Articles | Volume 16, issue 2
https://doi.org/10.5194/cp-16-487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiproxy evidence of the Neoglacial expansion of Atlantic Water to eastern Svalbard
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712,
Poland
Magdalena Łącka
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712,
Poland
Małgorzata Kucharska
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712,
Poland
Jan Pawlowski
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712,
Poland
Department of Genetics and Evolution, University of Geneva, Geneva, CH
1211, Switzerland
Marek Zajączkowski
Institute of Oceanology, Polish Academy of Sciences, Sopot, 81-712,
Poland
Related authors
Hasitha Nethupul, Magdalena Łącka, Marek Zajączkowski, Dhanushka Devendra, Ngoc-Loi Nguyen, Jan Pawłowski, and Joanna Pawłowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-3780, https://doi.org/10.5194/egusphere-2025-3780, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study addresses the gap by reconstructing the history of marine eukaryotic communities using sedaDNA metabarcoding analysis from Storfjordrenna, and the eukaryotic biodiversity remained relatively stable, with a notable exception during the transitions between major climatic intervals. Cercozoans and MAST emerged as dominant groups, highlighting their ecological flexibility and broad tolerance. Our findings highlight the potential of sedaDNA for reconstructing past eukaryotic communities.
Hasitha Nethupul, Magdalena Łącka, Marek Zajączkowski, Dhanushka Devendra, Ngoc-Loi Nguyen, Jan Pawłowski, and Joanna Pawłowska
EGUsphere, https://doi.org/10.5194/egusphere-2025-3780, https://doi.org/10.5194/egusphere-2025-3780, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study addresses the gap by reconstructing the history of marine eukaryotic communities using sedaDNA metabarcoding analysis from Storfjordrenna, and the eukaryotic biodiversity remained relatively stable, with a notable exception during the transitions between major climatic intervals. Cercozoans and MAST emerged as dominant groups, highlighting their ecological flexibility and broad tolerance. Our findings highlight the potential of sedaDNA for reconstructing past eukaryotic communities.
Ewa Demianiuk, Mateusz Baca, Danijela Popović, Inès Barrenechea Angeles, Ngoc-Loi Nguyen, Jan Pawlowski, John B. Anderson, and Wojciech Majewski
Biogeosciences, 22, 2601–2620, https://doi.org/10.5194/bg-22-2601-2025, https://doi.org/10.5194/bg-22-2601-2025, 2025
Short summary
Short summary
Ancient foraminiferal DNA is studied in five Antarctic cores with sediments up to 25 kyr old. We use a standard and a new, more effective marker, which may become the next standard for paleoenvironmental studies. Much less diverse foraminifera occur on slopes of submarine moraines than in open-marine settings. Soft-walled foraminifera, not found in the fossil record, are especially abundant. There is no foraminiferal DNA in tills, suggesting its destruction during glacial redeposition.
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Dhanushka Devendra, Natalia Szymańska, Magdalena Łącka, Małgorzata Szymczak-Żyła, Magdalena Krajewska, Maciej M. Telesiński, and Marek Zajączkowski
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-52, https://doi.org/10.5194/cp-2024-52, 2024
Manuscript not accepted for further review
Short summary
Short summary
Our findings document four sediment-laden meltwater pulses between 14.7 and 8.2 kyr BP. These pulses, primarily driven by deglacial processes and supplemented by paleo-lake outbursts or paleo-tsunami currents, are marked by drops in sea surface temperatures, increased sea ice content, high terrigenous supply, and a limited influence of AW. One of the key highlights of our study is the evidence of the Storegga tsunami impact around 8.2 kyr BP, likely redistributed sediments in the NW Barents Sea.
Cited articles
Alve, E.: Benthic foraminiferal responses to absence of fresh phytodetritus:
A two – year experiment, Mar. Micropaleontol., 76, 67–76,
https://doi.org/10.1016/j.marmicro.2010.05.003, 2010.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.: Basic local
alignment search tool, J. Mol. Biol. 215, 403–410,
https://doi.org/10.1016/S0022-2836(05)80360-2, 1990.
Andersen, C., Koç, N., and Moros, M.: A highly unstable Holocene climate in
the subpolar North Atlantic: evidence from diatoms, Quaternary Sci. Rev., 23,
2155–2166, https://doi.org/10.1016/j.quascirev.2004.08.004, 2004.
Årthun, M., Ingvaldsen, R. B., Smedsrud, L. H., and Schrum, C.: Dense water
formation and circulation in the Barents Sea, Deep-Sea Res. Pt. I, 58, 801–817, https://doi.org/10.1016/j.dsr.2011.06.001,
2011.
Berben, S. M. P., Husum, K., Cabedo-Sanz, P., and Belt, S. T.: Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea, Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, 2014.
Berben, S. M. P., Husum, K., Navarro-Rodriguez, A., Belt, T., and
Aagard-Sørensen, S.: Semi-quantitative reconstruction of early to late
Holocene spring and summer sea ice conditions in the northern Barents Sea,
J. Quaternary Sci., 32, 587–603, https://doi.org/10.1002/jqs.2953, 2017.
Berger, A. L.: Long-term variations of daily insolation and quaternary
climatic changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978.
Blindheim, J. and Østerhus, S.: The Nordic Seas, main oceanographic
features, in: The Nordic Seas: An integrated Perspective, edited by: Drange,
H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., European Geophysical
Union, Washington D.C., 11–38, https://doi.org/10.1029/GM158, 2005.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics
package for the analysis of unconsolidated sediments, Earth Surf. Proc.
Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Boere, A. C., Abbas, B., Rijpstra, W. I. C., Versteegh, G. J., Volkman, J. K.,
Sinninghe Damsté, J. S., and Coolen, M. J. L.: Late-Holocene succession of
dinoflagellates in an Antarctic fjord using a multi-proxy approach:
paleoenvironmental genomics, lipid biomarkers and palynomorphs, Geobiol., 7,
265–281, https://doi.org/10.1111/j.1472-4669.2009.00202.x, 2009.
Cabedo-Sanz, P. and Belt, S. T.: Seasonal sea ice variability in eastern Fram
Strait over the last 2000 years, Arktos, 2, 22,
https://doi.org/10.1007/s41063-016-0023-2, 2016.
Consolaro, C., Rasmussen, T. L., and Panieri, G.: Palaeocoeanographic and
environmental changes in the eastern Fram Strait during the last 14,000
years based on benthic and planktonic foraminifera, Mar.
Micropaleontol., 139, 84–101,
https://doi.org/10.1016/j.marmicro.2017.11.001, 2018.
Coolen, M. J. L., Saenz, J. P., Giosan, L., Trowbridge, N. Y., Dimitrov, P.,
Dimitrov, D., and Eglinton, T. I.: DNA and lipid molecular stratigraphic records
of haptophyte succession in the Black Sea during the Holocene, Earth Planet.
Sc. Lett., 284, 610–621, https://doi.org/10.1016/j.epsl.2009.05.029, 2009.
Coolen, M. J. L., Orsi, W. D., Balkema, C., Quince., C., Harris, K., Sylva,
S. P., Filipova-Marinova, M., and Giosan, L.: Evolution of the plankton paleome
in the Black Sea from the Deglacial to Anthropocene, P. Natl. Acad. Sci. USA, 10, 8609–8614,
https://doi.org/10.1073/pnas.1219283110, 2013.
Calvo, E., Grimalt, J., and Jansen, E.: High resolution U sea
surface temperature reconstruction in the Norwegian Sea during the Holocene,
Quaternary Sci. Rev., 21, 1385–1394,
https://doi.org/10.1016/S0277-3791(01)00096-8, 2002.
Cornelius, N. and Gooday, A. J.: “Live” (stained) deep-sea benthic
foraminiferans in the western Weddell Sea: trends in abundance, diversity
and taxonomic composition along a depth transect, Deep-Sea Res. Pt. II, 51,
1571–1602, https://doi.org/10.1016/j.dsr2.2004.06.024, 2004.
Cremer, H.: Distribution patterns of diatom surface sediment assemblages in
the Laptev Sea (Arctic Ocean), Mar. Micropaleontol., 38, 39–67,
https://doi.org/10.1016/S0377-8398(99)00037-7, 1999.
D'Andrea, W. J., Vaillencourt, D. A., Balascio, N. L., Werner, A., Roof, S. R.,
Retelle, M., and Bradley, R. S.: Mid Little Ice Age and unpredecented recent
warmth in an 1800 year lake sediment record from Svalbard, Geology, 40,
1007–1010, https://doi.org/10.1130/G33365.1, 2012.
Dufresne, Y., Lejzerowicz, F., Apotheloz Perret-Gentil, L., Pawlowski, J.,
and Cordier, T.: SLIM: a flexible web application for the reproducible
processing of environmental DNA metabarcoding data, BMC Bioinformatics, 20,
88, https://doi.org/10.1186/s12859-019-2663-2, 2019.
Duplessy, J. C., Ivanova, E., Murdmaa, I., Paterne, M., and Labeyrie, L.:
Holocene paleoceanography of the northern Barents Sea and variations of the
northward heat transport by the Atlantic Ocean, Boreas, 30, 2–16,
https://doi.org/10.1111/j.1502-3885.2001.tb00984.x, 2001.
Forwick, M. and Vorren, T. O.: Late Weichselian and Holocene sedimentary
environments and ice rafting in Isfjorden, Spitsbergen, Palaeogeogr.
Palaeocl., 280, 258–274,
https://doi.org/10.1016/j.palaeo.2009.06.026, 2009.
Forwick, M., Vorren, T. O., Hald, M., Korsun, S., Roh, Y., Vogt, C., and Yoo,
K.-C.: Spatial and temporal influence of glaciers and rivers on the
sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen, in:
Geological Society, London, Special Publications, 344, 163–193,
https://doi.org/10.1144/SP344.13, 2010.
Geyer, F., Fer, I., and Smedsrud, L. H.: Structure and forcing of the overflow at the Storfjorden sill and its connection to the Arctic coastal polynya in Storfjorden, Ocean Sci., 6, 401–411, https://doi.org/10.5194/os-6-401-2010, 2010.
Goldstein, S. T. and Alve, E.: Experimental assembly of foraminiferal
communities from coastal propagule banks, Mar. Ecol.-Prog. Ser. 437, 1–11,
https://doi.org/10.3354/meps09296, 2011.
Gooday, A. J.: Deep-sea benthic foraminiferal species which exploit
phytodetritus: Characteristic features and controls on distribution, Mar.
Micropaleontol., 22, 187–205, https://doi.org/10.1016/0377-8398(93)90043-W,
1993.
Gooday, A. J.: Organic-walled allogromiids: aspects of their occurrence,
diversity and ecology in marine habitats, J. Foramin. Res., 32, 384–399,
https://doi.org/10.2113/0320384, 2002.
Gooday, A. J., Bowser, S. S., Cedhagen, T., Cornelius, N., Hald, M., Korsun,
S., and Pawłowski, J.: Monothalamous foraminiferans and gromiids (Protista)
from western Svalbard: A preliminary survey, Mar. Biol. Res., 1, 290–312,
https://doi.org/10.1080/17451000510019150, 2005.
Gooday, A. J., Anikeeva, O. V., and Pawlowski, J.: New genera and species of
monothalamous Foraminifera from Bataclava and Kazach'ya Bays (Crimean
Peninsula, Black Sea), Mar. Biodiv., 41, 481–494,
https://doi.org/10.1007/s12526-010-0075-7, 2011.
Groot, D. E., Aagaard-Sørensen, S., and Husum, K.: Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea, Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, 2014.
Haarpainter, J., Gascard, J. C., and Haugan, P. M.: Ice production and brine
formation in Storfjorden, Svalbard, J. Geophys. Res., 106, 14001–14013,
https://doi.org/10.1029/1999JC000133, 2001.
Hald, M. and Steinsund, P. I.: Benthic foraminifera and carbonate dissolution in
the
surface sediments of the Barents and Kara Seas, Berichte zur Polarforschung,
212,
285–307, 1996.
Hansen, J., Hanken, N.-M., Nielsen, J. K., Nielsen, J. K., and Thomsen, E.: Late
Pleistocene and Holocene distribution of Mytilus edulis in the Barents Sea region and its
paleoclimatic implications, J. Biogeogr, 38, 1197–1212,
https://doi.org/10.1111/j.1365-2699.2010.02473.x, 2011.
Herbert, P. D., Cywińska, A., Ball, S. L., and deWaard, J. R.: Biological
identifications through DNA barcodes, Proc. Biol. Sci., 270, 313–321,
https://doi.org/10.1098/rspb.2002.2218, 2003.
Hopkins, T. S.: The GIN Sea: A synthesis of its physicaloceanography and
literature review, 1972–1985, Earth Sci. Rev., 30, 175–318,
https://doi.org/10.1016/0012-8252(91)90001-V, 1991.
Ikävalko, J.: Checklist of unicellular and invertebrate organisms within
and closely associated with sea ice in the Arctic regions. MERI – Report
Series of the Finnish Institute of Marine Research, 52, Helsinki, Finland,
Finnish Institute of Marine Research, 2004.
Ivanova, E., Murdmaa, I., de Vernal, A., Risebrobakken, B., Pevye, A., Brice, C., Seitkalieva, E., and Pisarev, S.: Postglacial paleoceanography and paleoenvironments in the northwestern Barents Sea, Quaternary Res., 92, 430–449, https://doi.org/10.1017/qua.2019.18, 2019.
Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J. T.: A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf, The Holocene, 12, 49–58, https://doi.org/10.1191/0959683602hl519rp, 2002.
Jennings, A. E., Weiner, N. J., Helgadottir, G., and Andrews, J. T.: Modern
foraminiferal faunas of the southwestern to northern Iceland Shelf;
oceanographic and environmental controls, J. Foramin. Res., 34, 180–207,
https://doi.org/10.2113/34.3.180, 2004.
Jernas, P., Klitgaard Kristensen, D., Husum, K., Wilson, L., and Koç, N.:
Palaeoenvironmental changes of the last two millennia on the western and
northern Svalbard shelf, Boreas, 42, 236–255,
https://doi.org/10.1111/j.1502-3885.2012.00293.x, 2013.
Katsuki, K., Takahashi, K., Onodera, J., Jordan, R. W., and Suto, I.: Living
diatoms in the vicinity of the North Pole, summer 2004, Micropaleontol., 55,
137–170, 2009.
Killworth, P. D.: Deep convection in the World Ocean, Rev. Geophys., 21,
1–26, https://doi.org/10.1029/RG021i001p00001, 1983.
Knies, J., Pathirana, I., Cabedo-Sanz, P., Banica, A., Fabian, K.,
Rasmussen, T. L., Forwick, M., and Belt, S.: Sea-ice dynamics in an Arctic
coastal polynya during the past 6500 years, Arktos, 3, 1,
https://doi.org/10.1007/s41063-016-0027-y, 2017.
Korsun, S. and Hald, M.: Modern benthic Foraminifera off Novaya Zemlya
tidewater glaciers, Arct. Alp. Res., 30, 61–77,
https://doi.org/10.1080/00040851.1998.12002876, 1998.
Korsun, S., Pogodina, I. A., Forman, S. L., and Lubinski, D. J.: Recent
foraminifera in glaciomarine sediments from three arctic fjords of Novaja
Zemlja and Svalbard, Polar Res., 14, 15–31,
https://doi.org/10.1111/j.1751-8369.1995.tb00707.x, 1995.
Łącka, M., Zajączkowski, M., Forwick, M., and Szczuciński, W.: Late Weichselian and Holocene palaeoceanography of Storfjordrenna, southern Svalbard, Clim. Past, 11, 587–603, https://doi.org/10.5194/cp-11-587-2015, 2015.
Łącka, M., Cao, M., Rosell-Melé, A., Pawłowska, J., Kucharska,
M., Forwick, M., and Zajączkowski, M.: Postglacial paleoceanography of the
western Barents Sea: Implications for alkenone-based sea surface
temperatures and primary productivity, Quaternary Sci. Rev., 224, 105937,
https://doi.org/10.1016/j.quascirev.2019.105973, 2019.
Lejzerowicz, F., Esling, P., Majewski, W., Szczuciński, W., Decelle, J.,
Obadia, C., Martinez Arbizu, P., and Pawlowski, J.: Ancient DNA complements
microfossil record in deep-sea subsurface sediments, Biol. Lett., 9,
20130283, https://doi.org/10.1098/rsbl.2013.0283, 2013.
Lecroq B., Lejzerowicz F., Bachar D., Christen R., Esling P., Baerlocher L.,
Østerås M., Frinelli L., and Pawlowski J.: Ultra-deep sequencing of
foraminiferal microbarcodes unveils hidden richness in deep-sea sediments,
P. Natl. Acad. Sci., 108, 13177–13182, https://doi.org/10.1073/pnas.1018426108, 2011.
Loeng, H.: Features of the physical oceanographic conditions of the Barents
Sea, Polar Res., 10, 5–18, https:/doi.org./10.3402/polar.v10i1.6723, 1991.
Lubinski, D. J., Polyak, L., and Forman, S. L.: Freshwater and Atlantic water
inflows to the deep northern Barents and Kara seas since ca 13 14C ka:
foraminifera and stable isotopes, Quaternary Sci. Rev., 20, 1851–1879,
https://doi.org/10.1016/S0277-3791(01)00016-6, 2001.
Lydersen, C., Nøst, O., Lovell, P., McConell, B., Gammelsrød, T.,
Hunter, C., Fedak, M., and Kovacs, K.: Salinity and temperature structure of a
freezing Arctic fjord – monitored by white whales (Delphinapterus leucas),
Geophys. Res. Lett., 29, 2119, https://doi.org/10.1029/2002GL015462, 2002.
Mahé, F., Rognes T., Quince C., de Vargas, C., and Dunthorn, M.: Swarm:
robust and fast clustering method for amplicon-based studies, Peer J., 2,
e593, https://doi.org/10.7717/peerj.593, 2014.
Majewski, W., Pawłowski, J., and Zajączkowski, M.: Monothalamous
foraminifera from West Spitsbergen fjords: a brief overview, Polish Polar
Res., 26, 269–285, 2005.
Majewski, W., Szczuciński, W., and Zajączkowski, M.: Interactions of
Arctic and Atlantic water-masses and associated environmental changes during
the last millennium, Hornsund (SW Svalbard), Boreas, 38, 529–544,
https://doi.org/10.1111/j.1502-3885.2009.00091.x, 2009.
Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A. K., and Høseter, T.:
Marine 14C reservoir ages for 19th century whales and mollusks
from the North Atlantic, Quaternary Sci. Rev., 25, 3228–3245,
https://doi.org/10.1016/j.quascirev.2006.03.010, 2006.
Martrat, B., Grimalt, J. O., Villanueva, J., van Kreveld, S., and Sarntheim, M.:
Climatic dependence of the organic matter contributions in the north eastern
Norwegian Sea over the last 15,000 years, Org. Geochem., 34, 1057–1070,
https://doi.org/10.1016/S0146-6380(03)00084-6, 2003.
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., and Jansen, E.:
Holocene cooling culminates in sea ice oscillations in Fram Strait, Quaternary Sci. Rev., 47, 1–14, https://doi.org/10.1016/j.quascirev.2012.04.024, 2012.
Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A.,
McManus, J., and Jansen, E.: Sea surface temperatures and ice rafting in the
Holocene North Atlantic: climate influences on northern Europe and
Greenland, Quaternary Sci. Rev., 23, 2113–2126,
https://doi.org/10.1016/j.quascirev.2004.08.003, 2004.
Nilsen, F., Cottier, F., Skogseth, R., and Mattson, S.: Fjord-shelf exchanges
controlled by ice and brine production: The interannual variation of
Atlantic Water in Isfjorden, Svalbard, Cont. Shelf Res., 28, 1838–1853,
https://doi.org/10.1016/j.csr.2008.04.015, 2008.
Pawłowska, J., Lejzerowicz, F., Esling, P., Szczuciński, W.,
Zajączkowski, M., and Pawlowski, J.: Ancient DNA sheds new light on the
Svalbard foraminiferal fossil record from the last millennium, Geobiology,
12, 277–288, https.://doi.org/10.1111/gbi.12087, 2014.
Pawłowska, J., Zajączkowski, M., Łącka, M., Lejzerowicz, F., Esling, P., and Pawlowski, J.: Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA, Clim. Past, 12, 1459–1472, https://doi.org/10.5194/cp-12-1459-2016, 2016.
Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Cedhagen, T., and Bowser, S. S.:
Phylogeny of alogromiid Foraminifera inferred from SSU rRNA gene sequences,
J. Foramin. Res., 32, 334–343, https://doi.org/10.2113/0320334, 2002.
Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T., and Wildings, T. A.:
Environmental monitoring through protest next-generation sequencing
metabarcoding: assessing the impact of fish farming on benthic foraminifera
communities, Mol. Ecol. Res., 14, 1129–1140, https://doi.org/10.1111/1755-0998.12261,
2014.
Perner, K., Moros, M., Lloyd, J. M., Jansen, E., and Stein, R.: Mid to late
Holocene strengthening of the East Greenland Current linked to warm
subsurface Atlantic water, Quaternary Sci. Rev., 129, 296–307,
https://doi.org/10.1016/j.quascirev.2015.10.007, 2015.
Piechura, J.: Dense bottom waters in Storfjord and Storfjordrenna,
Oceanologia, 38, 285–292, 1996.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M.,
Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., and Kanzow, T. T.:
Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of
the Arctic Ocean, Science, 6335, 285–291,
https://doi.org/10.1126/science.aai8204, 2017.
Quadfasel, D., Rudels, B., and Kurz, K.: Outflow of dense water from a Svalbard
fjord into the Fram Strait, Deep-Sea Res., 35, 1143–1150,
https://doi.org/10.1016/0198-0149(88)90006-4, 1988.
Rasmussen, T. L. and Thomsen, E.: Brine formation in relation to climate
changes and ice retreat during the last 15,000 years in Storfjorden,
Svalbard, 76-78∘ N, Paleoceanography, 29, 911–929,
https://doi.org/10.1002/2014PA002643, 2014.
Rasmussen, T. L. and Thomsen, E.: Palaeoceanographic development in Storfjorden,
Svalbard, during the deglaciation and Holocene: evidence from benthic
foraminiferal records, Boreas, 44, 24–44,
https://doi.org/10.1111/bor.12098, 2015.
Rasmussen, T. L., Forwick, M., and Mackensen, A.: Reconstruction of inflow of
Atlantic Water to Isfjorden, Svalbard during the Holocene: Correlation to
climate and seasonality, Mar. Micropaleontol., 94–95, 80–90,
https://doi.org/10.1016/j.marmicro.2012.06.008, 2012.
Rasmussen, T. L., Thomsen, E., Skirbekk, K., Ślubowska-Woldengen, M.,
Klitgaard Kristensen, D., and Koç, N.: Spatial and temporal distribution of
Holocene temperature maxima in the northern Nordic seas: interplay of
Atlantic-, Arctic- and polar water masses, Quaternary Sci. Rev., 92, 280–291,
https://doi.org/10.1016/j.quascirev.2013.10.034, 2014.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age
Calibration Curves 0-50,000 Years Cal BP, Radiocarbon, 55, 1869–1887,
https://doi.org/10.2458/azu_js_rc.55.16947,
2013.
Rigual-Hernández, A. S., Colmenero-Hidalgo, E., Martrat, B., Bárcena,
M. A., de Vernal, A., Flores, J.A., Grimalt, J. O., Henry, M., and Lucchi, R. G.:
Svalabrd ice-sheet decay after the Last Glacial Maximum: New insigths
micropalaeontological and organic biomarker paleoceanographical
reconstructions, Palaeogeogr. Palaeocl., 465, 225–236,
https://doi.org/10.1016/j.palaeo.2016.10.034, 2017.
Risebrobakken, B., Moros, M., Ivanova, E. V., Chistyakova, N., and Rosenberg, R.:
Climate and oceanographic variability in the SW Barents Sea during the
Holocene, Holocene, 20, 609–612,
https://doi.org/10.1177/0959683609356586, 2010.
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F.: VSEARCH: a
versatile open source tool for metagenomics, Peer J., 4, e2584,
https://doi.org/10.7717/peerj.2584, 2016.
Różańska, M., Poulin, M., and Gosselin, M.: Protist entrapment in
newly formed sea ice in the Coastal Arctic Ocean, J. Mar. Syst., 74, 887-=901,
https://doi.org/10.1016/j.jmarsys.2007.11.009, 2008.
Rudels, B., Korhonen, M., Schauer, U., Pisarev, S., Rabe, B., and Wisotzki, A.: Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget, Prog. Oceanogr., 132, 128–152, https://doi.org/10.1016/j.pocean.2014.04.003, 2015.
Sarnthein, M., Van Kreveld, S., Erlenkeuser, H., Grootes, P.M., Kucera, M.,
Pflaumann, U., and Schulz, M.: Centennial-to-millennial-scale periodicities of
Holocene climate and sediment injections off the western Barents shelf,
75∘ N, Boreas, 32, 447–461,
https://doi.org/10.1111/j.1502-3885.2003.tb01227.x, 2003.
Sabbattini, A., Morigi, C., Negri, A., and Gooday, A. J.: Distribution and
biodiversity of stained Monothalamous foraminifera from Tempelfjord,
Svalbard, J. Foramin. Res., 37, 93–106, htttps://doi.org/10.2113/gsjfr.37.2.93, 2007.
Sabbattini, A., Bonatto, S., Bianchelli, S., Pusceddu, A., Danovaro, R.,
and Negri A.: Foraminiferal assemblages and trophic state in coastal sediments
of the Adriatic Sea, J. Mar. Syst., 105, 163–174,
https://doi.org/10.1016/j.jmarsys.2012.07.009, 2012.
Sabbattini, A., Nardelli M. P., Morigi C., and Negri, A.: Contribution of
soft-shelled monothalamous taxa to foraminiferal assemblages in the Adriatic
Sea, Acta Protozool., 52, 181–192,
https://doi.org/10.4467/16890027AP.13.0016.1113, 2013.
Skogseth, R., Haugan, P. M., and Haarpaintner, J.: Ice and brine production in
Storfjorden from four winters of satellite and in situ observations and
modeling, J. Geophys. Res., 109, C10008, https://doi.org/10.1029/2004JC002384,
2004.
Skogseth, R., Haughan, P. M., and Jakobsson, M.: Watermass transformations in
Storfjorden, Cont. Shelf Res., 25, 667–695,
https://doi.org/10.1016/j.csr.2004.10.005, 2005.
Skogseth, R., Sandvik, A. D., and Asplin, L.: Wind and tidal forcing on the
meso-scale circulation in Storfjorden, Svalbard, Cont. Shelf Res., 27,
208–227, https://doi.org/10.1016/j.csr.2006.10.001, 2007.
Stuiver, M. and Reimer, P. J.: Extended 14C database and revised CALIB 3.0
14C age calibration program, Radiocarbon, 35, 215–230, 1993.
Ślubowska-Woldengen, M., Rasmussen, T.L., Koç, N.,
Klitgaard-Kristensen, D., Nilsen, F., and
Solheim, A.: Advection of Atlantic Water to the western and northern
Svalbard shelf since 17,500 cal yr BP, Quaternary Sci. Rev., 26 463–478,
https://doi.org/10.1016/j.quascirev.2006.09.009, 2007.
Telesiński, M. M., Przytarska, J. E., Sternal, B., Forwick, M.,
Szczuciński, W., Łącka, M., and Zajączkowski, M.:
Palaeoceanographic evolution of the SW Svalbard shelf over the last 14 000
years, Boreas, 47, 410–422, https://doi.org/10.1111/bor.12282, 2018.
Thomsen, P. F. and Willerslev, E.: Environmental DNA – An emerging tool in
conservation for monitoring past and present biodiversity, Biol. Conserv.,
183, 4–18, https://doi.org/10.1016/j.biocon.2014.11.019, 2015.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H., Kandiano, E. S.,
and Zamelczyk, K.: Atlantic Water advection to the eastern Fram Strait –
multiproxy evidence for late Holocene variability, Palaeogeogr.
Palaeocl., 308, 264–276,
https://doi.org/10.1016/j.palaeo.2011.05.030, 2011.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H. C., and Kandiano, E.: Atlantic
Water advection versus sea-ice advances in the eastern Fram Strait during
the last 9 ka: Multiproxy evidence for a two-phase Holocene, Paleoceanogr.,
28, 283–295, https://doi.org/10.1002/palo.20028, 2013.
Winkelmann, D. and Knies, J.: Recent distribution and accumulation of organic
carbon on the continental margin west off Spitsbergen, Geochem. Geophy.
Geosys., 6, Q09012, https://doi.org/10.1029/2005GC000916, 2005.
Zimmermann, H. H., Stoof-Leichsenring, K. R., Kruse, S., Müller, J., Stein, R., Tiedemann, R., and Herzschuh, U.: Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30,000 years, Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-113, in review, 2019.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(6723 KB) - Full-text XML
- Corrigendum
-
Supplement
(213 KB) - BibTeX
- EndNote
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were...