its
predictability over the last 66 million years, Science, 369,
1383–1387, 2020.
Wilkinson, B. H. and Ivany, L. C.: Paleoclimatic inference from stable
isotope profiles of accretionary biogenic hardparts – a quantitative
approach to the evaluation of incomplete data, Palaeogeogr.
Palaeocl., 185, 95–114,
https://doi.org/10.1016/S0031-0182(02)00279-1, 2002.
Williams, M., Haywood, A. M., Harper, E. M., Johnson, A. L. A., Knowles, T.,
Leng, M. J., Lunt, D. J., Okamura, B., Taylor, P. D., and Zalasiewicz, J.:
Pliocene climate and seasonality in North Atlantic shelf seas, Philos.
T. Roy. Soc. A, 367, 85–108, https://doi.org/10.1098/rsta.2008.0224, 2009.
Yan, H., Liu, C., An, Z., Yang, W., Yang, Y., Huang, P., Qiu, S., Zhou, P.,
Zhao, N., and Fei, H.: Extreme weather events recorded by daily to hourly
resolution biogeochemical proxies of marine giant clam shells, P.
Natl. Acad. Sci. USA, 117, 7038–7043, https://doi.org/10.1073/pnas.1916784117, 2020.
Zhang, L., Tang, W. H., Zhang, L., and Zheng, J.: Reducing
Uncertainty of Prediction from Empirical Correlations, J.
Geotech. Geoenviron., 130, 526–534,
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(526), 2004.
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Climate researchers often need to compromise in their sampling between increasing the number of...