Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2239-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2239-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synergy of the westerly winds and monsoons in the lake evolution of global closed basins since the Last Glacial Maximum and implications for hydrological change in central Asia
Yu Li
CORRESPONDING AUTHOR
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Yuxin Zhang
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
Related authors
Simin Peng, Yu Li, Zhansen Zhang, Mingjun Gao, Xiaowen Chen, Junjie Duan, and Yaxin Xue
Clim. Past, 20, 2415–2429, https://doi.org/10.5194/cp-20-2415-2024, https://doi.org/10.5194/cp-20-2415-2024, 2024
Short summary
Short summary
The simultaneity of rain and heat is an important hypothesis containing the summer and winter precipitation regimes. In this paper, eastern and part of central Asia (EA and CA) with a summer precipitation regime are selected to study the dry/wet status on multiple timescales since the Last Glacial Maximum. We found that although climate difference in EA and CA universally exists, climate linkages in EA and part of CA with a summer precipitation regime can be uncovered.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Xinzhong Zhang, Yu Li, Wangting Ye, Simin Peng, Yuxin Zhang, Hebin Liu, Yichan Li, Qin Han, and Lingmei Xu
Clim. Past, 16, 1987–1998, https://doi.org/10.5194/cp-16-1987-2020, https://doi.org/10.5194/cp-16-1987-2020, 2020
Short summary
Short summary
Many closed-basin lakes are now drying, causing water crisis in hinterlands; however, many were much wetter in a similar warm world 6000 years ago. Why do they respond differently and will it be wetter or drier? We assess the wet–dry status and mechanism at different timescales and suggest that moisture change in the past and future warm periods are controlled by summer and winter precipitation, respectively. Diversified responses in different closed basins need a more resilient strategy.
Simin Peng, Yu Li, Zhansen Zhang, Mingjun Gao, Xiaowen Chen, Junjie Duan, and Yaxin Xue
Clim. Past, 20, 2415–2429, https://doi.org/10.5194/cp-20-2415-2024, https://doi.org/10.5194/cp-20-2415-2024, 2024
Short summary
Short summary
The simultaneity of rain and heat is an important hypothesis containing the summer and winter precipitation regimes. In this paper, eastern and part of central Asia (EA and CA) with a summer precipitation regime are selected to study the dry/wet status on multiple timescales since the Last Glacial Maximum. We found that although climate difference in EA and CA universally exists, climate linkages in EA and part of CA with a summer precipitation regime can be uncovered.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Xinzhong Zhang, Yu Li, Wangting Ye, Simin Peng, Yuxin Zhang, Hebin Liu, Yichan Li, Qin Han, and Lingmei Xu
Clim. Past, 16, 1987–1998, https://doi.org/10.5194/cp-16-1987-2020, https://doi.org/10.5194/cp-16-1987-2020, 2020
Short summary
Short summary
Many closed-basin lakes are now drying, causing water crisis in hinterlands; however, many were much wetter in a similar warm world 6000 years ago. Why do they respond differently and will it be wetter or drier? We assess the wet–dry status and mechanism at different timescales and suggest that moisture change in the past and future warm periods are controlled by summer and winter precipitation, respectively. Diversified responses in different closed basins need a more resilient strategy.
Related subject area
Subject: Climate Modelling | Archive: Historical Records | Timescale: Holocene
Possible impact of the 43 BCE Okmok volcanic eruption in Alaska on the climate of China as revealed in historical documents
Asymmetric changes in temperature in the Arctic during the Holocene based on a transient run with the Community Earth System Model (CESM)
On the economic impact of droughts in central Europe: the decade from 1531 to 1540 from the Polish perspective
The blue suns of 1831: was the eruption of Ferdinandea, near Sicily, one of the largest volcanic climate forcing events of the nineteenth century?
Northern Hemisphere atmospheric pattern enhancing Eastern Mediterranean Transient-type events during the past 1000 years
A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 2: Shortcomings and strengths of models and reconstructions
Simulated climate variability in the region of Rapa Nui during the last millennium
Pao K. Wang, Elaine Kuan-Hui Lin, Yu-Shiuan Lin, Chung-Rui Lee, Ho-Jiunn Lin, Ching-Wen Chen, and Pi-Ling Pai
Clim. Past, 20, 1513–1520, https://doi.org/10.5194/cp-20-1513-2024, https://doi.org/10.5194/cp-20-1513-2024, 2024
Short summary
Short summary
We provide detailed translations of some abnormal meteorological conditions in 43–33 BCE described in Chinese historical documents possibly related to the Okmok volcanic eruption in Alaska in early 43 BCE. The cold summer record and the abnormal color and low brightness of the sun point to the clear link to the volcanic impact. The reported duration for the visual condition of the sun to return to normal should be useful for researchers modeling the volcanic impact on climate.
Hongyue Zhang, Jesper Sjolte, Zhengyao Lu, Jian Liu, Weiyi Sun, and Lingfeng Wan
Clim. Past, 19, 665–680, https://doi.org/10.5194/cp-19-665-2023, https://doi.org/10.5194/cp-19-665-2023, 2023
Short summary
Short summary
Based on proxy data and modeling, the Arctic temperature has an asymmetric cooling trend with more cooling over the Atlantic Arctic than the Pacific Arctic during the Holocene, dominated by orbital forcing. There is a seasonal difference in the asymmetric cooling trend, which is dominated by the DJF (December, January, and February) temperature variability. The Arctic dipole mode of sea level pressure and sea ice play a major role in asymmetric temperature changes.
Tomasz Związek, Piotr Guzowski, Radosław Poniat, Maciej T. Radomski, Monika Kozłowska-Szyc, Tomasz Panecki, Sandra Słowińska, Bogusława Kruczkowska, Michał Targowski, and Dagmara Adamska
Clim. Past, 18, 1541–1561, https://doi.org/10.5194/cp-18-1541-2022, https://doi.org/10.5194/cp-18-1541-2022, 2022
Short summary
Short summary
We wanted to take an in-depth look at how climate events affected the economy of early modern Poland. We focused on analysing all available sources of a fiscal nature for this period. In addition, we analysed available materials on the export of primary agricultural products. Our results have shown that the economic system in Poland at that time coped effectively with periodic droughts, and it was only the great drought of 1540 that significantly shook the state's economy.
Christopher Garrison, Christopher Kilburn, David Smart, and Stephen Edwards
Clim. Past, 17, 2607–2632, https://doi.org/10.5194/cp-17-2607-2021, https://doi.org/10.5194/cp-17-2607-2021, 2021
Short summary
Short summary
An unidentified eruption in 1831 was one of the largest volcanic climate forcing events of the nineteenth century. We use reported observations of a blue sun to reconstruct the transport of an aerosol plume from that eruption and, hence, identify it as the 1831 eruption of Ferdinandea, near Sicily. We propose that, although it was only a modest eruption, its volcanic plume was enriched with sulfur from sedimentary deposits and that meteorological conditions helped it reach the stratosphere.
Aleix Cortina-Guerra, Juan José Gomez-Navarro, Belen Martrat, Juan Pedro Montávez, Alessandro Incarbona, Joan O. Grimalt, Marie-Alexandrine Sicre, and P. Graham Mortyn
Clim. Past, 17, 1523–1532, https://doi.org/10.5194/cp-17-1523-2021, https://doi.org/10.5194/cp-17-1523-2021, 2021
Short summary
Short summary
During late 20th century a singular Mediterranean circulation episode called the Eastern Mediterranean Transient (EMT) event occurred. It involved changes on the seawater physical and biogeochemical properties, which can impact areas broadly. Here, using paleosimulations for the last 1000 years we found that the East Atlantic/Western Russian atmospheric mode was the main driver of the EMT-type events in the past, and enhancement of this mode was coetaneous with low solar insolation.
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
C. Junk and M. Claussen
Clim. Past, 7, 579–586, https://doi.org/10.5194/cp-7-579-2011, https://doi.org/10.5194/cp-7-579-2011, 2011
Cited articles
An, C. B. and Chen, F. H.:
The pattern of Holocene climate change in the arid central Asia: a case study based on lakes,
Journal of Lake Sciences,
21, 329–334, https://doi.org/10.18307/2009.0303, 2009.
An, Z. S., Colman, S. M., Zhou, W. J., Li, X. Q., Brown, E. T., Jull, A. J. T., Cai, Y. J., Huang, Y. S., Lu, X. F., Chang, H., Song, Y. G., Sun, Y. B., Xu, H., Liu, W. G., Jin, Z. D., Liu, X. D., Cheng, P., Liu, Y., Ai, L., Li, X. Z., Liu, X. J., Yan, L. B., Shi, Z. G., Wang, X. L., Wu, F., Qiang, X. K., Dong, J. B., Lu, F. Y., and Xu, X. W.:
Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka,
Sci. Rep.-UK,
2, 619, https://doi.org/10.1038/srep00619, 2012.
An, Z. S., Wu, G. X., Li, J. P., Sun, Y. B., Liu, Y. M., Zhou, W. J., Cai, Y. J., Duan, A. M., Li, L., Mao, J. Y., Cheng, H., Shi, Z. G., Tan, L. C., Yan, H., Ao, H., Chang, H., and Feng, J.:
Global Monsoon Dynamics and Climate Change,
Annu. Rev. Earth Pl. Sc.,
43, 2.1–2.49, https://doi.org/10.1146/annurev-earth-060313-054623, 2015.
Bacon, S. N., Burke, R. M., Pezzopane, S. K., and Jayko, A. S.:
Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA,
Quaternary Sci. Rev.,
25, 1264–1282, https://doi.org/10.1016/j.quascirev.2005.10.014, 2006.
Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C.:
Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano,
Nature,
409, 698–701, https://doi.org/10.1038/35055524, 2001.
Berger, A. L.:
Long-term variations of caloric insolation resulting from the Earth's orbital elements,
Quaternary Res.,
9, 139–167, https://doi.org/10.1016/0033-5894(78)90064-9, 1978.
Bradbury, J. P.:
Limnologic history of Lago de Pátzcuaro, Michoacán, Mexico for the past 48,000 years: impacts of climate and man,
Palaeogeogr. Palaeocl.,
163, 69–95, https://doi.org/10.1016/S0031-0182(00)00146-2, 2000.
Caballero, M., Ortega, B., Valadez, F., Metcalfe, S., Macias, J. L., and Suguira, Y.: Sta. Cruz Atizapán: A 22-ka lake level record and climatic implications for the late Holocene human occupation in the Upper Lerma Basin, Central Mexico, Palaeogeogr. Palaeocl.,
186, 217–235, https://doi.org/10.1016/S0031-0182(02)00502-3, 2002.
Çağatay, M. N., Öğretmen, N., Damcı, E., Stockhecke, M., Sancar, Ü., Eriş, K. K., and Özeren, S.:
Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey,
Quaternary Sci. Rev.,
104, 97–116, https://doi.org/10.1016/j.quascirev.2014.09.027, 2014.
Cartwright, A., Quade, J., Stine, S., Adams, K. D., Broecker, W., and Cheng, H.:
Chronostratigraphy and lake-level changes of Laguna Cari-Laufquén, Río Negro, Argentina,
Quaternary Res.,
76, 430–440, https://doi.org/10.1016/j.yqres.2011.07.002, 2011.
Charney, J. G.: The intertropical convergence zone and the Hadley circulation of the atmosphere, in: Proceedings of the WMO/IUGG Symposium on Numerical Weather Prediction in Tokyo, 26 November–4 December 1968, Jpn. Meteorol. Agency, Tokyo, 73–79, 1969.
Chen, C. T. A., Lan, H. C., Lou, J. Y., and Chen, Y. C.: The Dry Holocene Megathermal in Inner Mongolia, Palaeogeogr. Palaeocl., 193, 181–200, https://doi.org/10.1016/s0031-0182(03)00225-6, 2003.
Chen, F. H., Huang, X. Z., Yang, M. L., Yang, X. L., Fan, Y. X., and Zhao, H.:
Westerly dominated Holocene climate model in arid central Asia–Case study on Bosten lake, Xinjiang, China,
Quaternary Science,
26, 881–887, https://doi.org/10.3321/j.issn:1001-7410.2006.06.001, 2006.
Chen, F. H., Yu, Z. C., Yang, M. L., Ito, E., Wang, S. M., Madsen, D. B., Huang, X. Z., Zhao, Y., Sato, T., Birks, H. J. B., Boomer, I., Chen, J. H., An, C. B., and Wünnemann, B.:
Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history,
Quaternary Sci. Rev.,
27, 351–364, https://doi.org/10.1016/j.quascirev.2007.10.017, 2008.
Chen, F. H., Xu, Q. H., Chen, J. H., Birks, H. J. B., Liu, J. B., Zhang, S. R.,
Jin, L. Y., An, C. B., Telford, R. J., Cao, X. Y., Wang, Z. L., Zhang, X. J.,
Selvaraj, K., Lu, H. Y., Li, Y. C., Zheng, Z., Wang, H. P., Zhou, A. F., Dong,
G. H., Zhang, J. W., Huang, X. Z., Bloemendal, J., and Rao, Z. G.: East Asian
summer monsoon precipitation variability since the last deglaciation,
Sci. Rep.-UK, 5, 11186, https://doi.org/10.1038/srep11186, 2015.
Chen, F. H., Chen, J. H., Huang, W., Chen, S. Q., Huang, X. Z., Jin, L. Y., Jia, J., Zhang, X. J., An, C. B., Zhang, J. W., Zhao, Y., Yu, Z. C., Zhang, R. H., Liu, J. B., Zhou, A. F., and Feng, S.:
Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales,
Earth-Sci. Rev.,
192, 337–354, https://doi.org/10.1016/j.earscirev.2019.03.005, 2019.
Chen, J. H., Rao, Z. G., Liu, J. B., Huang, W., Feng, S., Dong, G. H., Hu, Y., Xu, Q. H., and Chen, F. H.:
On the timing of the East Asian summer monsoon maximum during the Holocene – Does the speleothem oxygen isotope record reflect monsoon rainfall variability?,
Sci. China Earth Sci.,
59, 2328–2338, https://doi.org/10.1007/s11430-015-5500-5, 2016.
Cheng, H., Sinha, A., Wang, X., Cruz, F. W., and Edwards, R. L.:
The global paleomonsoon as seen through speleothem records from Asia and the Americas,
Clim. Dynam.,
39, 1045–1062, https://doi.org/10.1007/s00382-012-1363-7, 2012.
Chiang, J. C. H., Fung, I. Y., Wu, C. H., Cai, Y. J., Edman, J. P., Liu, Y. W., Day, J. A., Bhattacharya, T., Mondal, Y., and Labrousse, C. A.:
Role of seasonal transitions and westerly jets in East Asian paleoclimate,
Quaternary Sci. Rev.,
108, 111–129, https://doi.org/10.1016/j.quascirev.2014.11.009, 2015.
Cohen, T. J., Nanson, G. C., Jansen, J. D., Jones, B. G., Jacobs, Z., Treble, P., Price, D. M., May, J. H., Smith, A. M., Ayliffe, L. K., and Hellstrom, J. C.:
Continental aridification and the vanishing of Australia's megalakes,
Geology,
39, 167–170, https://doi.org/10.1130/G31518.1, 2011.
COHMAP Members:
Climatic Changes of the Last 18,000 Years: Observations and Model Simulations,
Science,
241, 1043–1052, https://doi.org/10.1126/science.241.4869.1043, 1988.
Davies, H.: Quaternary Palaeolimnology of a MexicanCrater Lake,
PhD thesis,
University of Kingston, Kingston, 1995.
Dickinson, D. R., Yepsen, J. H., and Hales, J. V.:
Saturated vapor pressures over Great Salt Lake brines,
J. Geophys. Res.,
70, 500–503, https://doi.org/10.1029/jz070i002p00500, 1965.
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D. X., Cai, Y. J., Zhang, M. L., Lin, Y. S., Qing, J. M., An, Z. S., and Revenaugh, J.:
A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, Earth Planet. Sc. Lett., 233, 71–86, https://doi.org/10.1016/j.epsl.2005.01.036, 2005.
Editorial Committee of China's Physical Geography, Chinese Academy of Sciences: The Physical Geographical Climate in China, Science Press, Beijing, 1984.
Fleitmann, D., Burns, S. J, Mudelsee, M., Neff, U., Kramers, J. D., Mangini, A., and Matter, A.: Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman, Science, 300, 1737–1739, https://doi.org/10.1126/science.1083130, 2003.
Flückiger, J., Dallenbach, A., Blunier, T., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.: Variations in atmospheric N2O concentration during abrupt climate changes, Science, 285, 227–230, https://doi.org/10.1126/science.285.5425.227, 1999.
Flückiger, J., Monnin, E., Stauffer, B., Schwander, J., Stocker, T. F., Chappellaz, J., Raynaud, D., and Barnola, J. M.: High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2, Global Biogeochem. Cy., 16, 10-1–10-8, https://doi.org/10.1029/2001GB001417, 2002.
Fontes, J. C., Gasse, F., and Gibert, E.: Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core, Palaeogeogr. Palaeocl., 120, 25–47, https://doi.org/10.1016/0031-0182(95)00032-1, 1996.
Goldsmith, Y., Broecker, W. S., Xu, H., Polissar, P. J., deMenocal, P. B.,
Porat, N., Lan, J. H., Cheng, P., Zhou, W. J., and An, Z. S.: Northward extent
of East Asian monsoon covaries with intensity on orbital and millennial
timescales, P. Natl. Acad. Sci. USA, 114, 1817–1821,
https://doi.org/10.1073/pnas.1616708114, 2017.
Guo, X. Y.:
Holocene climate change documented by lake sediments from Lake Gahai in the monsoonal margin, northwest north,
PhD thesis, Lanzhou University, Lanzhou, 2012.
Hart, W. S., Quade, J., Madsen, D. B., Kaufman, D. S., and Oviatt, C. G.:
The 87Sr∕86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system,
Geol. Soc. Am. Bull.,
116, 1107–1119, https://doi.org/10.1130/b25330.1, 2004.
He, F.:
Simulating Transient Climate Evolution of the Last Deglaciation with CCSM 3,
PhD thesis, University of Wisconsin, Madison, 2011.
Heinecke, L., Mischke, S., Adler, K., Barth, A., Biskaborn, B. K., Plessen, B., Nitze, I., Kuhn, G., Rajabov, I., and Herzschuh, U.:
Climatic and limnological changes at Lake Karakul (Tajikistan) during the last ∼ 29 cal ka,
J. Paleolimnol.,
58, 317–334, https://doi.org/10.1007/s10933-017-9980-0, 2017.
Herzschuh, U., Cao, X. Y, Laepple, T., Dallmeyer, A., Telford, R. J., Ni, J., Chen, F. H., Kong, Z. C., Liu, G. X., Liu, K. B., Liu, X. Q., Stebich, M., Tang, L. Y., Tian, F., Wang, Y. B., Wischnewski, J., Xu, Q. H., Yan, S., Yang, Z. J., Yu, G., Zhang, Y., Zhao, Y., and Zheng, Z.: Position and orientation of the westerly jet determined Holocene rainfall patterns in China, Nat. Commun., 10, 2376, https://doi.org/10.1038/s41467-019-09866-8, 2019.
Hostetler, S. W. and Bartlein, P. J.:
Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon,
Water Resour. Res.,
26, 2603–2612, https://doi.org/10.1029/WR026i010p02603, 1990.
Hu, C. Y., Henderson, G. M., Huang, J. H., Xie, S. C., Sun, Y., and Johnson, K. R.:
Quantification of Holocene Asian monsoon rainfall from spatially separated cave records,
Earth Planet. Sc. Lett.,
266, 221–232, https://doi.org/10.1016/j.epsl.2007.10.015, 2008.
Huang, X. Z., Chen, F. H., Fan, Y. X., and Yang, M. L.:
Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and palynological evidence from Bosten Lake, China,
Quatern. Int.,
194, 19–27, https://doi.org/10.1016/j.quaint.2007.10.002, 2009.
Ibarra, D. E., Egger, A., Weaver, K. L., Harris, C. R., and Maher, K.:
Rise and fall of late Pleistocene pluvial lakes in response to reduced evaporation and precipitation: Evidence from Lake Surprise, California,
Geol. Soc. Am. Bull.,
126, 1387–1415, https://doi.org/10.1130/b31014.1, 2014.
Jin, J. H., Cao, X. D., Li, Z. Z., Chen, X. L., Hu, F. G., Xia, J., and Wang, X. L.:
Record for climate revolution in aeolian deposit of Nabkhas around the Ebinur Lake,
Journal of Desert Research,
33, 1314–1323, 2013.
Kliem, P., Buylaert, J. P., Hahn, A., Mayr, C., Murray, A. S., Ohlendorf, C., Veres, D., Wastegard, S., Zolitschka, B., and the PASADO science team:
Magnitude, geomorphic response and climate links of lake level oscillations at Laguna Potrok Aike, Patagonian steppe (Argentina),
Quaternary Sci. Rev.,
71, 131–146, https://doi.org/10.1016/j.quascirev.2012.08.023, 2013.
Konecky, B. L., Russell, J. M., Johnson, T. C., Brown, E. T., Berke, M. A., Werne, J. P., and Huang, Y. S.: Atmospheric circulation patterns during late Pleistocene climate changes at Lake Malawi, Africa, Earth Planet. Sc. Lett.,
312, 318–326, https://doi.org/10.1016/j.epsl.2011.10.020, 2011.
Krider, P. R.:
Paleoclimatic significance of late Quaternary lacustrine and alluvial stratigraphy, Animas Valley, New Mexico, Quaternary Res., 50, 283–289, https://doi.org/10.1006/qres.1998.1997, 1998.
Lachniet, M. S., Denniston, R. F., Asmerom, Y., and Polyak, V. J.:
Orbital control of western north america atmospheric circulation and climate over two glacial cycles, Nat. Commun., 5, 3805, https://doi.org/10.1038/ncomms4805, 2014.
Larsen, D. J., Finkenbinder, M. S., Abbott, M. B., and Ofstun, A. R.:
Deglaciation and postglacial environmental changes in the Teton Mountain Range recorded at Jenny Lake, Grand Teton National Park, WY, Quaternary Sci. Rev., 138, 62–75, https://doi.org/10.1016/j.quascirev.2016.02.024, 2016.
Lawrence Livermore National Laboratory: ESGF@DOE/LLNL, ESGF, available at: https://esgf-node.llnl.gov/projects/esgf-llnl/, last access: 6 November 2020.
Lee, M. K., Lee, Y. I., Lim, H. S., Lee, J. I., and Yoon, H. I.: Late Pleistocene–Holocene records from Lake Ulaan, southern Mongolia: implications for east Asian palaeomonsoonal climate changes, J. Quaternary Sci., 28, 370–378, https://doi.org/10.1002/jqs.2626, 2013.
Li, J. J.: The pattern of environmental changes since late Pleistocene in northwestern China, Quaternary Science, 3, 197–204, 1990.
Li, W. L., Wang, K. L., Fu, S. M., and Jiang, H.:
The interrelationship between regional westerly index and the water vapor budget in Northwest China,
Journal of Glaciology and Geocryology,
30, 28–34, https://doi.org/10.3724/SP.J.1047.2008.00014, 2008.
Li, X. Q., Liu, H. B., Zhao, K. L., Ji, M., and Zhou, X. Y.:
Holocene climate and environmental changes reconstructed from elemental geochemistry in the western Hexi Corridor,
Acta Anthropologica Sinica, 32, 110–120, 2013.
Li, Y. and Morrill, C.:
Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments,
Clim. Dynam.,
35, 1115–1128, https://doi.org/10.1007/s00382-010-0861-8, 2010.
Li, Y. and Morrill, C.:
Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations,
Quaternary Sci. Rev.,
60, 1–12, https://doi.org/10.1016/j.quascirev.2012.10.045, 2013.
Li, Y., Wang, N. A., Li, Z. L., and Zhang, H. A.:
Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin,
Chinese Sci. Bull.,
56, 535–546, https://doi.org/10.1007/s11434-010-4277-y, 2011.
Li, Y., Wang, N. A., Li, Z. L., and Zhang, H. A.:
Basin-wide Holocene environmental changes in the marginal area of the Asian monsoon, northwest China,
Environ. Earth Sci.,
65, 203–212, https://doi.org/10.1007/s12665-011-1083-z, 2012.
Li, Y., Wang, N. A., Li, Z. L., Zhou, X. H., and Zhang, C. Q.:
Climatic and environmental change in Yanchi Lake, Northwest China since the Late Glacial: A comprehensive analysis of lake sediments,
J. Geogr. Sci.,
23, 932–946, https://doi.org/10.1007/s11442-013-1053-3, 2013.
Li, Y., Zhang, C. Q., Wang, N. A., Han, Q., Zhang, X. Z., Liu, Y., Xu, L. M., and Ye, W. T.:
Substantial inorganic carbon sink in closed drainage basins globally,
Nat. Geosci.,
10, 501–506, https://doi.org/10.1038/ngeo2972, 2017.
Li, Y., Zhang, Y. X., Zhang, X. Z., Ye, W. T., Xu, L. M., Han, Q., Li, Y. C., Liu, H. B., and Peng, S. M.:
A continuous simulation of Holocene effective moisture change represented by variability of virtual lake level in East and Central Asia,
Sci. China Earth Sci.,
63, 1161–1175, https://doi.org/10.1007/s11430-019-9576-x, 2020.
Li, Y. F., Zhang, Q. S., and Li, B. Y.:
Late Pleistocene Ostracoda from Bangong Lake, Xizang and its palaeogeographic significance,
Acta Micropalaeontologica Sinica,
8, 57–64, 1991.
Licciardi, J. M., Clark, P. U., Jenson, J. W., and Macayeal, D. R.:
Deglaciation of a soft-bedded Laurentide ice sheet,
Quaternary Sci. Rev.,
17, 427–448, https://doi.org/10.1016/s0277-3791(97)00044-9, 1998.
Linderholm, H. W., and Bräeuning, A.:
Comparison of high-resolution climate proxies from the Tibetan plateau and Scandinavia during the last millennium,
Quatern. Int.,
154, 141–148, https://doi.org/10.1016/j.quaint.2006.02.010, 2006.
Liu, X. Q., Dong, H. L., Rech, J. A., Matsumoto, R., Yang, B., and Wang, Y. B.:
Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene–Holocene,
Quaternary Sci. Rev.,
27, 867–879, https://doi.org/10.1016/j.quascirev.2007.12.006, 2008a.
Liu, X. Q., Herzschuh, U., Shen, J., Jiang, Q. F., and Xiao, X. Y.:
Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China,
Quaternary Res.,
70, 412–425, https://doi.org/10.1016/j.yqres.2008.06.005, 2008b.
Louderback, L. A. and Rhode, D. E.:
15,000 Years of vegetation change in the Bonneville basin: the Blue Lake pollen record,
Quaternary Sci. Rev.,
28, 308–326, https://doi.org/10.1016/j.quascirev.2008.09.027, 2009.
Lowry, D. P. and Morrill, C.:
Is the Last Glacial Maximum a reverse analog for future hydroclimate changes in the Americas?
Clim. Dynam.,
52, 4407–4427, https://doi.org/10.1007/s00382-018-4385-y, 2019.
Lu, Y. B., An, C. B., Zhao, J. J.:
An isotopic study on water system of Lake Barkol and its implication for Holocene climate dynamics in arid central Asia,
Environ. Earth Sci.,
73, 1377–1383, https://doi.org/10.1007/s12665-014-3492-2, 2015.
Lyle, M., Heusser, L., Ravelo, A. C., Yamamoto, M., Barron, J. A., Diffenbaugh, N. S., Herbert, T. D., and Andreasen, D.:
Out of the Tropics: The Pacific, Great Basin Lakes, and Late Pleistocene Water Cycle in the Western United States,
Science,
337, 1629–1633, https://doi.org/10.1126/science.1218390, 2012.
Ma, Z. B., Wang, Z. H., Liu, J. Q., Yuan, B. Y., Xiao, J. L., and Zhang, G. P.:
U-series chronology of sediments associated with Late Quaternary fluctuations, Balikun Lake, northwestern China,
Quatern. Int.,
121, 89–98, https://doi.org/10.1016/S1040-6182(04)00035-7, 2004.
Madsen, D. B., Ma, H. Z., Rhode, D., Brantingham, P. J., and Forman, S. L.:
Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau,
Quaternary Res.,
69, 316–325, https://doi.org/10.1016/j.yqres.2007.10.013, 2008.
Metcalfe, S., Say, A., Black, S., McCulloch, R. D., and O'Hara, S.:
Wet conditions during the last glaciation in the Chihuahuan Desert, Alta Babicora Basin, Mexico,
Quaternary Res.,
57, 91–101, https://doi.org/10.1006/qres.2001.2292, 2002.
Mischke, S. and Zhang, C.:
Ostracod distribution in Ulungur Lake (Xinjiang, China) and a reassessed Holocene record,
Ecol. Res.,
26, 133–145, https://doi.org/10.1007/s11284-010-0768-1, 2011.
Monnin, E., Steig, E. J., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer, B., Stocker, T. F., Morse, D. L., Barnola, J. M., Bellier, B., Raynaud, D., and Fisher, H.:
Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores,
Earth Planet. Sc. Lett.,
224, 45–54, https://doi.org/10.1016/j.epsl.2004.05.007, 2004.
Moreno, P. I. and León, A. L.:
Abrupt vegetation changes during the last glacial to Holocene transition in mid-latitude South America,
J. Quaternary Sci.,
18, 787–800, https://doi.org/10.1002/jqs.801, 2003.
Morrill, C.:
The influence of Asian summer monsoon variability on the water balance of a Tibetan lake,
J. Paleolimnol.,
32, 273–286, https://doi.org/10.1023/b:jopl.0000042918.18798.cb, 2004.
Morrill, C., Small, E. E., and Sloan, L. C.:
Modeling orbital forcing of lake level change: Lake Gosiute (Eocene), North America,
Global Planet. Change,
29, 57–76, https://doi.org/10.1016/s0921-8181(00)00084-9, 2001.
Mumma, S. A., Whitlock, C., and Pierce, K.:
A 28,000 year history of vegetation and climate from Lower Red Rock Lake, Centennial Valley, Southwestern Montana, USA,
Palaeogeogr. Palaeocl.,
326–328, 30–41, https://doi.org/10.1016/j.palaeo.2012.01.036, 2012.
Nagashima, K., Tada, R., and Toyoda, S.:
Westerly jet-East Asian summer monsoon connection during the Holocene,
Geochem. Geophy. Geosy.,
14, 5041–5053, https://doi.org/10.1002/2013GC004931, 2013.
NCAR: TraCE-21ka dataset, Climate Data Gateway, available at: https://www.earthsystemgrid.org/project/trace.html, last access: 6 November 2020.
Oster, J. L., Ibarra, D. E., Winnick, M. J., and Maher, K.:
Steering of westerly storms over western North America at the Last Glacial Maximum,
Nat. Geosci.,
8, 201–205, https://doi.org/10.1038/ngeo2365, 2015.
Öğretmen, N. and Çağatay, M. N.:
Paleoenvironmental Changes in Lake Van During the Last Glacial-Holocene,
EGU, 2012.
Oviatt, C. G.:
Chronology of Lake Bonneville, 30,000 to 10,000 yr B.P.,
Quaternary Sci. Rev.,
110, 166–171, https://doi.org/10.1016/j.quascirev.2014.12.016, 2015.
Peltier, W. R.:
Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE,
Annu. Rev. Earth Pl. Sc.,
32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Pribyl, P. and Shuman, B. N.:
A computational approach to Quaternary lake-level reconstruction applied in the central Rocky Mountains, Wyoming, USA,
Quaternary Res.,
82, 249–259, https://doi.org/10.1016/j.yqres.2014.01.012, 2014.
Qin, B. Q. and Yu, G.:
Implications of lake level fluctuations at 6 ka and 18 ka in mainland Asia,
Global Planet. Change,
18, 59–72, https://doi.org/10.1016/S0921-8181(98)00036-8, 1998.
Qin, B. Q., Harrison, P., Yu, G., Tarasov, P. E. T., and Damnati, B.:
The geological evidence of the global moisture condition changes since the last glacial maximum: the construction of global lake status database & the synthesis in the large spatio-temporal scale,
Journal of Lake Sciences,
9, 203–210, https://doi.org/10.1145/2441776.2441923, 1997.
Quade, J. and Broecker, W. S.:
Dryland hydrology in a warmer world: Lessons from the Last Glacial period,
Eur. Phys. J-Spec. Top.,
176, 21–36, https://doi.org/10.1140/epjst/e2009-01146-y, 2009.
Rambeau, C. M. C.:
Palaeoenvironmental reconstruction in the southern levant: synthesis, challenges, recent developments and perspectives,
Philos. T. R. Soc. A,
368, 5225–5248, https://doi.org/10.1098/rsta.2010.0190, 2010.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.:
A new Greenland ice core chronology for the last glacial termination,
J. Geophys. Res.-Atmos.,
111, 1–15, https://doi.org/10.1029/2005JD006079, 2006.
Rhodes, T. E., Gasse, F., Lin, R. F., Fontes, J. C., Wei, K. W., Bertrand, P., Gibert, E., Mélières, F., Tucholka, P., Wang, Z. X., and Cheng, Z. Y.:
A Late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China),
Palaeogeogr. Palaeocl.,
120, 105–121, https://doi.org/10.1016/0031-0182(95)00037-2, 1996.
Riedel, F., Henderson, A. C. G., Heußner, K. U., Kaufmann, G., Kossler, A., Leipe, C., Shemang, E., and Taft, L.:
Dynamics of a Kalahari long-lived mega-lake system: hydromorphological and limnological changes in the Makgadikgadi Basin (Botswana) during the terminal 50 ka,
Hydrobiologia,
739, 25–53, https://doi.org/10.1007/s10750-013-1647-x, 2014.
Rossit, C., Laura, P. A. A., Bambill, D., Fontes, J. C., Gasse, F., and Gibert, E.:
Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core,
Palaeogeogr. Palaeocl.,
120, 25–47, https://doi.org/10.1016/0031-0182(95)00032-1, 1996.
Rowe, H. D., Dunbar, R. B., Mucciarone, D. A., Seltzer, G. O., Baker, P. A., and Fritz, S:
Insolation, moisture balance and climatic change on the South American Altiplano since the last glacial maximum,
Climatic Change,
52, 175–199, https://doi.org/10.1023/a:1013090912424, 2002.
Shen, J., Liu, X. Q., Wang, S. M., and Matsumoto, R.: Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years,
Quatern. Int.,
136, 131–140, https://doi.org/10.1016/j.quaint.2004.11.014, 2005.
Street, F. A. and Grove, A. T.:
Global maps of lake-level fluctuations since 30000 yr B.P.,
Quaternary Res.,
12, 83–118, https://doi.org/10.1016/0033-5894(79)90092-9, 1979.
Sun, A. Z., Feng, Z. D., Ran, M., and Zhang, C. J.:
Pollen-recorded bioclimatic variations of the last ∼ 22,600 years retrieved from Achit Nuur core in the western Mongolian Plateau,
Quatern. Int.,
311, 36–43, https://doi.org/10.1016/j.quaint.2013.07.002, 2013.
Voigt, I., Chiessi, C. M., Prange, M., Mulitza, S., Groeneveld, J., Varma, V., and Henrich, R.:
Holocene shifts of the Southern Westerlies across the South Atlantic,
Paleoceanography,
30, 39–51, https://doi.org/10.1002/2014pa002677, 2015.
Wang, P. X.:
Global monsoon in a geological perspective,
Chinese Sci. Bull.,
54, 1113–1136, https://doi.org/10.1007/s11434-009-0169-4, 2009.
Wang, R. L., Scarpitta, S. C., Zhang, S. C., and Zheng, M. P.:
Later Pleistocene/Holocene climate conditions of Qinghai–Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments,
Earth Planet. Sc. Lett.,
203, 461–477, https://doi.org/10.1016/s0012-821x(02)00829-4, 2002.
Wang, Y. B., Benjamin, B., Dörthe, H., Liu, X. Q., Anne, D., and Ulrike, H.:
Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems,
Quaternary Sci. Rev.,
169, 231–242, https://doi.org/10.1016/j.quascirev.2017.06.006, 2017.
Wang, Y. J., Cheng, H., Edwards, R. L., Kong, X. X. G., Shao, X. H., Chen, S. T., Wu, J. Y., Jiang, X. Y., Wang, X. F., and An, Z. S.:
Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years,
Nature,
451, 1090–1093, https://doi.org/10.1038/nature06692, 2008.
Waters, M. R.:
Late Quaternary lacustrine history and paleoclimatic significance of pluvial Lake Cochise, southeastern Arizona,
Quaternary Res.,
32, 1–11, https://doi.org/10.1016/0033-5894(89)90027-6, 1989.
Witt, R., Günther, F., Lauterbach, S., Kasper, T., Mäusbacher, R., Yao, T. D., and Gleixner, G.:
Biogeochemical evidence for freshwater periods during the Last Glacial Maximum recorded in lake sediments from Nam Co, south-central Tibetan Plateau,
J. Paleolimnol.,
55, 67–82, https://doi.org/10.1007/s10933-015-9863-1, 2016.
Wu, D.:
Changes of regional hydrology and summer monsoon since the Last Glacial Maximum recorded by Dalianhai Lake, Tibetan Plateau,
PhD thesis, Lanzhou University, Lanzhou, 2017.
Wu, H. B. and Guo, Z. T.:
Evolution and drought events in arid region of northern China since the Last Glacial Maximum, Quaternary
Science,
20, 548–558, 2000.
Wu, J. L., Wang, S. M., and Wu, Y. H.:
The Holocene sedimental characteristic and paleoclimatic evolution of Ebinur lake, Xinjiang,
Chinese Geogr. Sci.,
6, 78–88, https://doi.org/10.1007/s11769-996-0038-x, 1995.
Wu, Y. H., Lücke, A., Wünnemann, B., Li, S. J., and Wang, S. M.:
Holocene climate change in the Central Tibetan Plateau inferred by lacustrine sediment geochemical records,
Sci. China Earth Sci.,
50, 1548–1555, https://doi.org/10.1007/s11430-007-0113-x, 2007.
Wünnemann, B., Mischke, S., and Chen, F. H.:
A Holocene sedimentary record from Bosten Lake, China,
Palaeogeogr. Palaeocl.,
234, 223–238, https://doi.org/10.1016/j.palaeo.2005.10.016, 2006.
WWF: HydroBASINS Version 1.0, HydroSHEDS, available at: https://www.hydrosheds.org/page/hydrobasins, last access: 6 November 2020.
Xue, B. and Yu, G.:
Changes of Atmospheric Circulation since the Last Interstadial as Indicated by the Lake-status Record in China,
Acta Geol. Sin.-Engl.,
74, 836–845, https://doi.org/10.1111/j.1755-6724.2000.tb00499.x, 2000.
Xue, J. B. and Zhong, W.:
Holocene climate variation denoted by Barkol Lake sediments in northeastern Xinjiang and its possible linkage to the high and low latitude climates,
Sci. China Earth Sci.,
54, 603–614, https://doi.org/10.1007/s11430-010-4111-z, 2011.
Yan, D. and Wünnemann, B.:
Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records,
Quaternary Sci. Rev.,
95, 95–114, https://doi.org/10.1016/j.quascirev.2014.04.030, 2014.
Yan, S., Mu, G. J., and Xu, Y. Q.:
Quaternary environmental evolution of the Lop Nur region, NW China,
Acta Micropalaeontologica Sinica,
17, 165–169, 2000.
Yu, G., Xue, B., Wang, S. M., and Liu, J.:
Chinese lakes records and the climate significance during Last Glacial Maximum,
Chinese Sci. Bull.,
45, 250–255, 2000.
Yuan, D., Cheng, H. Y., Edwards, R. L., Dykoski, C. A., Kelly, M. J., and Zhang, M.:
Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon,
Science,
304, 575–578, https://doi.org/10.1126/science.1091220, 2004.
Zhang, C. J., Chen, F. H., Shang, H. M., and Cao, J.: The paleoenvironmental
significance of organic carbon isotope in lacustrine sediments in the arid
China: An example from Sanjiaocheng palaeolake in Minqin, Quaternary Science,
24, 88–94, 2004.
Zhang, H. C., Peng, J. L., Ma, Y. Z., Chen, G. J., Feng, Z. D., Li, B., Fan,
H. F., Chang, F. Q., Lei, G. L., and Wünnemann, B.: Late Quaternary
palaeolake levels in Tengger Desert, NW China, Palaeogeogr. Palaeocl., 211,
45–58, https://doi.org/10.1016/j.palaeo.2004.04.006, 2004.
Zhao, C., Yu, Z. C., Zhao, Y., Ito, E., Kodama, K. P., and Chen, F. H.:
Holocene millennial-scale climate variations documented by multiple lake-level
proxies in sediment cores from Hurleg Lake, Northwest China, J. Paleolimnol.,
44, 995–1008, https://doi.org/10.1007/s10933-010-9469-6, 2010.
Zhao, L. Y., Lu, H. Y., Zhang, E. L., Wang, X. Y., Yi, S. W., Chen, Y. Y., Zhang, H. Y., and Wu, B.:
Lake-level and paleoenvironment variation in Yitang Lake (northwestern China) during the past 23 ka revealed by stable carbon isotopic composition of organic matter of lacustrine sediments, Quaternary
Science,
35, 172–179, 2015.
Zhou, T. J., Yu, R. C., Li, H. M., and Wang, B.:
Ocean Forcing to Changes in Global Monsoon Precipitation over the Recent Half-Century,
J. Climate,
21, 3833–3852, https://doi.org/10.1175/2008jcli2067.1, 2008.
Zhu, L. P., Zhen, X. L., Wang, J. B., Lu, H. Y., Xie, M. P., Kitagawa, H., and Possnert, G.:
A ∼ 30, 000-year record of environmental changes inferred from Lake Chen Co, southern Tibet,
J. Paleolimnol.,
42, 343–358, https://doi.org/10.1007/s10933-008-9280-9, 2009.
Short summary
Monsoons and westerly winds interact with each other in the middle to low latitudes. We track millennial-scale evolution characteristics of monsoons and westerly winds over the past 21 000 years. In the monsoon-dominated regions of Asia, a humid climate prevails in the past 6000–10 000 years, while in the westerly-wind-dominated regions of Asia, the climate is relatively humid around 21 000 years and 6000 years ago.
Monsoons and westerly winds interact with each other in the middle to low latitudes. We track...