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Abstract. The aim of paleoclimate studies resolving climate
variability from noisy proxy records can in essence be re-
duced to a statistical problem. The challenge is to extract
meaningful information about climate variability from these
records by reducing measurement uncertainty through com-
bining measurements for proxies while retaining the tempo-
ral resolution needed to assess the timing and duration of
variations in climate parameters. In this study, we explore
the limits of this compromise by testing different methods
for combining proxy data (smoothing, binning, and sam-
ple size optimization) on a particularly challenging paleo-
climate problem: resolving seasonal variability in stable iso-
tope records. We test and evaluate the effects of changes
in the seasonal temperature and the hydrological cycle as
well as changes in the accretion rate of the archive and pa-
rameters such as sampling resolution and age model uncer-
tainty in the reliability of seasonality reconstructions based
on clumped and oxygen isotope analyses in 33 real and vir-
tual datasets. Our results show that strategic combinations of
clumped isotope analyses can significantly improve the ac-
curacy of seasonality reconstructions compared to conven-
tional stable oxygen isotope analyses, especially in settings
in which the isotopic composition of the water is poorly con-
strained. Smoothing data using a moving average often leads
to an apparent dampening of the seasonal cycle, significantly
reducing the accuracy of reconstructions. A statistical sam-
ple size optimization protocol yields more precise results
than smoothing. However, the most accurate results are ob-
tained through monthly binning of proxy data, especially in
cases in which growth rate or water composition cycles ob-
scure the seasonal temperature cycle. Our analysis of a wide
range of natural situations reveals that the effect of temper-

ature seasonality on oxygen isotope records almost invari-
ably exceeds that of changes in water composition. Thus, in
most cases, oxygen isotope records allow reliable identifica-
tion of growth seasonality as a basis for age modeling in the
absence of independent chronological markers in the record.
These specific findings allow us to formulate general recom-
mendations for sampling and combining data in paleoclimate
research and have implications beyond the reconstruction of
seasonality. We briefly discuss the implications of our re-
sults for solving common problems in paleoclimatology and
stratigraphy.

1 Introduction

Improving the resolution of climate reconstructions is a key
objective in paleoclimate studies because it allows climate
variability to be studied on different timescales and sheds
light on the continuum of climate variability (Huybers and
Curry, 2006). However, the temporal resolution of climate
records is limited by the accretion rate (growth or sedimen-
tation rate) of the archive and the spatial resolution of sam-
pling for climate reconstructions, which is a function of the
sample size required for a given climate proxy. This trade-
off between sample size and sampling resolution is espe-
cially prevalent when using state-of-the-art climate prox-
ies which require large sample sizes, such as the carbonate
clumped isotope paleothermometer (147; see applications in
Rodríguez-Sanz et al., 2017; Briard et al., 2020; Caldarescu
et al., 2021) and stable isotope ratios in specific compounds
or of rare isotopes (e.g., phosphate–oxygen isotopes in tooth
apatite, triple oxygen isotopes in speleothems, or carbon iso-
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topes of CO2 in ice cores; Jones et al., 1999; Schmitt et al.,
2012; Sha et al., 2020). The challenge of sampling resolu-
tion persists on a wide range of timescales: from attempts
to resolve geologically short-lived (thousand-year scale) cli-
mate events from deep-sea cores with low sedimentation
rates (e.g., Stap et al., 2010; Rodríguez-Sanz et al., 2017) to
efforts to characterize tidal or daily variability in accretionary
carbonate archives (e.g., Warter and Müller, 2017; de Winter
et al., 2020a). What constitutes “high resolution” is therefore
largely dependent on the specifics of the climate archive.

Sample size limitations are especially important in pale-
oseasonality reconstructions. Reliable archives for season-
ality (e.g., corals, mollusks, and speleothem records) are in
high demand in the paleoclimate community because the sea-
sonal cycle is one of the most important cycles in Earth’s
climate, and seasonality reconstructions complement more
common long-term (thousands to millions of years) records
of past climate variability (e.g., Morgan and van Ommen,
1997; Tudhope, 2001; Steuber et al., 2005; Steffensen et al.,
2008; Denton et al., 2005; Huyghe et al., 2015; Vansteen-
berge et al., 2020). A more detailed understanding of climate
dynamics at the human timescale is increasingly relevant for
improving climate projections (IPCC, 2013). Unfortunately,
the growth and mineralization rates of archives that cap-
ture high-resolution variability (only exceeding 10 mmyr−1

in rare exceptions; e.g., Johnson et al., 2019) limit the num-
ber and size of samples that can be obtained at high temporal
resolutions (e.g., Mosley-Thompson et al., 1993; Passey and
Cerling, 2002; Treble et al., 2003; Goodwin et al., 2003). In
addition, accurate positioning of samples within the seasonal
cycle is challenging. In the absence of fine-scale growth
markings (e.g., daily laminae in mollusk shells; Schöne et
al., 2005; de Winter et al., 2020a), this dating problem relies
on modeling or interpolation of the growth of the archive,
which introduces uncertainty in the age of samples (e.g.,
Goodwin et al., 2009; Judd et al., 2018). These problems are
exacerbated by the fact that accurate methods for climate re-
constructions may require comparatively large sample sizes
or rely on uncertain assumptions. A case in point is the
popular carbonate stable oxygen isotope temperature proxy
(δ18Oc), which relies on assumptions of the water composi-
tion (δ18Ow) that become progressively more uncertain fur-
ther back in geological history (e.g., Veizer and Prokoph,
2015). In contrast, the clumped isotope proxy (147) does not
rely on this assumption but requires larger amounts of sample
(e.g., Müller et al., 2017)

A promising technique for circumventing sample size lim-
itations is to analyze larger numbers of small aliquots from
the same sample or from similar parts of the climate archive.
These smaller aliquots typically have poor precision, but av-
eraging multiple aliquots into one estimate while propagat-
ing the measurement uncertainty leads to a more reliable
estimate of the climate variable (Dattalo, 2008; Meckler et
al., 2014; Müller et al., 2017; Fernandez et al., 2017). This
approach yields improved sampling flexibility since aliquots

can be combined in various ways after measurement. It also
allows outlier detection at the level of individual aliquots,
thereby spreading the risk of instrumental failure and provid-
ing improved control on changes in measurement conditions
that may bias results.

Previous studies have applied several different methods for
combining data from paleoclimate records to reduce analyt-
ical noise or higher-order variability and extract variability
with a specific frequency (e.g., a specific orbital cycle or sea-
sonality; Lisiecki and Raymo, 2005; Cramer et al., 2009).
These data reduction approaches can in general be catego-
rized into smoothing techniques, in which a sliding window
or range of neighboring data points is used to smooth high-
resolution records (see, e.g., Cramer et al., 2009), or bin-
ning techniques, in which the record is divided into equal
bins in the sampling direction (e.g., time, depth, or length in
the growth direction; Lisiecki and Raymo, 2005; Rodríguez-
Sanz et al., 2017). In addition, a third approach is proposed
here based on optimization of sample size for dynamic bin-
ning of data along the climate cycle using a moving window
in the domain of the climate variable (as opposed to the sam-
pling domain) combined with a T -test routine (see Sect. 2.1).
All three approaches have advantages and caveats.

In this study, we explore the (dis)advantages of these
three data reduction approaches by testing their reliability
in resolving seasonal variability in sea surface temperature
(SST) and water stable oxygen isotope composition (δ18Ow),
both highly sought-after variables in paleoclimate research.
We compare reconstructions of SST and δ18Ow in real and
virtual datasets from accretionary carbonate archives (e.g.,
shells, corals, and speleothems) using the clumped isotope
thermometer (147) combined with stable oxygen isotope ra-
tios of the carbonate (δ18Oc).

2 Methods

2.1 Reconstruction approaches

Throughout the remainder of this work, the three approaches
for combining data for reconstructions are defined as follows
(see also Fig. 1).

Smoothing refers to the reconstruction of SST and δ18Ow
based on moving averages of 147 and δ18Oc records
(Fig. 1b). For every dataset, the full possible range of mov-
ing window sizes (from one sample to the full length of the
record) for SST and δ18Ow reconstructions was explored.
The window size that resulted in the most significant dif-
ference between maximum and minimum 147 values (based
on a Student’s T test) was applied to reconstruct SST and
δ18Ow from 147 and δ18Oc records. SST and δ18Ow were
calculated for all case studies using a combination of em-
pirical temperature relationships by Kim and O’Neil (1997;
δ18Oc–δ18Ow–temperature relationship) and Bernasconi et
al. (2018; 147–temperature relationship). To obtain δ18Ow
values, the δ18Oc–δ18Ow–temperature relationship (Kim and
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Figure 1. Schematic overview of the four approaches for seasonality reconstructions: (a) δ18O-based reconstructions, assuming constant
δ18Ow. (b) Reconstructions based on smoothing δ18Oc and 147 data using a moving average. (c) Reconstructions based on binning δ18Oc
and 147 data in monthly time bins. (d) Reconstructions based on optimization of the sample size for combining δ18Oc and 147 data (see
description in Sect. 2.1). Colored points represent virtual δ18Oc (blue) and 147 (red) series in sampling domain. Black curves represent
reconstructed monthly SST and δ18Ow averages.

O’Neil, 1997) was solved for δ18Ow using the temperature
reconstruction obtained from 147 measurements. Here and
in other approaches, a typical analytical uncertainty in mea-
surements of147 (1 standard deviation of 0.04 ‰) and δ18Oc
(1 standard deviation of 0.05 ‰) was used to include uncer-
tainty due to measurement precision. These analytical un-
certainties were chosen based on typical uncertainties re-
ported for these measurements in the literature (e.g., Schöne
et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2016)
and long-term precision uncertainties obtained by measur-
ing in-house standards using the MAT253+ with Kiel IV
setup in the clumped isotope laboratory at Utrecht Univer-
sity (e.g., Kocken et al., 2019). The measurement uncertainty
was propagated through all calculations using a Monte Carlo
simulation (N = 1000) in which147 and δ18Oc records were
randomly sampled from a normal distribution with the virtual
147 and δ18Oc values as means and analytical uncertainties
as standard deviations. Resulting SST and δ18Ow values were
grouped into monthly time bins using the age model of the
archive.

Binning refers to reconstructions of SST and δ18Ow based
on binning of 147 and δ18Oc records into monthly time bins
(Fig. 1c). The147 and δ18Oc data from each case study were
grouped into monthly time bins and converted to SST and
δ18Ow using the Kim and O’Neil (1997) and Bernasconi et
al. (2018) formulae. Here too, Monte Carlo simulation (N =
1000) was applied to propagate measurement uncertainties
onto monthly SST and δ18Ow reconstructions. Note that the
prerequisite for this method is that the data are aligned using
a (floating) age model accurate enough to allow samples to

be placed in the right bin. The age of virtual samples in this
study is known, so this prerequisite poses no problems in this
case. However, in the fossil record this alignment might be
less certain in the absence of accurate chronologies within
the archive (e.g., through daily growth increments in mollusk
shells; Schöne, 2008; Huyghe et al., 2019; see Sect. 4.1.3).

Optimization refers to reconstructions of SST and δ18Ow
based on sample size optimization in 147 records (Fig. 1d).
In this approach aliquots of each dataset are ordered from
warm (low δ18Oc) to cold (high δ18Oc data) samples, re-
gardless of their position relative to the seasonal cycle. From
this ordered dataset, increasingly large samples of multiple
aliquots (from two aliquots to half the length of the record)
are taken from both the warm (“summer”) and the cold
(“winter”) side of the distribution. Summer and winter sam-
ples were kept equal (symmetrical grouping) to reduce the
number of possible sample size combinations and allow for
more efficient computation. However, asymmetrical group-
ing with differing sample sizes on the summer and winter
ends of the δ18Oc spectrum is possible (see Sect. 4.1.3 and
4.2.2). Sample sizes with a significant difference in the 147
value between summer and winter groups (p ≤ 0.05 based on
a Student’s T test) were selected as optimal sample sizes. The
moving window T test in the proxy domain ensures that an
optimal compromise is reached between high precision and
resolving differences between seasonal extremes. For each
successful sample size, SST and δ18Ow values were calcu-
lated from 147 and δ18Oc data according to the Kim and
O’Neil (1997) and Bernasconi et al. (2018) formulae. The
relationship between SST and δ18Ow obtained from these re-
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constructions was used to convert all 147 and δ18Oc data to
SST and δ18Ow, which are then grouped into monthly SST
and δ18Ow reconstructions along the archive’s age model.
Measurement uncertainties were propagated through the en-
tire approach by Monte Carlo simulation (N = 1000).

For comparison, we also include reconstructions based
solely on δ18Oc measurements with an (often inaccurate) as-
sumption of a constant δ18Ow (equal to the modern ocean
value of 0 ‰ VSMOW), which form the most common
method for carbonate-based temperature reconstructions in
paleoclimate research (see, e.g., Schöne et al., 2005; West-
erhold et al., 2020; Fig. 1a; hereafter: δ18O). For these re-
constructions, δ18Oc records were grouped into monthly
time bins with analytical uncertainties propagated using the
Monte Carlo approach (N = 1000) and were directly con-
verted to SST using the Kim and O’Neil (1997) temperature
relationship.

For each reconstruction, SST and δ18Ow results were ag-
gregated into monthly averages, medians, standard devia-
tions, and standard errors. Step-by-step documentation of
calculations made for the three147-based reconstruction ap-
proaches and the δ18Oc reconstructions is given in Supple-
ment Data S7 and in the complementary R package (de Win-
ter, 2021a).

2.2 Benchmarks for accuracy and precision

Accuracy and precision of reconstructions were evaluated
against official USGS definitions of climate parameters
(O’Donnell and Ignizio, 2012).

1. Mean annual SST (MAT) is defined as the average of all
12 monthly temperature reconstructions.

2. Seasonal range in SST is defined as the temperature dif-
ference between the warmest and coldest month.

3. Mean annual δ18Ow is defined as the average of all 12
monthly δ18Ow reconstructions.

4. Seasonal range in δ18Ow is defined as the δ18Ow dif-
ference between the most enriched (highest δ18Ow) and
most depleted (lowest δ18Ow) monthly reconstruction.

Accuracy was defined as the absolute offset of the recon-
structed climate parameter from the “true” value. Precision
was defined as the (relative) standard deviation of the recon-
struction, as calculated from the variability within monthly
time bins resulting from Monte Carlo error propagation (see
Sect. 2.1). An overview of monthly SST and δ18Ow recon-
structions using the four approaches in all cases is given in
Supplement Data S4. Raw data and figures of reconstructions
for all cases using all sampling resolutions are compiled in
Supplement Data S8.

2.3 SST and δ18Ow datasets

The three reconstruction approaches were tested and com-
pared based on three types of data. Firstly, a set of datasets
based on fully artificial environmental SST and δ18Ow data
(cases 1–29; see Fig. 2) was converted to virtual 147 and
δ18Oc records. Secondly, data based on actual measure-
ments of natural variability in SST and sea surface salinity
(SSS; cases 30–33) were converted to virtual 147 and δ18Oc
records. Thirdly, measured proxy data from a real specimen
of a Pacific oyster (Crassostrea gigas, syn. Magallana gigas)
were compared to measured environmental (SST and δ18Ow)
data reported in Ullmann et al. (2010).

2.3.1 Cases 1–29: virtual environmental data, virtual
proxy data

Virtual SST and δ18Ow time series were artificially con-
structed to test the effect of various SST and δ18Ow scenarios
on the effectivity of the reconstruction methods. The default
test case (case 1) contained an ideal 12-year sinusoidal SST
curve with a period of 1 year (seasonality), a mean value of
20 ◦C, a seasonal amplitude of 10 ◦C, a constant δ18Ow value
of 0 ‰, and a constant growth rate of 10 mmyr−1. Other
cases contain various deviations from this ideal case (see also
Fig. 2, Tables 1 and S1):

– linear and/or seasonal changes in growth rate, including
growth stops (cases 2–6, 14–18);

– seasonal and/or multi-annual changes in δ18Ow (cases
7–11, 13–18);

– multi-annual trends in SST superimposed on the season-
ality (cases 12, 15, and 17);

– variations in the seasonal SST amplitude (cases 19–21);

– change in the total length of the time series (cases 22–
24);

– variation in uncertainty on the age of each virtual data
point (cases 25–29).

Comparison of the virtual time series (cases 1–29; Fig. 2)
with the natural variability (cases 30–33; Fig. 3) shows that
the virtual cases are not realistic approximations of natural
variability in SST and δ18Ow. Natural SST and δ18Ow vari-
ability is not limited to the seasonal or multi-annual scale
but contains a fair amount of higher-order (daily to weekly
scale) variability. To simulate this natural variability, we ex-
tracted the seasonal component of SST and δ18Ow variability
from our highest-resolution record of measured natural SST
and SSS data (case 30: data from Texel, the Netherlands; see
Sect. 2.3.2 and Fig. 3). The standard deviation of the residual
variability of these data after subtraction of the seasonal cycle
was used to add random high-frequency noise to the SST and
δ18Ow variability in virtual cases. Note that while sub-annual
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Figure 2. Overview of time series of all virtual test cases. Colored curves represent time series of SST (red), δ18Ow (blue), and growth
rate (orange, abbreviated as GR). Horizontal axes in all plots are 12 years long (see legend below case 6). Vertical axis of all plots has the
same scale (SST: 10 to 30 ◦C; δ18Ow: −1 to +1 ‰; growth rate: 0–50 µmd−1; see legend in bottom right corner). Horizontal error bars and
labels on the right side of cases 25–29 represent standard errors introduced to the age model (bars not to scale). The δ18Oc and 147 records
resulting from these virtual datasets are provided in S6 (see also Fig. 3 for natural examples).

Table 1. Overview of virtual cases 1–29 used to test the reconstruction methods. Case descriptions are abbreviated. Details on the SST,
growth rate, and δ18Ow included in each case are described in Table S1. SST, growth rate, and δ18Ow records of all cases are shown in
Fig. 2. GR: growth rate.

Sensitivity cases Natural cases Varying seasonality Varying age model
uncertainty

7. δ18Ow seasonality in phase
with SST

19. Control case with reduced SST
amplitude (∼ 5 ◦C)

1. Control 8. δ18Ow seasonality in
antiphase with SST

14. Full marine case with ontogenetic
GR trend

20. Control case with reduced SST
amplitude (∼ 3 ◦C)

25. Case 9 with ±1 d age
model uncertainty

2. Growth stops
<12 ◦C

9. δ18Ow seasonality lags SST
by 1/4 year

15. Coastal case with spring δ18Ow de-
crease and decreasing GR trend

21. Control case with reduced SST
amplitude (∼ 1 ◦C)

26. Case 9 with ±5 d age
model uncertainty

3. Growth stops
>28 ◦C

10. Negative δ18Ow in spring 16. Lagoonal case with summer δ18Ow
increase

Varying record length 27. Case 9 with ±15 d age
model uncertainty

4. Linear de-
crease in GR

11. Positive δ18Ow in summer 17. Tropical monsoon case with con-
fined SST seasonality and strong multi-
annual SST cycle

22. Control case shortened to 6 years 28. Case 9 with ±45 d age
model uncertainty

5. GR seasonal-
ity in phase
with SST

12. Multi-annual (5 years) SST
cycle

18. Worst-case scenario with growth
limited to summer half of the year

23. Control case shortened to 3 years 29. Case 9 with ±90 d age
model uncertainty

6. GR seasonal-
ity lags SST by
1/4 year

13. Multi-annual (5 years)
δ18Ow cycle

24. Control case shortened to 1 year
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environmental variability can be approximated by Gaussian
noise (Wilkinson and Ivany, 2002), this representation is
an oversimplification of reality. In the case of our Texel
data, the SST and SSS residuals are not normally distributed
(Kolmogorov–Smirnov test:D = 0.010; p = 7.2×10−14 and
D = 0.039; p<2.2× 10−16 for SST and SSS residuals, re-
spectively; see S2-4). SST and δ18Ow data from cases 1–29
were converted to the sampling domain and subsampled at a
range of sampling resolutions following the same procedure
applied to cases 30–33 (see Sect. 2.3.2).

2.3.2 Cases 30–33: measured environmental data,
virtual proxy data

Four test cases were based on time series of real measured
SST and SSS data from four different locations, which were
selected to capture a variety of environments with different
SST and SSS variability (see Fig. 3):

1. tidal flats of the Wadden Sea near Texel, the Netherlands
(case 30);

2. Great Barrier Reef in Australia (case 31);

3. Gulf of Aqaba between Egypt and Saudi Arabia
(case 32);

4. northern Atlantic Ocean east of Iceland (case 33).

Daily measurements of SST and SSS for cases 31–33 were
obtained from worldwide open-access datasets of the Na-
tional Oceanic and Atmospheric Administration (NOAA
Physical Sciences Laboratory, 2021) and European Space
Agency (Boutin et al., 2019), respectively. Hourly SST and
SSS measured in situ in the Wadden Sea (case 30) were ob-
tained from the Dutch Institute for Sea Research (NIOZ;
Texel, the Netherlands). Since direct, in situ measurements
of δ18Ow variability at a high temporal resolution were not
available, δ18Ow was estimated from more widely available
SSS data using a mass balance (Eqs. 1 and 2; following, e.g.,
Ullmann et al., 2010).

δ18Osw = δ
18Ow,freshwater× f + δ

18Ow,ocean× (1− f ) (1)

f =
SSSsample−SSSocean

SSSfreshwater−SSSocean
(2)

Here, we assume salinity (SSSsample) results from a mix-
ture of a fraction (f ) of isotopically light and low-
salinity (δ18Ow,freshwater =−8 ‰; SSSfreshwater = 0) fresh
water and a fraction (1− f ) of ocean water (δ18Ow,ocean =

0 ‰; SSSocean = 35), with negative amounts of fresh-
water contribution (f<0) representing net evaporation
(SSSsample>SSSocean). The value for δ18Ow,freshwater was
based on the δ18Ow of rain in the Netherlands (−8 ‰; Mook,
1970; Bowen, 2020). Applying this mass balance to the SSS
record of the Wadden Sea tidal flats (case 30) results in
δ18Ow values and an SSS–δ18Ow relationship in agreement

with measurements in this region (Harwood et al., 2008).
SST and δ18Ow time series for all cases are given in Sup-
plement Data S4, and natural cases are plotted in Fig. 3.

For all virtual proxy datasets (cases 1–33), records of SST
and δ18Ow were converted to the sampling domain (along the
length of the record) by defining a virtual growth rate in the
sampling direction. Adding this growth rate as a variable al-
lowed us to test the sensitivity of approaches to changes in
the extension rate of the archive, including hiatuses (growth
rate 0). This is important because fluctuations in linear ex-
tension rate and periods in which no mineralization occurs
(hiatuses or growth cessations) are common in all climate
archives (e.g., Treble et al., 2003; Ivany, 2012). After conver-
sion to the sampling domain, virtual aliquots were subsam-
pled at equal distance from the SST and δ18Ow series of all
cases using six sampling intervals: 0.1, 0.2, 0.45, 0.75, 1.55,
and 3.25 mm. The four largest sampling intervals were cho-
sen such that the standard growth rate (10 mmyr−1) was not
an integer multiple of the sampling interval (e.g., 0.45 mm
instead of 0.5 mm and 3.25 mm instead of 3 mm). This de-
cision prevents sampling of the same parts of the seasonal
cycle (e.g., same months) every year, which biases both the
mean value and the precision of monthly SST and δ18Ow re-
constructions. This bias towards certain parts of the seasonal
cycle is much stronger at low sample sizes (large sampling
intervals) and is illustrated in the Supplement Fig. S2.

2.3.3 Modern oyster: measured environmental data,
measured proxy data

Environmental SST and δ18Ow data from the List Basin in
Denmark (54◦59.25 N, 8◦23.51 E), where the modern oyster
specimen lived, were obtained from local in situ measure-
ments of SST and SSS described in Ullmann et al. (2010).
Since direct, in situ measurements of δ18Ow variability
at a high temporal resolution were not available, δ18Ow
was estimated from more widely available SSS data using
the mass balance described in Sect. 2.3.2. The value for
δ18Ow,freshwater was based on the discharge-weighted average
δ18Ow of water in the nearby Elbe and Weser rivers (see Ull-
mann et al., 2010). All δ18Ow values throughout the text are
with reference to the VSMOW scale. Contrary to the virtual
datasets (cases 1–33; see Sect. 2.3.1 and 2.3.2), the Ullmann
et al. (2010) data were already available in the sampling do-
main; hence, no subsampling was required.

2.4 Conversion to δ18Oc and ∆47 data

After subsampling, SST and δ18Ow series (cases 1–33) were
converted to δ18Oc and 147 using a carbonate model based
on empirical relationships between 147–δ18Oc and SST–
δ18Ow (Eqs. 3 and 4; Kim and O’Neil, 1997; Kele et al.,
2015; Bernasconi et al., 2018) as well as the conversion of
δ18O values from the VSMOW to the VPDB scale (Eq. 5;
Brand et al., 2014).

Clim. Past, 17, 1315–1340, 2021 https://doi.org/10.5194/cp-17-1315-2021



N. J. de Winter et al.: Optimizing sampling strategies in high-resolution paleoclimate records 1321

Figure 3. Overview of the four cases of virtual data based on natural SST and SSS measurements explored in this study. (a) Case 30: tidal
flats on the Wadden Sea, Texel, the Netherlands. (b) Case 31: Great Barrier Reef, Australia. (c) Case 32: Gulf of Aqaba between Egypt and
Saudi Arabia. (d) Case 33: Atlantic Ocean east of Iceland. For all cases, graphs on top show environmental data, with SST plotted in red,
δ18Ow in blue, and growth rate (abbreviated as GR) in orange (as in Fig. 2). The graph below shows virtual δ18Oc (blue) and 147 (red)
records created from these data series using a sampling interval of 0.45 mm and including analytical noise (see Sect. 2.1 and 2.3.2). Note that
the scale of vertical axes varies between plots.
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147 =
0.0449× 106

(SST+ 273.15)2 + 0.167 (3)

1000× ln

(18O/16O
)

CaCO3(
18O/16O

)
H2O

=

18.03×

(
103

(SST+ 273.15)

)
− 32.42 (4)

δ18OVPDB = 0.97002× δ18OVSMOW− 29.98 (5)

For the modern oyster data (Ullmann et al., 2010; see
Sect. 2.3.3), only the 147 data needed to be created because
δ18Oc was directly measured. As a result, each case study
yielded records of 147 and δ18Oc in the sampling domain
and corresponding true SST and δ18Ow records in the time
domain, allowing assessment of the reliability of the recon-
struction approaches in different scenarios (Fig. 4). The re-
sult of applying these steps is illustrated with case 31 (Great
Barrier Reef data, Fig. 5). All calculations for creating 147
and δ18Oc series in the sampling domain were carried out us-
ing the open-source computational software R (R core team,
2013), and scripts for these calculations are given in Supple-
ment Data S7 and compiled in the documented R package
“seasonalclumped” (de Winter, 2021a). All 147 and δ18Oc
datasets are provided in Supplement Data S6.

3 Results

3.1 Real example

Measured (δ18Oc) and simulated (147) data from the Pacific
oyster from the Danish List Basin yielded estimates of SST
and δ18Ow seasonality using all reconstruction approaches
(Fig. 6). While a model of shell δ18Oc based on SST and
SSS data closely approximates the measured δ18Oc record
(Fig. 6c), basing SST reconstructions solely on δ18Oc data
without any a priori knowledge of δ18Ow variability (assum-
ing constant δ18Ow equal to the global marine value) leads
to high inaccuracy in mean annual SST (Fig. 6d). Note that,
in the absence of significant δ18Ow seasonality (as in this
case study), seasonal temperature range reconstructions from
δ18Oc measurements can be very accurate. However, assum-
ing constant δ18Ow year-round may introduce considerable
bias (see Figs. 7 and 8). The in-phase relationship between
SST and SSS (Fig. 6b) slightly dampens the seasonal δ18Oc
cycle, causing underestimation of temperature seasonality,
while a negative mean annual δ18Ow value in the List Basin
biases SST reconstructions towards higher temperatures. In
terms of SST reconstructions, the smoothing, binning, and
optimization approaches based on 147 and δ18Oc data yield
more accurate reconstructions, albeit with reduced season-
ality and a bias towards the summer season. The latter is
a result of severely reduced growth rates in the winter sea-
son, which was therefore undersampled (see Fig. 6a and c).

Approaches including 147 data also yield far more accurate
δ18Ow estimates than the δ18O approach. However, the accu-
racy of δ18Ow seasonality and mean annual δ18Ow estimates
is low in these approaches too, largely because of the limited
sampling resolution, especially in winter. The optimization
approach suffers from the strong in-phase relationship be-
tween SST and SSS, which obscures the difference between
the δ18Ow effect and the temperature effect on shell carbon-
ate. Yet, disentangling SST from δ18Ow seasonality is central
to the success of the approach (see Sect. 4.2.3). Figure 6d
does not show the precision of SST and δ18Ow estimates,
which is much lower for the smoothing approach than for the
binning and optimization approaches due to the limited data
in the winter seasons (see Supplement Data S6). These re-
sults show that several properties of carbonate archives, such
as growth rate variability, phase relationships between SST
and δ18Ow seasonality, and sampling resolution, can impact
the reliability of paleoseasonality reconstructions. The vir-
tual and real data cases in this study were tailored to test the
effects of these archive properties more thoroughly.

3.2 Case-specific results

A case-by-case breakdown of the precision (Fig. 7) and ac-
curacy (Fig. 8) of reconstructions using the four approaches
shows that the reliability of reconstructions varies signifi-
cantly between approaches and is highly case-specific. In
general, precision is highest in δ18O reconstructions, fol-
lowed by optimization and binning, with smoothing gener-
ally yielding the worst precision. Average standard devia-
tions of the underperforming methods (binning and smooth-
ing) are up to 2–3 times larger than those of δ18O (e.g., 3.9
and 3.5 ◦C vs. 1.3 ◦C for δ18O MAT reconstructions; see also
the Supplement). It is worth noting that precision of δ18O-
based estimates is mainly driven by measurement precision
(which is better for δ18Oc than for 147 measurements; see
Sect. 4.1.1). 147-based reconstructions lose precision due to
the higher error in 147 measurements and the method used
for combining measurements for seasonality reconstructions.
On a case-by-case basis, the hierarchy of approaches can
vary, especially if strong variability in growth rate is intro-
duced, such as in case 14, in which the size of hiatuses in
the record increases progressively, and in case 18, in which
half of the year is missing due to growth hiatuses (see Ta-
ble 1, Supplement Data S1 and S4). Of the 147-based meth-
ods (smoothing, binning, and optimization), optimization is
rarely outcompeted in terms of precision in both SST and
δ18Ow reconstructions.

The comparison based on precision alone is misleading,
as the most precise approach (δ18O) runs the risk of being
highly inaccurate (offsets exceeding 4 ◦C in some MAT re-
constructions; see Fig. 8a), especially in cases based on nat-
ural SST and SSS measurements (cases 30–33). The smooth-
ing approach also often yields highly inaccurate results, es-
pecially in cases with substantial variability in δ18Ow (e.g.,
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Figure 4. Flow diagram showing the steps taken to create virtual data (147 and δ18Oc; cases 1–33) and compare results of SST and δ18Ow
reconstructions with the actual SST and δ18Ow data the record was based on (counterclockwise direction). Steps 1–3 outline the procedure
for creating virtual 147 and δ18Oc datasets (see Sect. 2.3 and 2.4), step 4 shows the application of the different reconstruction methods
to these virtual data (see Fig. 2 for details), and step 5 illustrates how the reconstructions are compared with the original (“true”) SST and
δ18Ow data to calculate the accuracy and precision of the reconstruction approaches. Note that step 1 is different for cases 1–29 (based on
fully artificial SST and δ18Ow records; Sect. 2.3.1) than for cases 30–33 (SST and δ18Ow records based on real SST and SSS data; see
Sect. 2.3.2).

cases 9–11; Fig. 8). Optimization and binning outcompete
the other methods in most circumstances in terms of accu-
racy. Binning outperforms optimization in reconstructions of
δ18Ow seasonality, making it the overall most accurate ap-
proach. Interestingly, optimization is less accurate, specif-
ically in cases with sharp changes in growth rate in sum-
mer (e.g., cases 11, 14, 16, and 17), while binning performs
better in these cases. Reconstructions of mean annual SST
and δ18Ow in case 18 are especially inaccurate regardless
of which method is applied. This extreme case with growth
only during half of the year combined with seasonal fluctua-
tions in both SST and δ18Ow presents a worst-case scenario
for seasonality reconstructions, leading to strong biases in
mean annual temperature reconstructions. In situations like
case 18, the optimization approach is most accurate in MAT
and SST seasonality reconstructions, but δ18Ow is more ac-
curately reconstructed using the binning approach. Finally,
it is worth noting that in natural situations (Fig. 3), variabil-
ity in SST almost invariably has a larger influence on δ18Oc
and 147 records than δ18Ow such that fluctuations in δ18Oc
records closely follow the SST seasonality, even in cases with
relatively large δ18Ow variability (e.g., case 30). Chronolo-

gies based on these δ18Oc fluctuations are therefore generally
accurate.

3.3 Effect of sampling resolution

As expected, increasing the temporal sampling resolution
(i.e., number of samples per year) almost invariably increases
the precision and accuracy (Fig. 9) of reconstructions us-
ing all methods. An exception to this rule is the precision of
δ18O reconstructions, which decreases with increasing sam-
pling resolution (see Fig. 9c–d). Precision standard devia-
tions of all 147-based approaches eventually converge with
the initially much higher precision of δ18O reconstructions
when sampling resolution increases. However, the sampling
resolution required for 147-based reconstructions to rival
or outcompete the δ18O reconstructions differs, with opti-
mization requiring lower sampling resolutions than the other
methods (e.g., 20–40 samples per year compared to 40–80
samples per year for smoothing and binning; Fig. 9a–d).
Accuracy also improves with sampling resolution (Fig. 9e–
h). When grouping all cases together, it becomes clear that
δ18O reconstructions can only approach the accuracy of147-
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Figure 5. An example of the steps highlighted in Fig. 4 using case 31 (Great Barrier Reef data) to illustrate the data processing steps. Virtual
data plots include normally distributed measurement uncertainty in 147 and δ18Oc.

based approaches for reconstructions of MAT. Seasonality in
both SST and δ18Ow is most accurately reconstructed using
binning, and the smoothing approach once again performs
worst.

3.4 Resolving SST seasonality

Comparison of cases 19, 20, and 21 (SST seasonality of
9.7, 5.7, and 2.1 ◦C, respectively) with control case 1 (SST
seasonality of 19.3 ◦C) shows how changes in the seasonal
SST range affect the precision of measurements (Fig. 10;
see also Table 1 and Supplement Data S1). The data recon-
firm that δ18O reconstructions are the most precise, which
is a deceptive statistic given the risk of highly inaccurate re-
sults with this approach (see Fig. 8). Taking into consider-
ation only analytical uncertainty, all approaches except for
smoothing can confidently resolve at least the highest SST
seasonality within a significance level of 2 standard devia-
tions (∼ 95 %) using a moderate sampling resolution (mean
of all resolutions shown in Fig. 10). Increasing sampling res-
olution improves the precision of 147-based reconstructions
(see Fig. 9d), so high sampling resolutions (0.1 or 0.2 mm)
allow smaller seasonal differences to be resolved. When ran-
dom sub-annual variability is added to the SST and δ18Ow

records (see Sect. 2.3.1), the minimum seasonal SST extent
that can be resolved decreases for all approaches (Fig. 10b
and c). Nevertheless, δ18O and optimization reconstructions
remain able to resolve a relatively small SST seasonality of
2–4 ◦C.

3.5 Effect of record length

The effect of variation in the length of the record was inves-
tigated by comparing cases 22, 23, and 24 (record lengths
of 6 years, 3 years, and 1 year, respectively) with the con-
trol case (record length of 12 years; see Fig. 11 and Table 1).
The precision of MAT and SST seasonality reconstructions
slightly increases in larger datasets (longer records) for opti-
mization and binning, but not for smoothing and δ18O recon-
structions. Differences between reconstruction approaches
remain relatively constant regardless of the length of the
record, with the precision hierarchy generally remaining
intact (δ18O> optimization> binning> smoothing). How-
ever, in very short records (1–2 years) smoothing generally
gains an advantage over other 147-based methods due to its
lack of sensitivity to changes in the record length, and bin-
ning reconstructions are not precise enough to resolve SST
seasonality within 2 standard deviations (∼ 95 % confidence
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Figure 6. (a) Plot of δ18Oc and (virtual) 147 data from a modern Pacific oyster (Crassostrea gigas; see Ullmann et al., 2010). (b) SST and
δ18Ow data from the List Basin (Denmark) in which the oyster grew. (c) The fit between δ18Oc data and modeled δ18Oc calculated from SST
and δ18Ow on which the shell age model was based. (d) A summary of the results of different approaches for reconstructing SST and δ18Ow
from the δ18Oc and 147 data. The vertical colored bars show the reconstructed seasonal variability using all methods, with ticks indicating
warmest month, coldest month, and annual mean. The grey horizontal bars show the actual seasonal variability in the environment. Precision
standard deviations for monthly reconstructions are not shown but are given in Supplement Data S4.

level). Variation in precision is largely driven by the very low
precision of reconstructions in records with low sampling
resolutions (sampling intervals of 1.55 mm or 3.25 mm; see
also Fig. 9a–d). As a result, most of the reduction in precision
in shorter records can be mitigated by denser sampling.

3.6 Effect of age model uncertainty

Uncertainty in the age model has a significant effect on both
the precision and the accuracy (Fig. 12) of reconstructions
using all approaches. The δ18O reconstructions are most
strongly affected by uncertainties in the age model and suffer
from a large decrease in precision with increasing age model
uncertainty (Fig. 12c–d). The high precision of the δ18O
approach in comparison with the 147 approaches quickly
disappears when age model uncertainty increases beyond
20–30 d. The accuracy of δ18Oc-based SST seasonality re-
constructions initially improves with age model uncertainty
(Fig. 12h). However, this observation is likely caused by
the fact that age model uncertainty was compared based on
conditions in case 9, which features a phase offset between
SST and δ18Ow seasonality, causing the δ18O method to be
highly inaccurate even without age model uncertainty. The

precision of smoothing and optimization approaches also de-
creases with increasing age model uncertainty (Fig. 12a–d),
and the optimization approach loses its precision advantage
over the binning and smoothing approaches when age model
uncertainty increases beyond 30 d. The monthly binning ap-
proach is most resilient against increasing age model uncer-
tainty. Seasonality reconstructions through both the binning
and optimization approach quickly lose accuracy when age
model uncertainty increases, but the accuracy of the smooth-
ing approach remains the worst of all 147-based approaches
regardless of age model uncertainty, except in the case of
δ18Ow seasonality at exceptionally high (>60 d) age uncer-
tainty (Fig. 12e–h).

4 Discussion

4.1 Performance of reconstruction approaches

4.1.1 δ18Oc vs ∆47-based reconstructions

Figure 13 summarizes the general reliability of the four ap-
proaches. δ18O reconstructions are generally less accurate
than 147-based reconstructions (especially binning and op-
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Figure 7. Overview of the precision (propagated standard deviation of variability within reconstructions; see Sect. 2.2) of reconstructions
of mean annual temperature (a), seasonal temperature range (b), mean annual δ18Ow (c), and seasonal range in δ18Ow (d), with higher
values (darker colors) indicating lower precision (more variability between reconstructions) based on average sampling resolution (sampling
interval of 0.45 mm). The different cases on the horizontal axis are color coded by their difference from the control case (case 1; see legend
on the right-hand side). Grey boxes indicate cases for which reconstructions were not successful. All data on precision (standard deviation
values) are provided in Supplement Data S4.

Figure 8. Overview of the accuracy (absolute offset from “true” values) of reconstructions of mean annual temperature (a), seasonal tempera-
ture range (b), mean annual δ18Ow (c), and seasonal range in δ18Ow (d), with higher values (darker colors) indicating lower accuracy (higher
offsets) based on average sampling resolution (sampling interval of 0.45 mm). The different cases on the horizontal axis are color coded by
their difference from the control case (case 1; see legend on the right-hand side). Grey boxes indicate cases for which reconstructions were
not successful. All data on accuracy (difference between reconstructed and true values) are provided in Supplement Data S4.
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Figure 9. Effect of sampling resolution (in samples per year; see S5) on the precision (1 standard deviation) of results of reconstructions of
mean annual δ18Ow (a), seasonal range in δ18Ow (b), mean annual SST (c), and seasonal range in SST (d). Effect on the accuracy (absolute
offset from actual value) of results of reconstructions of mean annual δ18Ow (e) and seasonal range in δ18Ow (f), mean annual SST (g), and
seasonal range in SST (h). Color coding follows the scheme in Figs. 1 and 4.

Figure 10. Effect of SST seasonality range (difference between warmest and coldest month) in the record on the relative precision of
SST seasonality reconstructions (RSD, defined as 1 standard deviation divided by the mean value). (a) Precision results if random variability
(“weather patterns”) in both SST and δ18Ow as well as measurement uncertainty is added to the records (see Sects. 2.3.1 and S1). (b) Precision
of records with random variability in SST and measurement uncertainty only. (c) Precision if only measurement uncertainty is considered.
Color coding follows the scheme in Figs. 1 and 4. Shaded dots represent results at various sampling resolutions, while bold lines are averages
for all reconstruction approaches. Black circles highlight the places where curves cross the threshold of 2 standard deviations, which indicates
the minimum SST seasonality that can be resolved within 2 standard deviations (∼ 95 % confidence level) using the reconstruction approach.
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Figure 11. Effect of record length (in years) on the relative precision (1 standard deviation as a fraction of the mean value) of results of
reconstructions of mean annual SST (a) and SST seasonality (b). Colored dots represent results for the six different sampling resolutions.
Solid lines connect averages for cases 1, 22, 23, and 24 for each reconstruction approach.

Figure 12. Effect of uncertainty in the age model on the precision (standard deviation on estimate) of results of reconstructions of mean
annual δ18Ow (a), seasonal range in δ18Ow (b), mean annual SST (c), and seasonal range in SST (d). Effect of uncertainty in the age model
on the accuracy (offset from true value) of results of reconstructions of mean annual δ18Ow (e), seasonal range in δ18Ow (f), mean annual
SST (g), and seasonal range in SST (h). Color coding follows the scheme in Figs. 1 and 4.

timization; see also Supplement Data S9). This is a conse-
quence of the assumption that δ18Ow remains constant year-
round and that one knows its true value. Both these assump-
tions are problematic in the absence of independent evidence
of the value of δ18Ow, especially in deep time settings (see,

e.g., Veizer and Prokoph, 2015; Henkes et al., 2018). The
risk of this assumption is made clear when comparing cases
in which δ18Ow is indeed constant year-round at the assumed
value (0 ‰; e.g., cases 1–6 and 19–24) with cases in which
shifts in δ18Ow occur, especially when these shifts are out
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of phase with respect to the SST seasonality (e.g., cases 9–
11, 18, and 25–33; Fig. 8c–d). Cases mimicking or based on
natural SST and SSS variability (cases 14–18 and 30–33) as
well as the modern oyster data (Fig. 6) yield stronger inaccu-
racies in MAT and seasonality reconstructions, showing that
even in many modern natural circumstances the assumption
of constant δ18Ow is problematic.

It is important to consider that the value of mean annual
δ18Ow remained very close to the assumed value of 0 ‰
(within 0.15 ‰) in all cases except for natural data cases 30
(−1.55 ‰), 32 (1.01 ‰; see Supplement Data S5), and the
real oyster data (−1.42 ‰; Fig. 5). The SST values of these
cases reconstructed using δ18Oc data show large offsets from
their actual values (+6.7 ◦C,−4.7 ◦C, and+10.3 ◦C for case
30, case 32, and the real oyster data, respectively; see Figs. 6
and 8 and Supplement Data S5). These offsets are equivalent
to the temperature offset one might expect from inaccurately
estimating δ18Ow (∼−4.6 ◦C/‰; Kim and O’Neil, 1997)
and are only rivaled by the offset in MAT reconstructions
of case 18 (+5.0 ◦C), which has growth hiatuses obscuring
the coldest half of the seasonal cycle. The fact that such dif-
ferences in δ18Ow exist even in modern environments should
not come as a surprise, given the available data on worldwide
variability of δ18Ow (at least −3 ‰ to +2 ‰; e.g., LeGrande
and Schmidt, 2006) and SSS (30 to 40; ESA, 2020) in mod-
ern ocean basins. However, it should warrant caution in using
δ18Oc data for SST reconstructions even in modern settings.
Implications for deep time reconstructions are even greater,
given the uncertainty and variability in global average (let
alone local) δ18Ow values (Jaffrés et al., 2007; Veizer and
Prokoph, 2015). The complications of using δ18Oc as a proxy
for marine temperatures in deep time are discussed in detail
in O’Brien et al. (2017) and Tagliavento et al. (2019). Com-
plications arising from variability in δ18Ow are more seri-
ous in climate records from euryhaline carbonate producers
(e.g., oysters) than from stenohaline organisms (e.g., corals),
as they are mainly driven by salinity fluctuations. For exam-
ple, seasonal salinity variability in the North Sea at offshore
sites away from freshwater sources can be as low as 0.25
(Harwood et al., 2008) compared to 3–4 in the coastal Texel
site simulated in case 30. Given this variability, studies using
the δ18Oc proxy for SST reconstructions are recommended
to either reconstruct δ18Ow through additional measurements
(e.g., including clumped isotope analysis) or constrain δ18Ow
variability through isotope-enabled modeling (e.g., Williams
et al., 2009)

The analytical uncertainty of individual δ18Oc aliquots
(typically 1 SD of 0.05 ‰; e.g., de Winter et al., 2018) rep-
resents only ∼ 1.1 % of the variability in δ18Oc over the
seasonal cycle (∼ 4.3 ‰ for the default 20 ◦C seasonality
in case 1, following Kim and O’Neil, 1997). This is much
smaller than the analytical uncertainty of 147 (typically 1
SD of 0.02–0.04 ‰; e.g., Fernandez et al., 2017; de Win-
ter et al., 2021), which equates to 25 %–50 % of the sea-
sonal variability in147 (∼ 0.08 ‰ for 20 ◦C seasonality, fol-

lowing Bernasconi et al., 2018; see Supplement Data S7).
This roughly 20-fold difference in relative precision causes
δ18Oc-based SST reconstructions to be much more precise
(see Figs. 7, 9–12) than those based on 147 and forces the
necessity of grouping 147 data in reconstructions. However,
as discussed above, the high precision of δ18O reconstruc-
tions is a misleading statistic if they are highly inaccurate.

Our results show that paleoseasonality reconstructions
based on δ18Oc can only be relied upon if there is strong
independent evidence of the value of δ18Ow and if signif-
icant sub-annual variability in δ18Ow (>0.3 ‰, equivalent
to 2–3 ◦C SST variability; see Figs. 9–10; Kim and O’Neil,
1997) can be excluded with confidence. Examples of such
cases include fully marine environments unaffected by in-
fluxes of (isotopically light) fresh water or evaporation (in-
creasing δ18Ow; Rohling, 2013). Carbonate records from en-
vironments with more stable δ18Ow conditions include, for
example, the A. islandica bivalves from considerable depth
(30–50 m) in the open-marine northern Atlantic (e.g., Schöne
et al., 2005, on which case 33 is based). However, even here
variability in δ18Osw due to, for example, the shifting influ-
ence of different bottom-water masses cannot be fully ex-
cluded. Previous reconstruction studies show that δ18Ow in
smaller basins is heavily influenced by the processes affect-
ing δ18Ow on smaller scales, such as local evaporation and
freshwater influx from nearby rivers (e.g., Surge et al., 2001;
Petersen et al., 2016). Consequently, accurate quantitative re-
constructions of seasonal range in shallow marine environ-
ments with extreme seasonality may not be feasible using
the δ18O approach because these environments are invariably
characterized by significant fluctuations in δ18Ow and growth
rate.

While variability in δ18Ow compromises accurate δ18O-
based seasonality reconstructions, the compilation in Fig. 3
shows that its influence on the δ18O records is too small to
affect the shape of the record to such a degree that season-
ality is fully obscured. While natural situations with δ18Ow
fluctuations large enough to totally counterbalance the ef-
fect of temperature seasonality on δ18O records are imagin-
able, these cases are likely rare. This means that chronologies
based on δ18O seasonality, which are a useful tool to anchor
seasonal variability in the absence of independent growth
markers (e.g., Judd et al., 2018; de Winter, 2021b), are re-
liable in most natural cases.

4.1.2 Seasonality reconstructions using moving
averages (smoothing)

Of the three methods for combining147 data, the smoothing
approach clearly performs worst for all four reconstructed
parameters (MAT, SST seasonality, mean annual δ18Ow and
δ18Ow seasonality) in terms of both accuracy and precision
(Fig. 13). While applying a moving average may be a good
strategy for lowering the uncertainty of 147-based tempera-
ture reconstructions in a long time series (e.g., Rodríguez-
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Figure 13. Overview of averages and ranges of accuracy (absolute offset from real value) and precision (1 standard deviation from the mean)
for mean annual δ18Ow (a), seasonal range in δ18Ow (b), mean annual SST (c), and seasonal range in SST (d) within all cases using the four
different reconstruction approaches. Color coding follows the scheme in Figs. 1 and 4. Box–whisker plots for precision and accuracy cross
at their median values, and outliers (colored symbols) are identified based on 2× the interquartile difference (thick lines).

Sanz et al., 2017), the method underperforms in cases in
which the baseline and amplitude of a periodic component
(e.g., MAT and SST seasonality) are extracted from a record.
This is likely due to the smoothing effect of the moving av-
erage, which reduces the seasonal cycle and causes highly
inaccurate seasonality reconstructions (offsets amounting to
>6 ◦C; Fig. 13). This bias is especially detrimental in cases
in which the seasonal cycle is obscured by seasonal growth
halts (e.g., case 18), multi-annual trends in growth (e.g.,
cases 4, 14, and 17), and multi-annual trends in SST (e.g.,
cases 15 and 17; see Figs. 7 and 8). The poor performance
of the smoothing approach can be slightly mitigated by in-
creasing sampling resolution (Fig. 9), but even at high sam-
pling resolutions (every 0.1 or 0.2 mm) the method still fails
to reliably resolve seasonal SST ranges below 5 ◦C, even in
idealized cases (cases 19–21; Fig. 10). Increasing the number
of samples by analyzing longer records does not improve the
result because smoothing of the seasonal cycle by a moving

average window introduces the same dampening bias if the
temporal sampling resolution (number of samples per year)
remains equal (Fig. 11).

More critically, employing the smoothing method may
give the illusion that seasonality is more reduced and severely
bias reconstructions. This bias highlights the importance of
using the official meteorological definition of seasonality as
the difference between the averages of the warmest and cold-
est month in paleoseasonality work (O’Donnell and Ignizio,
2012). This definition is much more robust than the “annual
range” often cited based on maxima and minima in δ18Oc
records. This annual range strongly depends on sampling res-
olution, which is typically <12 samples per year (Goodwin
et al., 2003), equivalent to the third lowest sampling inter-
val (0.75 mm) simulated in this study. Therefore, we strongly
recommend that future studies adhere to the monthly defi-
nition of seasonality to foster comparison between studies.
While interannual variability is lost by combining data from
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multiple years into monthly averages, this approach increases
the precision, accuracy, and comparability of paleoseasonal-
ity results. Interannual variability can still be discussed from
raw data plotted in the time or sampling domain.

4.1.3 Monthly binning, sample size optimization, and
age model uncertainty

Overall, the most reliable paleoseasonality reconstructions
can be obtained from either binning or optimization (Fig. 13).
In general, optimization is slightly more precise, while bin-
ning yields more accurate estimates of the seasonal range in
SST and δ18Ow (Fig. 13b and d). The more flexible com-
bination of aliquots in the optimization routine yields im-
proved precision (especially for mean annual averages) in
cases in which parts of the record are undersampled or af-
fected by hiatuses and simultaneous fluctuations in both SST
and δ18Ow (e.g., cases 3–6, 14–18, 30–33). The downside of
this flexibility is that in the case of larger sample sizes, the
seasonal variability may be dampened, like in the smooth-
ing approach (see Sect. 4.1.2). This apparent dampening ef-
fect may be reduced by allowing the sample size of sum-
mer and winter samples to vary independently in the opti-
mization routine at the cost of higher computational intensity
due to the larger number of sample size combinations (see
Sects. 2.1 and 4.2.2). The rigid grouping of data into monthly
bins in binning prevents this dampening and therefore yields
slightly more accurate estimates of seasonal ranges in SST
and δ18Ow. A caveat of binning is that it requires a very reli-
able age model of the record, at least on a monthly scale. If
the age model has a large uncertainty, there is a risk that sam-
ples are grouped in the wrong month, which compromises
the accuracy of binning reconstructions, especially for re-
constructions of seasonal range (Fig. 12h). This problem is
exacerbated by potential phase shifts between seasonality in
paleoclimate variables (SST and δ18Ow) and calendar dates,
which may occur in the presence of a reliable age model.

Previous authors attempted to circumvent the dating prob-
lem by analyzing high-resolution δ18Oc transects and subse-
quently sampling the seasonal extremes for clumped isotope
analyses (Keating-Bitonti et al., 2011; Briard et al., 2020).
While this approach does not require sub-annual age models,
it has several disadvantages compared with binning and opti-
mization approaches: firstly, it requires separate sampling for
δ18Oc and147, which may not be possible in high-resolution
carbonate archives due to sample size limitations. Analyzing
small aliquots for combined δ18Oc and 147 analyses con-
sumes less material. Secondly, individual summer and win-
ter temperature reconstructions require large (>1.5 mg; e.g.,
Fernandez et al., 2017)147 samples from seasonal extremes,
which causes more time averaging than the approaches com-
bining small aliquots. Finally, the position of seasonal ex-
tremes estimated from the δ18Oc record may not reflect the
true seasonal extent if seasonal SST and δ18Ow cycles are
not in phase (as in case 9), causing seasonal 147-based SST

reconstructions to underestimate the temperature seasonality.
In such cases, δ18Oc and 147 analyses of small aliquots al-
low the seasonality in SST and δ18Ow to be disentangled,
yielding more accurate seasonality reconstructions.

Techniques for establishing independent age models for
climate archives range from counting of growth layers or
increments (Schöne, 2008; Huyghe et al., 2019), to model-
ing and extracting of rhythmic variability in climate prox-
ies through statistical approaches (e.g., De Ridder et al.,
2007; Goodwin et al., 2009; Judd et al., 2018; de Winter,
2021b), and interpolation of uncertainty on absolute dates
(e.g., Scholz and Hoffman, 2011; Meyers, 2019; Sinnesael
et al., 2019). While propagating uncertainty in the data on
which age models are based onto the age model is rela-
tively straightforward, errors in underlying a priori assump-
tions, such as linear growth rate between dated intervals,
(quasi-)sinusoidal forcing of climate cycles, and the uncer-
tainty in human-generated data like layer counting, are very
difficult to quantify (e.g., Comboul et al., 2014) and may
not be normally distributed. Results of cases 25–29 show
that uncertainties in the age domain can significantly com-
promise reconstructions (Fig. 12). Within the scope of this
study, only the effect of symmetrical, normally distributed
uncertainties in an artificial case with phase-decoupled SST
and δ18Ow seasonality (case 9) was tested. The effects of
other types of uncertainties on the reconstructions remain un-
known, highlighting an unknown uncertainty in paleoseason-
ality and other high-resolution paleoclimate studies that may
introduce bias or lead to overly optimistic uncertainties in re-
constructions. Future research could quantify this unknown
uncertainty by propagating estimates of various types of un-
certainty on depth values of samples and on the conversion
from sampling to time domain in age models.

4.2 Conditions influencing success of reconstructions

The reliability (accuracy and precision) of SST and δ18Ow re-
constructions depends on case-specific conditions. The range
of cases tested in this study allowed us to evaluate the effect
of variability in SST, growth rate, δ18Ow, sampling resolu-
tion, and record length relative to the control case (case 1;
see Supplement Data S1). A summary of the effects of these
changes is given in Table 2.

4.2.1 SST variability

Variability in water temperature most directly affects the
proxies under study. By default (case 1), SST varies si-
nusoidally around a MAT of 20 ◦C with an amplitude of
10 ◦C (see Sect. 2.3.1, Fig. 2, and Supplement Data S1).
In cases in which multi-annual variability in SST is sim-
ulated (e.g., cases 15 and 17), the accuracy of SST recon-
structions using δ18O and optimization is reduced, while the
binning approach is less strongly affected. Examples of such
multi-annual cyclicity include the El Niño–Southern Oscil-
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Table 2. Qualitative summary of the effects of changes in variables relative to the ideal case on reconstructions using the four approaches.
The “cases” column lists cases in which the changes in the respective variable relative to the control case (case 1) were represented (see
Tables 1 and S1). 0: negligible effect, +: weak increase in uncertainty, ++: moderate increase in uncertainty, +++: strong increase in
uncertainty. Precision and accuracy of all tests are given in S9.

Variable Cases Metric Effect on reconstructions

δ18O smoothing binning optimization

SST 12 Precision 0 +++ + 0
15
17 Accuracy + + 0 +

19–21
30–33

Growth rate 2–6 Precision + ++ ++ +

14–18
30–33 Accuracy + ++ 0 +

δ18Ow 7–11 Precision + ++ 0 0
13–18
30–33 Accuracy +++ +++ + ++

Sampling resolution 1–33 Precision 0 +++ ++ ++

Accuracy + + +++ +

Record length 22–24 Precision 0 0 +++ ++

Accuracy + 0 ++ ++

Age model uncertainty? 25–29 Precision +++ ++ 0 ++

Accuracy + + ++ ++

lation (ENSO; Philander, 1983) and North Atlantic Oscilla-
tion (NOA; Hurrell, 1995). The effect is especially large in
case 17, which simulates a tropical environment with reduced
SST seasonality and a strong multi-annual cyclicity. This
type of environment is analogous to the environment of trop-
ical shallow-water corals, which are often used as archives
for ENSO variability (e.g., Charles et al., 1997; Fairbanks
et al., 1997), and is similar to tropical cases from the Aus-
tralian Great Barrier Reef (case 31) and the Red Sea (case
32; see Fig. 3). We therefore recommend using the binning
approach on carbonate records in which multi-annual cyclic-
ity is prevalent and if a reliable age model can be established
for these records (as in, e.g., Sato, 1999; Scourse et al., 2006;
Miyaji et al., 2010).

4.2.2 Growth rate variability and hiatuses

Figures 7 and 8 show that variations in the growth rate of
records, including the occurrence of hiatuses, have a strong
effect on reconstructions, especially using the smoothing ap-
proach. In general, hiatuses and slower growth reduce the
precision of monthly SST and δ18Ow reconstructions by
reducing mean temporal sampling resolution (samples per
year; see Fig. 9) and because parts of the record are un-
dersampled. The effect on accuracy depends strongly on the
timing of changes in growth rate or the occurrence of hia-
tuses. Cases 2–6 simulate specific growth rate effects and

can be used to test these differences. The smoothing method
is especially sensitive to changes in growth rate that take
place in specific seasons, such as hiatuses in winter (case
2) or summer (case 3) and growth peaks in summer (case
5) or spring (case 6). The other reconstruction approaches
are less affected by this bias because they generally do not
mix samples from different seasons. The δ18O method is
especially well suited to deal with changes in growth rate
because it does not require combining different aliquots for
accurate SST reconstructions. The binning and optimization
approaches are slightly less reliable in cases in which the
growth rate decreases linearly or seasonally along the entire
record (cases 4–6; Fig. 2). Because these two methods con-
sider all samples in the records at once, they are more sen-
sitive to changes in temporal sampling resolution along the
record. It is worth noting that optimization is especially sen-
sitive to sharp changes in growth rate in summer (e.g., cases
11, 14, 16, and 17) because those conditions force the op-
timization routine to use larger sample sizes or include sam-
ples outside the warmest month for summer temperature esti-
mates. A potential solution to this problem could be to allow
sample sizes of summer and winter groups to vary indepen-
dently in the optimization routine (see Sect. 2.1). This would
allow sample size in the undersampled season (in this case,
summer) to become larger than that at the other end of the
δ18Oc spectrum, reducing uncertainty in the more densely
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sampled season and therefore improving the entire seasonal-
ity reconstruction.

A worst-case scenario is represented by case 18, in which
the cold half of the year is not recorded. Such cases result
in strong biases in reconstructions of mean annual and sea-
sonal ranges in SST and δ18Ow, regardless of which method
is used. In such extreme cases the record simply contains
insufficient information to reconstruct variability in growth
rate, SST, and δ18Ow, and it seems that no statistical method
would enable this missing information to be recovered. The
solution for these reconstructions would be to establish re-
liable age models, independent of δ18O or 147 data, which
show that a large part of the seasonal cycle is missing. All
methods used in this study rely on a conversion of SST and
δ18Ow reconstructions to the time domain to define monthly
time bins. This conversion breaks down in fossil examples
when the seasonal cycle cannot be extracted from the archive,
which happens when half of the seasonal cycle or more is ob-
scured by growth hiatuses, as exemplified in case 18.

While hiatuses encompassing half of the seasonal cycle
are uncommon, changes in growth rate are common in accre-
tionary carbonate archives because conditions for (biotic or
abiotic) carbonate mineralization often vary over time. This
variability is either driven by biological constraints, such as
senescence (e.g., Schöne, 2008; Hendriks et al., 2012), the
reproductive cycle (Gaspar et al., 1999), and stress (Surge
et al., 2001; Compton et al., 2007), or by variations in the
environment that promote or inhibit carbonate production,
such as seasonal variations in temperature (Crossland, 1984;
Bahr et al., 2017) or precipitation (Dayem et al., 2010; Van
Rampelbergh et al., 2014). In general, such conditions occur
more frequently in mid- to high-latitude environments than
in low latitudes and in more coastal environments rather than
in open-marine settings because these environments contain
stronger variations in the factors that influence growth rates
(e.g., temperature, precipitation, and freshwater influx; Surge
et al., 2001; Ullmann et al., 2010). This difference was sim-
ulated in the cases representing natural variability (cases 14–
18 and 30–33). Accuracy in the coastal high-latitude settings
(cases 16, 18, and 29) is indeed more strongly affected by
changes in growth rate. Because in such highly variable en-
vironments growth rate variability often co-occurs with vari-
ability in δ18Ow, using δ18Oc-based reconstructions is not
advised unless δ18Ow variability can be constrained or ne-
glected (which is rare in these environments).

Additional complications include the lack of a constraint
on growth rate variability because of uncertainties in the
record’s age model (see Sect. 4.1.3) and the effect of growth
rate variability on the sampling resolution. The effect of
growth rate on time averaging within samples was not specif-
ically tested in this study but introduces uncertainty in prac-
tice when archives with a variable growth rate are sampled at
a constant sampling resolution in the depth domain. In this
case, parts of the archive with a lower growth rate yield more
time-averaged samples, potentially dampening one extreme

of the seasonal cycle (e.g., Goodwin et al., 2003). In highly
dynamic environments it is challenging to isolate all vari-
ables that introduce bias, and irregular variability in growth
rate and δ18Ow will invariably introduce uncertainty in SST
reconstructions, even when applying the best 147-based ap-
proaches (e.g., binning and optimization). In such examples,
the results of natural variability cases (14–18 and 30–33) and
of the real oyster data (Fig. 6) serve as benchmarks for the
degree of uncertainty that may remain unexplained in these
records.

4.2.3 Variability in δ18Ow

As discussed in Sect. 4.1.1, these variations in δ18Ow have a
large effect on the accuracy of δ18Oc-based reconstructions,
and their occurrence constitutes the main advantage of apply-
ing the 147 thermometer (Eiler, 2011). However, results of
cases 7–11 in Fig. 8 and Table 2 show that δ18Ow variations
can also bias 147-based reconstructions, especially those of
seasonal ranges and those using the smoothing approach.
Smoothing reconstructions are biased by these δ18Ow shifts
in much the same way as they are affected by shifts in growth
rate (see Sect. 4.2.2). The optimization approach is sensitive
to seasonal changes in δ18Ow in antiphase with SST season-
ality and increases in δ18Ow in summer (e.g., due to excess
evaporation as in case 11), especially when used for recon-
structions of δ18Ow seasonality. This effect arises because the
optimization approach orders data based on δ18Oc and 147
seasonality to isolate the δ18Ow–SST relationship. Both an-
tiphase δ18Ow seasonality and summer evaporation dampen
the seasonal δ18Oc cycle and therefore influence the recon-
struction of the δ18Ow–SST relationship. A good example of
this is seen in the real oyster data (Fig. 6), in which δ18Ow
and SST vary in phase and δ18Ow dampens the SST seasonal-
ity. The binning approach is more robust against δ18Ow vari-
ability that dampens the seasonal cycle, and it is therefore
a better choice for absolute SST reconstructions in environ-
ments where summer evaporation or other δ18Ow variability
in phase with SST seasonality is expected to occur if the age
model is reliable enough to allow monthly binning of raw
data (see Sect. 4.1.3). Indeed, reconstructions from the la-
goonal environment (case 16) and Red Sea case (case 32,
which is characterized by strong summer evaporation; e.g.,
Titschack et al., 2010) show that binning is the most reliable
choice in these environments.

4.2.4 Variability in sampling resolution and record length

Other factors influencing the effectiveness of reconstructions
are the sampling resolution and the length of the record.
Many of the cases discussed in this study represent ide-
alized cases with comparatively high sampling resolutions
over comparatively long (12 years) paleoseasonality records,
which yield large sample sizes. By comparison, the typi-
cal age of mollusks, which are often used as paleoseason-
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ality archives, is 2–5 years (Ivany, 2012). Records with the
highest sampling resolutions (0.1 and 0.2 mm) contain up
to 1200 samples. Generating such records is not impossible,
but it is highly unlikely to be applied in paleoclimate studies
given the limitation of resources (e.g., instrument time) and
the desire to analyze multiple records from different speci-
mens, species, localities, or ages to gain a better understand-
ing of the variability in paleoseasonality (e.g., Goodwin et
al., 2003; Schöne et al., 2006; Petersen et al., 2016). In some
cases large datasets are meticulously collected from single
carbonate records (e.g., Schöne et al., 2005; Vansteenberge
et al., 2016; de Winter et al., 2020a; Shao et al., 2020). How-
ever, in such studies, the aim is often to investigate variability
at a higher (e.g., daily; de Winter et al., 2020a) resolution or
longer timescales (e.g., decadal to millennial; Schöne et al.,
2005; Vansteenberge et al., 2016; Shao et al., 2020) in addi-
tion to the seasonal cycle rather than to improve the reliabil-
ity of reconstructing one type of variability (e.g., seasonality)
alone.

Figure 9 shows that increasing temporal sampling reso-
lution (samples per year) improves both the accuracy and
precision of all 147-based reconstructions. This occurs be-
cause 147 samples have large analytical uncertainty (see
Sect. 4.1.2), and grouping data therefore improves recon-
structions. The decrease in precision of δ18Oc-based recon-
structions (Fig. 9c–d) is explained by the fact that the analyt-
ical uncertainty of δ18Oc measurements is much smaller than
the variability introduced by natural sub-annual variability in
SST and δ18Ow unrelated to the seasonal cycle (see Supple-
ment Data S4). Therefore, higher sampling resolutions allow
δ18Oc records to better capture this sub-seasonal variability,
which introduces more noise to the seasonal cycle (reducing
precision) but causes monthly mean SST and δ18Ow to be
more accurately reconstructed. Towards higher sampling res-
olutions, the gap in precision between δ18Oc- and147-based
reconstructions closes, eventually (in an ideal case) dimin-
ishing the advantage of high analytical precision in δ18Oc
measurements (Fig. 9c–d).

An optimum sample resolution can be defined for each
method, above which improving sampling resolution does
not significantly improve the reliability of the reconstruction
(as in de Winter et al., 2017). Figure 9 shows that this op-
timum varies depending on which variable (MAT, SST sea-
sonality, mean annual δ18Ow, or δ18Ow seasonality) is re-
constructed. Therefore, Fig. 9 will allow future researchers
to determine the sampling resolution that is tailored to their
purpose. In general, the improvement after a sample size of
20–30 samples per year is negligible for the binning and opti-
mization methods if the total number of samples (depending
on both sampling resolution and record length) is sufficient
for monthly temperature reconstructions. Our data show that
200–250 paired δ18Oc and 147 measurements are in general
sufficient for a standard deviation of 2–3 ◦C in monthly SST
reconstructions using the binning or optimization approach,
preferably when spread over multiple growth years to elim-

Figure 14. Schematic guide to choosing the right approach for re-
constructing annual mean or seasonality in SST and δ18Ow from ac-
cretionary carbonate archives. Recommendations are based on the
results of testing all four approaches on the entire range of cases.
Researchers can follow the six steps (questions Q1–6) to decide on
the right approach for reconstructing the target variable. Guidelines
are based on maximizing both accuracy and precision (see details
in Supplement Data S9). Note that the smoothing approach is never
the best choice. The choice between the two remaining 147-based
approaches (binning and optimization) relies heavily on the situa-
tion and may be driven by a preference for more accurate or more
precise results.

inate the effect of short-term weather events or years with
exceptional seasonality (Fig. 10; Supplement Data S5).

Record length only has a minimal influence on the opti-
mization method, but for very short records (≤ 2 years) bin-
ning becomes very imprecise, especially at low sampling res-
olutions (Fig. 11). The reason is that the sample size within
monthly time bins becomes too small in these cases, while
the more flexible sample size window of the optimization
routine circumvents this problem. The choice between these
two approaches should therefore be based on a trade-off be-
tween the length of the record (in time) and the number of
samples that can be retrieved from it. As a result, shorter-
lived, fast-growing climate archives, such as large or fast-
growing (e.g., juvenile) mollusk shells, are best sampled us-
ing a high-temporal-resolution (>30 samples per year) sam-
pling strategy with the optimization approach. Longer-lived
archives with a lower mineralization rate, such as annually
laminated speleothems, corals, and gerontic mollusks, are
best sampled using long time series at monthly resolution
using the binning approach.

A simplified decision tree that could guide sampling strate-
gies for future paleoseasonality studies is shown in Fig. 14.
Note that choices and trade-offs for these reconstructions
may differ depending on the archive and environment in
which it formed (see discussion above).
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4.3 Implications for clumped isotope sample size

The optimization technique for grouping147 aliquots for ac-
curate SST and δ18Ow reconstructions allows us to assess the
limitations of the clumped isotope thermometer for tempera-
ture reconstructions from high-resolution carbonate archives.
The optimal sample size given by the approach is different
for different cases and depends on the temporal sampling
resolution and the characteristics of the record (see Supple-
ment Data S4). As expected, in cases more like the ideal
case (case 1), optimal sample sizes are low (∼ 14–24), while
sample sizes increase in more complicated cases based on
simulated natural environments (cases 14–18) or cases based
on actual SST and SSS data (cases 30–33). More confined
SST seasonality (cases 19–21) also requires larger samples
to reconstruct (up to 100 samples in some cases). This is not
surprising because variability within samples will increase
in records in which the seasonality is smaller or more ob-
scured by other environmental variability. The optimal sam-
ple size between cases and sampling resolutions is not nor-
mally distributed but tails towards high sample sizes with
some extreme outliers (Shapiro–Wilk test p� 0.05; Supple-
ment Data S10). The median sample size of all our simula-
tions is 17 aliquots. This number lies between the minimum
number of 14 ∼ 100 µg replicates of standards calculated by
Fernandez et al. (2017) and the minimum of 20–40 ∼ 100 µg
aliquots required for optimal paleoseasonality reconstruction
from fossil bivalves by de Winter et al. (2021). This is to be
expected since many of the cases explored in this study rep-
resent ideal cases compared with the natural situation. How-
ever, in these virtual cases a measure of random sub-annual
variability in SST and δ18Ow was added (see Fig. 4 and Sup-
plement Data S2), simulating a more realistic environment
and resulting in poorer precision than replicates of a carbon-
ate standard (as in Fernandez et al., 2017). Our simulations
show that the optimum number of samples to be combined
in seasonality studies depends on both the analytical uncer-
tainty of 147 measurements (as represented by the estimate
in Fernandez et al., 2017) and the variability between aliquots
pooled within a sample that is attributed to actual variability
within the record (as represented by our simulations and the
estimate in de Winter et al., 2021). The optimal sample size
is therefore a good measure for the limitations of temperature
variability that can be resolved in a record and can help re-
searchers decide which strategy to apply for combining mea-
surements to obtain the most reliable paleoseasonality esti-
mates or to decide whether extra sampling is required, even
if the chosen approach is not to use the optimization routine
itself. Note that the optimum sample size is kept equal for
summer and winter samples in this study and that the opti-
mization approach can likely achieve better performance by
considering unequal sample sizes in opposite seasons (see
Sect. 4.1.3 and 4.2.2). While this added flexibility comes at
a higher computational cost due to the increased number of
possible sample size combinations to be considered, future

studies should investigate whether this updated optimization
approach could yield more reliable seasonality reconstruc-
tions.

4.4 Implications for other sample size problems

While the discussion above focuses on optimizing ap-
proaches for combining samples for clumped isotope analy-
ses in paleoseasonality reconstructions, the problem of com-
bining samples to reduce uncertainty and isolate variation
in datasets is very common (e.g., Zhang et al., 2004; Merz
and Thieken, 2005; Tsukakoshi, 2011). Therefore, the ap-
proaches outlined and tested in this study have applica-
tions beyond paleoseasonality reconstructions. Examples of
other problems that could benefit from applying similar ap-
proaches for reducing the uncertainty of estimates of target
variables while minimizing the number of analyses required
to meet analytical requirements include (1) reconstructing
paleoenvironmental variability in the terrestrial realm from
tooth bioapatite (e.g., Passey and Cerling, 2002; Kohn, 2004;
Van Dam and Reichart, 2009; de Winter et al., 2016), (2)
quantitative time series analysis of orbital cycles in strati-
graphic records (e.g., Lourens et al., 2010; de Vleeschouwer
et al., 2017; Noorbergen et al., 2018; Westerhold et al., 2020),
(3) strontium isotope dating (e.g., McArthur et al., 2012;
de Winter et al., 2020b), (4) reconstructing sub-seasonal
variability from ultrahigh-resolution records (e.g., from fast-
growing mollusks and gastropods; Sano et al., 2012; Warter
and Müller, 2017; de Winter et al., 2020a; Yan et al., 2020),
and (5) reconstructing sea surface and deep-sea temperatures
across short-lived (10–100 kyr) episodes of climate change
or climate shifts from deep marine archives characterized
by low sedimentation rates (e.g., Lear et al., 2008; Jenkyns,
2010; Stap et al., 2010; Lauretano et al., 2018). A more de-
tailed discussion of the implications for other sample size
problems is provided in the Supplement.

5 Conclusions and recommendations

The performance of three 147-based approaches to recon-
struct seasonality from accretionary carbonate archives was
evaluated in comparison with conventional δ18Oc-based re-
constructions in a wide range of case studies. From the re-
sults, we conclude that while δ18Oc-based reconstructions
(δ18O) yield superior precision for SST reconstructions, this
method runs a high risk of yielding inaccurate results due
to innate assumptions about the value of δ18Ow, which
must be estimated and assumed constant year-round. Un-
less δ18Ow can be independently constrained or variability in
δ18Ow can be neglected, 147-based reconstructions should
be the method of choice for absolute mean annual tempera-
ture and SST seasonality reconstructions. Various techniques
for combining 147 data were evaluated. Our findings sug-
gest that smoothing 147 data using a moving average al-
most always results in a dampening of the seasonal cycle,
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which severely hampers recovery of seasonality. Applying
the smoothing approach results in inaccuracies in reconstruc-
tions of MAT as well, especially in cases in which part of
the seasonal cycle is obscured by variability in growth rate
or multi-annual trends. More reliable seasonality reconstruc-
tions are achieved with two approaches for combining 147
data using time binning (binning) or applying a flexible sam-
ple size optimization (optimization) approach. Of these two
approaches, optimization achieves better precision and can
resolve smaller seasonal temperature differences with con-
fidence. However, binning is often more accurate and out-
performs optimization as the most reliable approach. This is
especially true in cases with growth stops or δ18Ow changes
in phase with temperature seasonality (e.g., strong seasonal
evaporation or freshwater influx) and in longer multi-annual
time series with a reliable age model. Optimization is the bet-
ter choice for shorter (<3 years) records, especially if the
sampling resolution can be increased, such as in short, fast-
growing climate archives.

Despite the focus on the problem of resolving season-
ality in carbonate archives, the findings in this study have
applications for other problems in Earth science for which
sample size and sampling resolution put limits on the abil-
ity to resolve specific trends, events, and cycles from time
series. While the abovementioned recommendations of the
optimization and binning methods are likely valid for most
studies aiming to quantify the mean and amplitude of a spe-
cific cycle or event (equivalent to MAT and SST seasonal-
ity), (dynamic) moving averages (smoothing) are expected to
yield the best results in studies quantifying aperiodic trends
from longer data series.
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