Articles | Volume 16, issue 6
https://doi.org/10.5194/cp-16-2055-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-2055-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early Jurassic climate and atmospheric CO2 concentration in the Sichuan paleobasin, southwestern China
State Key Laboratory for Mineral Deposits Research, School of Earth
Sciences and Engineering, Nanjing University, Nanjing, 210023, China
Jingyu Wang
State Key Laboratory for Mineral Deposits Research, School of Earth
Sciences and Engineering, Nanjing University, Nanjing, 210023, China
Troy Rasbury
Department of Geosciences, Stony Brook University, Stony Brook, NY
11794-2100, USA
Min Zhou
State Key Laboratory for Mineral Deposits Research, School of Earth
Sciences and Engineering, Nanjing University, Nanjing, 210023, China
Zhen Wei
State Key Laboratory for Mineral Deposits Research, School of Earth
Sciences and Engineering, Nanjing University, Nanjing, 210023, China
Chaokai Zhang
State Key Laboratory for Mineral Deposits Research, School of Earth
Sciences and Engineering, Nanjing University, Nanjing, 210023, China
Related authors
Xianghui Li, Yongxiang Li, Jingyu Wang, Chaokai Zhang, Yin Wang, and Ling Liu
Solid Earth, 10, 2089–2101, https://doi.org/10.5194/se-10-2089-2019, https://doi.org/10.5194/se-10-2089-2019, 2019
Short summary
Short summary
Western Pacific plate subduction played a key role in the late Mesozoic geologic evolution and volcanism in East Asia. New and published zircon U–Pb ages of extrusive rocks are compiled in SE China. Results show that the volcanism mainly spanned ~95 Myr (mainly 70 Myr, Late Jurassic–Early Cretaceous) and migrated northwest from the coast inland, implying the Paleo-Pacific Plate subducted northwestward and the roll-back subduction did not begin until the Aptian (~125 Ma) of the mid-Cretaceous.
Francis J. Sousa, Stephen E. Cox, E. Troy Rasbury, Sidney R. Hemming, Antonio Lanzirotti, and Matthew Newville
Geochronology, 6, 553–570, https://doi.org/10.5194/gchron-6-553-2024, https://doi.org/10.5194/gchron-6-553-2024, 2024
Short summary
Short summary
We have discovered a new way of measuring the three-dimensional distribution of radioactive elements in individual crystals by shining a very bright light on apatite crystals at the Advanced Photon Source at Argonne National Laboratory. This allows us to learn about the rates and timing of geologic processes and to help resolve problems that previously were unsolvable because we had no way to make this type of measurement.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Gaëlle Barbotin, Michael Perk, Nicolas E. Beaudoin, Brice Lacroix, and E. Troy Rasbury
EGUsphere, https://doi.org/10.5194/egusphere-2024-2366, https://doi.org/10.5194/egusphere-2024-2366, 2024
Short summary
Short summary
We present an approach to U-Pb dating of carbonates using isotopic image maps. The maps are divided into squares called virtual spots. For each virtual spot, statistical values (mean, uncertainty) are used to determine the age. The user can modify the size and location of the virtual spots and select those that give the most robust age. This approach, applied to high spatial resolution images, makes it possible for the first time to obtain satisfactory ages on images as small as 100 µm x 100 µm.
Gavin Piccione, Terrence Blackburn, Paul Northrup, Slawek Tulaczyk, and Troy Rasbury
EGUsphere, https://doi.org/10.5194/egusphere-2024-1359, https://doi.org/10.5194/egusphere-2024-1359, 2024
Short summary
Short summary
Growth of microorganisms in the Southern Ocean is limited by low iron levels. Iron delivered from beneath the Antarctic Ice Sheet is one agent that fertilizes these ecosystems, but it is unclear how this nutrient source changes through time. Here, we measured the age and chemistry of a rock that records the iron concentration of Antarctic basal water. We show that increased dissolution of iron from rocks below the ice sheet can substantially enhance iron discharge during cold climate periods.
E. Troy Rasbury, Theodore M. Present, Paul Northrup, Ryan V. Tappero, Antonio Lanzirotti, Jennifer M. Cole, Kathleen M. Wooton, and Kevin Hatton
Geochronology, 3, 103–122, https://doi.org/10.5194/gchron-3-103-2021, https://doi.org/10.5194/gchron-3-103-2021, 2021
Short summary
Short summary
We characterize three natural carbonate samples with elevated uranium/lead (U/Pb) ratios to demonstrate techniques improving the understanding of U incorporation in carbonates for U/Pb dating. With the rapidly accelerating application of laser ablation analyses, there is a great need for well-characterized reference materials that can serve multiple functions. Strontium (Sr) isotope analyses and U XANES demonstrate that these samples could be used as reference materials.
Xianghui Li, Yongxiang Li, Jingyu Wang, Chaokai Zhang, Yin Wang, and Ling Liu
Solid Earth, 10, 2089–2101, https://doi.org/10.5194/se-10-2089-2019, https://doi.org/10.5194/se-10-2089-2019, 2019
Short summary
Short summary
Western Pacific plate subduction played a key role in the late Mesozoic geologic evolution and volcanism in East Asia. New and published zircon U–Pb ages of extrusive rocks are compiled in SE China. Results show that the volcanism mainly spanned ~95 Myr (mainly 70 Myr, Late Jurassic–Early Cretaceous) and migrated northwest from the coast inland, implying the Paleo-Pacific Plate subducted northwestward and the roll-back subduction did not begin until the Aptian (~125 Ma) of the mid-Cretaceous.
Related subject area
Subject: Carbon Cycle | Archive: Terrestrial Archives | Timescale: Pre-Cenozoic
Aptian–Albian clumped isotopes from northwest China: cool temperatures, variable atmospheric pCO2 and regional shifts in the hydrologic cycle
Dustin T. Harper, Marina B. Suarez, Jessica Uglesich, Hailu You, Daqing Li, and Peter Dodson
Clim. Past, 17, 1607–1625, https://doi.org/10.5194/cp-17-1607-2021, https://doi.org/10.5194/cp-17-1607-2021, 2021
Short summary
Short summary
This study investigates the coupling of climate and the carbon and hydrologic cycles in Asia ~ 113 million years ago to provide a more complete continental perspective on a dynamic climate interval associated with global ocean anoxic events. We find relatively cool conditions and a close coupling between the amount of CO2 in the atmosphere, air temperature and rainfall in Asia. To quantify these shifts, chemical measurements from continental soils which formed during this interval are utilized.
Cited articles
Alonso-Zarza, A. M. and Tanner, L. H.: Preface, in: Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates, Geol. Soc. Am. Spec. Pap., 416, V–VII, https://doi.org/10.1130/0-8137-2416-3.v, 2006.
Arabas, A., Schlogl, J., and Meiste C.: Early Jurassic carbon and oxygen
isotope records and seawater temperature variations: Insights from marine
carbonate and belemnite rostra (Pieniny Klippen Belt, Carpathians),
Palaeogeogr. Palaeocl., 485, 119–135, 2017.
Arens, N. C., Jahren, A. H., and Amundson, R.: Can C3 plants faithfully
record the carbon isotopic composition of atmospheric carbon dioxide,
Paleobiology, 26, 137–164, 2000.
Arias, C.: Extinction pattern of marine Ostracoda across the
Pliensbachian-Toarcian boundary in the Cordillera Ibérica, NE Spain:
Causes and consequences, Geobios, 42, 1–15, 2009.
Baghli, H., Mattioli, E., Spangenberg, J. E., Bensalah, M., Arnaud-Godet,
F., Pittet, B., and Suan, G.: Early Jurassic climatic trends in the
south-Tethyan margin, Gondwana. Res., 77, 67–81, https://doi.org/10.1016/j.gr.2019.06.016, 2020.
Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B., and
Thirlwall, M. F.: Paleoceanographic changes of the Late Pliensbachian-Early
Toarcian interval: a possible link to the genesis of an Oceanic Anoxic
Event, Earth Planet. Sci. Lett., 212, 307–320, 2003.
Beerling, D. J. and Royer, D. L.: Reading a CO2 signal from fossil
stomata, New Phytol., 153, 387–397, https://doi.org/10.1046/j.0028-646X.2001.00335.x, 2002.
Berner, R. A.: GEOCARBSULF: A combined model for Phanerozoic atmospheric
O2 and CO2, Geochim. Cosmochim. Ac., 70, 5653–5664,
2006.
Besse, J. and Courtillot, V.: Paleogeographic maps of the continents
bordering the Indian Ocean since the Early Jurassic, J. Geophys. Res., 93,
11791–11808, 1988.
Blakey, R. C., Peterson, F., and Kocurek, G.: Synthesis of late Paleozoic
and Mesozoic eolian deposits of the Western Interior of the United States,
Sediment. Geol., 56, 3–125, https://doi.org/10.1016/0037-0738(88)90050-4, 1988.
Bodin, S., Krencker, F. N., Kothe, T., Hoffmann, R., Mattioli, E.,
Heimhofer, U., and Kabiri, L.: Perturbation of the carbon cycle during the
late Pliensbachian – early Toarcian: New insight from high-resolution
carbon isotope records in Morocco, J Afri. Earth Sci., 116, 89–104, https://doi.org/10.1016/j.jafrearsci.2015.12.018, 2016.
Boucot, A. J., Chen, X., Scotese, C. R., and Morley, R. J.: Phanerozoic
Paleoclimate: An Atlas of Lithologic Indicators of Climate, SEPM Concepts in Sedimentology and Paleontology, SEPM, Tulsa, 11, 1–478, 2013.
Bougeault, C., Pellenard, P., Deconninck, J. F., Hesselbo, S. P.,
Dommergues, J. L., Bruenau, L., Cocquerez, T., Laffont, R., Huret, E., and
Thibault, N.: Climatic and palaeoceanographic changes during the
Pliensbachian (Early Jurassic) inferred from clay mineralogy and stable
isotope (C–O) geochemistry (NW Europe), Global Planet. Change, 149, 139–152, 2017.
Breecker, D. O.: Quantifying and understanding the uncertainty of
atmospheric CO2 concentrations determined from calcic paleosols,
Geochem. Geophys. Geosyst., 14, 3210–3220, 2013.
Breecker, D. O. and Retallack, G. J.: Refining the pedogenic carbonate
atmospheric CO2 proxy and application to Miocene CO2, Palaeogeogr. Palaeocl., 406, 1–8, 2014.
Breecker, D. O., Sharp, Z. D., and McFadden, L. D.: Atmospheric CO2
concentrations during ancient greenhouse climates were similar to those
predicted for A.D. 2100, P. Natl. Acad. Sci. USA, 107, 576–580, 2009.
Breecker, D. O., Sharp, Z. D., and McFadden, L. D.: Seasonal bias in the
formation and stable isotope composition of pedogenic carbonate in modern
soil from central New Mexico, USA, Geol. Soc. Am. Bull., 12, 630–640, 2010.
Bromley, M.: Topographic inversion of early interdune deposits, Navajo
Sandstone (Lower Jurassic), Colorado Plateau, USA, Sediment. Geol., 80, 1–25, 1992.
Buchmann, N., Brooks, R. J., Flanagan, L. B., and Ehleringer, J. R.: Carbon
isotope discrimination of terrestrial ecosystems, in: Stable Isotopes: Integration of Biological, Ecological and Geochemical
Processes, edited by: Griffiths, H., BIOS Scientific Publications, Oxford, UK, 203–221, 1998.
Caruthers, A. H., Smith, P. L., and Gröcke, D. R.: The
Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased
event, Palaeogeogr. Palaeocl., 386, 104–118, 2013.
Cerling, T. E.: Carbon dioxide in the atmosphere: evidence from Cenozoic and
Mesozoic paleosols, Am. J. Sci., 291, 377–400, 1991.
Cerling, T. E.: Stable carbon isotopes in palaeosol carbonates, in:
Palaeoweathering, palaeosurfaces and related continental deposits, edited
by: Thiry, M. and Simm-CoinÇon, R., Spec. P. Intl. Asso. Sedi., 27,
43–60, 1999.
Cleveland, D. M., Nordt, L. C., Dworkin, S. I., and Atchley, S. C.:
Pedogenic carbonate isotopes as evidence for extreme climatic events
preceding the Triassic-Jurassic boundary: implications for the biotic
crisis?, Geol. Soc. Am. Bull., 120, 1408–1415, 2008.
Cohen, A. S., Coe, A. L., Harding, S. M., and Schwark, L.: Osmium isotope
evidence for the regulation of atmospheric CO2 by continental
weathering, Geology, 32, 157–160, 2004.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J. X.: The ICS
International Chronostratigraphic Chart, Episodes, 36,
199–204, 2013 (updated 2013).
Crowley, T. J. and Berner, R. A.: CO2 and climate change, Science, 292,
870–872, 2001.
Deng, S. H., Zhao, Y., Lu, Y. Z., Shang, P., Fan, R., Li, X., Dong, S. X.,
and Liu, L.: Plant fossils from the Lower Jurassic coal-bearing formation of
central InnerMongolia of China and their implications for palaeoclimate,
Palaeoworld, 26, 279–316, 2017.
Dera, G., Pellenard, P., Neige, P., Deconinck, J. F., Pucéat, E., and
Dommergues, J. L.: Distribution of clay minerals in Early Jurassic
Peritethyan seas: Palaeoclimatic significance inferred from multiproxy
comparisons, Palaeogeogr. Palaeocl., 271, 39–51,
https://doi.org/10.1016/j.palaeo.2008.09.010, 2009.
Dera, G., Brigaud, B., Monna, F., Laffont, R., Pucéat, E., Deconinck, J.
F., Pellenard P., Joachimski, M. M., and Durlet, C.: Climatic ups and downs
in a disturbed Jurassic world, Geology, 39, 215–218, 2011.
Dong, Z. M.: A new prosauropod from Ziliujing Formation of Sichuan Basin,
Vertebrat. Palasiatic., 22, 310–313, 1984 (in Chinese with English abstract).
Duan, S. Y. and Chen, Y.: Mesozoic fossil plants and coal formation of
eastern Sichuan Basin, in: Continental Mesozoic Stratigraphy and
Paleontology in Sichuan Basin of China: Part II, Paleontological
Professional Papers, People's Publ. House Sichuan, Chengdu, 491–519, 1982
(in Chinese).
Ekart, D. D., Cerling, T. E., Montñez, I. P., and Tabor, N. J.: A 400
million year carbon isotope record of pedogenic carbonate: implications for
paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805–827, 1999.
Flügel, E.: Microfacies of Carbonate Rocks: Analysis, Interpretation and
Application, Springer-Verlag, Berlin, 976 pp., 2004.
Friedli, H., Lotscher, H., Oeschger, H., Siegenthale, U., and Stauffer, B.:
Ice core record of the 13C∕12C ratio of atmospheric CO2 in
the past two centuries, Nature, 324, 237–238, 1986.
Fu, X. G., Wang, J., Feng, X. L., Wang, D., Chen, W. B., Song, C. Y., and
Zeng, S. Q.: Early Jurassic carbon-isotope excursion in the Qiangtang Basin
(Tibet), the eastern Tethys: implications for the Toarcian Oceanic anoxic
event, Chem. Geol., 442, 67–72, 2016.
Gómez, J. J. and Goy, A.: Warming-driven mass extinction in the Early
Toarcian (Early Jurassic) of northern Spain, Correlation with other
time-equivalent European sections, Palaeogeogr. Palaeocl.,
306, 176–195, 2011.
Gómez, J. J., Goy, A., and Canales, M. L.: Seawater temperature and
carbon isotope variations 15 in belemnites linked to mass extinction during
the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with
other European sections, Palaeogeogr. Palaeocl., 258,
28–58, 2008.
Gómez, J. J., Comas-Rengifo, M. J., and Goy, A.: Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain), Clim. Past, 12, 1199–1214, https://doi.org/10.5194/cp-12-1199-2016, 2016.
Guo, L. Y., Zhang, S. W., Xie, X. N., Li, Z. S., Huang, C. Y., and Chen, B.
C.: Geochemical characteristics and organic matter enrichment of the
Dongyuemiao Member mudstone of Lower Jurassic in the Western Hubei-Eastern
Chongqing, Earth Sci., 42, 1235–1246, 2017 (in Chinese with English
abstract).
Guo, Z. W, Deng, K. L., and Han, Y. H.: Formation and Evolution of the
Sichuan Basin, Geo. Publ. House, Beijing, 200 pp., 1996.
Hallam, A. and Wignall, P. B.: Mass extinctions and sea-level changes,
Earth Sci. Rev., 48, 217–250, 1999.
He, T. H. and Liao, C. F.: Control of Upper Triassic division and
correlation and Indosinian Movement on oil and gas accumulation in Sichuan
Basin, Acta Geol. Sichuan, 00, 40–55, 1985 (in Chinese).
Hermoso, M., Le Callonnec, L., Minoletti, F., Renard, M., and Hesselbo, S.
P.: Expression of the Early Toarcian negative carbon-isotope excursion in
separated carbonate microfractions (Jurassic, Paris Basin), Earth Planet.
Sci. Lett., 277, 194–203, 2009.
Hesselbo, S. P. and Jenkyns, H. C.: British Lower Jurassic sequence
stratigraphy, in: Mesozoic-Cenozoic Sequence Stratigraphy of European
Basins, edited by: de Graciansky, P. C., Hardenbol, J., Jacquin, Th., and
Vail, P. R., SEPM Spec. P., 60, 562–581, 1998.
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J.,
Farrimond, P., Morgans Bell, H. S., and Green, O. R.: Massive dissociation of
gas hydrate during a Jurassic oceanic anoxic event, Nature, 406, 392–395,
https://doi.org/10.1038/35019044, 2000.
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V., and Oliveira, L. C. V.:
Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event
from fossil wood and marine carbonate Lusitanian Basin, Portugal, Earth
Planet. Sci. Lett., 253, 455–470, 2007.
Huang, C. J. and Hesselbo, S. P.: Pacing of the Toarcian Oceanic Anoxic
Event (Early Jurassic) from astronomical correlation of marine sections,
Gondwana Res., 25, 1348–1356, https://doi.org/10.1016/j.gr.2013.06.023, 2014.
Huang, P., Guan, Y. M., and Yang, X. Q.: Early Jurassic palynoflora from a
drilling section of Jurong, Jiangsu, Acta Micropalaeontol. Sin., 17, 85–98, 2000.
Huang, Q. S.: Paleoclimate and coal-forming characteristics of the Late
Triassic Xujiahe stage in northern Sichuan, Geol. Rev., 41, 92–99, 1995
(in Chinese with English abstract).
Huang, Q. S.: The flora and paleoenvironment of the Early Jurassic
Zhenzhuchong Formation in Daxian-Kaixian region, northern margin of the
Sichuan Basin, Ear. Sci. J. China Uni. Geosci., 3, 221–229, 2001 (in Chinese
with English abstract).
Imbellone, P. A.: Classification of Paleosols, São Paulo, UNESP,
Geociências, 30, 5–13, 2011.
Izumi, K., Kemp, D., Itamiya, S., and Inui, M.: Sedimentary evidence for
enhanced hydrological cycling in response to rapid carbon release during the
early Toarcian oceanic anoxic event, Earth Planet. Sci. Lett., 481,
162–170, 2018.
Jahren, A. H., Arens, N. C., and Harbeson, S. A.: Prediction of atmospheric
δ13CCO2 using fossil plant tissues, Rev. Geophy., 46,
RG1002, https://doi.org/10.1029/2006RG000219, 2008.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophys.
Geosyst., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Jenkyns, H. C. and Clayton, C. J.: Black shales and carbon isotopes in
pelagic sediments from the Tethyan Lower Jurassic, Sedimentology, 33,
87–106, 1986.
Jenkyns, H. C. and Clayton, C. J., Lower Jurassic epicontinental carbonates
and mudstones from England and Wales: chemostratigraphic signals and the
early Toarcian anoxic event, Sedimentology, 44, 687–706, 1997.
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., and
Parkinson, D. N.: Chemostratigraphy of the Jurassic System: Applications,
limitations and implications for palaeoceanography, J. Geol. Soc. London,
159, 351–378, 2002.
Jones, C. E., Jenkyns, H. C., and Hesselbo, S. P.: Strontium isotopes in
Early Jurassic seawater, Geochim. Cosmochim. Ac., 58, 1285–1301, 1994.
Kemp, D. B., Coe, A. L., Cohen, A. S., and Schwark, L.: Astronomical pacing
of methane release in the Early Jurassic period, Nature, 437, 396–399, https://doi.org/10.1038/nature04037, 2005.
Kenny, R.: A cool time in the Early Jurassic: first continental
palaeoclimate estimates from oxygen and hydrogen isotope ratios in chert
from Navajo Sandstone carbonate lenses, Utah (USA), Carbonate Evaporite, 32, 45–52, https://doi.org/10.1007/s13146-015-0276-z, 2015.
Kent, D. V., Olsen, P. E., and Muttoni, G.: Astrochronostratigraphic
polarity time scale (APTS) for the Late Triassic and Early Jurassic from
continental sediments and correlation with standard marine stages,
Earth-Sci. Rev., 166, 153–180, 2017.
Korte, C. and Hesselbo, S. P.: Shallow marine carbon and oxygen isotope and
elemental records indicate icehouse-greenhouse cycles during the Early
Jurassic, Paleoceanography, 26, 1–18, 2011.
Korte, C., Hesselbo, S. P., Jenkyns, H. C., Rickaby, R. E. M., and
Spötl, C.: Palaeoenvironmental significance of carbon- and
oxygen-isotope stratigraphy of marine Triassic-Jurassic boundary sections in
SW Britain, J. Geol. Soc. London, 166, 431–445, 2009.
Korte, K., Hesselbo, S. P., Ullmann, C. V., Dietl, G., Ruhl, M., Schweigert,
G., and Thibault, N.: Jurassic climate mode governed by ocean gateway, Nat.
Commun., 6, 10015, https://doi.org/10.1038/ncomms10015, 2015.
Li, H. C. and Ku, T. L.: δ13C-δ18O covariance as a
paleohydrological indicator for closed basin lakes, Palaeogeogr. Palaeocl., 133, 69–80, 1997.
Li, L. Q., Wang, Y. D., Liu, Z. S., Zhou, N., and Wang, Y.: Late Triassic
palaeoclimate and palaeoecosystem variations inferred by palynological
record in the northeastern Sichuan Basin, China, Paläontol. Z., 90, 309–324, https://doi.org/10.1007/s12542-016-0309-5, 2016.
Li, W. M. and Chen, J. S.: Discovery and significances of the Jurassic
Ziliujing Formation in Tianzhu, Guizhou, China New Techn. Prod., 13,
134–135, 2010 (in Chinese).
Li, X. B. and Meng, F. S.: Discovery of fossil plants from the Ziliujing
Formation in Hechuan of Chongqing, Geol. Min. Resour. South China, 3, 60–65,
2003 (in Chinese with English abstract).
Li, Y., Allen, P. A., Densmore, A. L., and Xu, Q.: Evolution of the Longmen
Shan Foreland Basin (Western Sichuan, China) during the Late Triassic
Indosinian Orogeny, Basin Res., 15, 117–138, 2003.
Li, Y. Q. and He, D. F.: Evolution of tectonic-depositional environment and
prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas,
Acta Petrol. Sin., 35, 219–232, 2014 (in Chinese with English abstract).
Liang, B., Wang, Q. W., and Kan, Z. Z.: Geochemistry of Early Jurassic
mudrocks from Ziliujing Formation and implications for source-area and
weathering in dinosaur fossils site in Gongxian, Sichuan province, J. Min.
Petr., 26, 94–99, 2006 (in Chinese with English abstract).
Littler, K., Hesselbo, S. P., and Jenkyns, H. C.: A carbon-isotope
perturbation at the Pliensbachian-Toarcian boundary: evidence from the Lias
Group, NE England, Geol. Mag., 147, 181–192, 2010.
Liu, J. L., Ji, Y. L., Zhang, K. Y., Li, L. D., Wang, T. Y., Yang, Y., and
Zhang, J.: Jurassic sedimentary system transition and evolution model in
western Sichuan Foreland Basin, Acta Petrol. Sin., 37, 743–756, 2016 (in
Chinese with English abstract).
Ma, Y. S., Chen, H. D., Wang, G. L., Guo, T. L., Tian, J. C., Liu, W. J.,
Xu, X. S., Zheng, R. C., Mou, C. L., and Hou, M. C.: Atlas of Lithofacies
Paleogeography on the Sinian-Neogene Tectonic-Sequence in South China,
Science Press, Beijing, 162–165, 2009 (in Chinese).
Mack, G. H. and James, W. C.: Paleoclimate and the Global Distriution of
Paleosols, J. Geol., 102, 360–366, 1994.
Mack, G. H., James, W. C., and Monger, H. C.: 1 Classification of paleosols,
Geol. Soc. Am. Bull., 105, 129–136, 1993.
McElwain, J. C., Wade-Murphy, J., and Hesselbo, S. P.: Changes in carbon
dioxide during an oceanic anoxic event linked to intrusion into Gondwana
coals, Nature, 435, 479–482, https://doi.org/10.1038/nature03618, 2005.
Mckenzie, J. A. and Vasconcelos C.: Dolomite Mountains and the origin of
the dolomite rock of which they mainly consist: historical developments and
new perspectives, Sedimentology, 56, 205–219, https://doi.org/10.1111/j.1365-3091.2008.01027.x, 2009.
Meng, F. S. and Chen, D. Y.: Fossil plants and palaeoclimatic environment from the Ziliujing Formation in the western Yangtze Gorges area, China, Geol. Min. Res. S. China, 1, 51–59, 1997 (in Chinese with English abstract).
Meng, F. S., Li, X. B, and Chen, H. M.: Fossil plants from Dongyuemiao
Member of the Ziliujing Formation and Lower-Middle Jurassic boundary in
Sichuan basin, China, Acta Palaeontol. Sin., 42, 525–536, 2003. (in
Chinese with English abstract).
Meng, F. S., Chen, H. M., and Li, X. B.: Study on Lower Middle Jurassic
boundary in Chongqing region, Geol. Min. Resour. S China, 3, 64–71, 2005 (in
Chinese with English abstract).
Metodiev, L. and Koleva-Rekalova, E.: Stable isotope records (δ18O and δ13C) of Lower–Middle Jurassic belemnites from
the Western Balkan mountains (Bulgaria), Palaeoenvironmental application,
Appl. Geochem., 23, 2845–2856, 2008.
Mintz, J. S., Driese, S. G., Breecker, D. O., and Ludvigson, G. A.:
Influence of changing hydrology on pedogenic calcite precipitation in
Vertisols, Dance Bayou, Brazoria County, Texas, USA: implications for
estimating paleoatmospheric pCO2, J. Sedi. Res., 81, 394–400, 2011.
Mo, Y. Z. and Yu, H. Y.: The discovery and its geological significance of
dolomite in Ziliujing Groups of Middle and Lower Jurassic Series in
Ma'anshan Member, Geol. Guizhou, 10, 110–113, 1987 (in Chinese with
English abstract).
Montañez, I. P.: Modern soil system constraints on reconstructing
deep-timeatmospheric CO2, Geochim. Cosmochim. Acta, 101, 57–75, 2013.
Nadelhofer K. J. and Fry B.: Controls on natural nitrogen-15 and carbon-13
abundances in forest soil organic matter, Soil Sci. Soc. Am. J., 52,
1633–1640, 1988.
Newport, R., Hollis, C., Bodin, S., and Redfern, J.: Examining the interplay
of climate and low amplitude sea-level change on the distribution and volume
of massive dolomitization: Zebbag Formation, Cretaceous, Southern Tunisia,
Deposit. Rec., 3, 38–59, https://doi.org/10.1002/dep2.25, 2017.
Parrish, J. T., Hasiotis, S. T., and Chan, M. A.: Carbonate deposits in the
Lower Jurassic Navajo Sandstone, southern Utah and northern Arizona, J.
Sedi. Res., 87, 740–762, https://doi.org/10.2110/jsr.2017.42, 2017.
Parrish, J. T., Rasbury, E. T., Chan, M. A., and Hasiotis, S. T.: Earliest
Jurassic U-Pb ages from carbonate deposits in the Navajo Sandstone,
southeastern Utah, USA, Geology, 47, 1015–1019, https://doi.org/10.1130/g46338.1,
2019.
Peng, G. Z.: Assemblage characters of Jurassic dinosaurian fauna in Zigong
of Sichuan, J. Geosci., 33, 113–123, 2009 (in Chinese with English
abstract).
Peti, L., Thibault, N., Clémence, M. E., Korte, C., Dommergues, J. L.,
Bougeault, C., Pellenard,P., Jelby, M. E., and Ullmann, C. V.:
Sinemurian-Pliensbachian Calcareous Nannofossil Biostratigraphy and Organic
Carbon Isotope Stratigraphy in the Paris Basin: Calibration to the Ammonite
Biozonation of NW Europe, Palaeogeogr. Palaeocl., 468,
142–161, 2017.
Petrash, D. A., Bialik, O. M., Bontognali, T. R. R., Vasconcelos, C.,
Roberts, J. A., McKenzie, J. A., and Konhauser, K. O.: Microbially catalyzed
dolomite formation: From near-surface to burial, Earth Sci. Rev., 171,
558–582, https://doi.org/10.1016/j.earscirev.2017.06.015, 2017.
Philippe, M., Puijalon, S., Suan, G., Mousset, S., Thévenard, F., and
Mattioli, E.: The palaeolatitudinal distribution of fossil wood genera as a
proxy for European Jurassic terrestrial climate, Palaeogeogr. Palaeocl., 466, 373–381, 2017.
Pole, M.: Vegetation and climate of the New Zealand Jurassic, GFF, 131,
105–111, https://doi.org/10.1080/11035890902808948, 2009.
Price, G. D., Twitchett, R. J., Wheeley, J. R., and Buono, G.: Isotopic
evidence for long term warmth in the Mesozoic, Sci. Rep., 3, 1438, https://doi.org/10.1038/srep01438, 2013.
Qian, T., Liu, S. F., Wang, Z. X., Li, W. P., and Chen, X. L.:
Characteristics of the Baitianba Formation conglomerate of Lower Jurassic in
the northern Sichuan basin and its constraint to the uplift of the south
Dabashan, China Sci. Paper, 11, 2402–2408, 2016 (in Chinese with English
abstract).
Rees, P. A., Zeigler, A. M., and Valdes, P. J.: Jurassic phytogeography and
climates: new data and model comparisons, in: Warm Climates in Earth
History, edited by: Huber, B., MacLeod, K., and Wing, S., Cambridge
University Press, Cambridge, UK, 297–318, 1999.
Retallack, G. J.: Adapting soil taxonomy for use with paleosols, Quatern.
Int., 51/52, 55–57, https://doi.org/10.1016/S1040-6182(98)00039-1, 1998.
Retallack, G. J.: A 300-million-year record of atmospheric carbon dioxide
from fossil plant cuticles, Nature, 411, 287–290, 2001a.
Retallack, G. J.: Soils of the Past–An Introduction to Paleopedology,
Blackwell Science Ltd, Oxford, UK, 333, 2001b.
Riding, J. B., Leng, M. J., Kender, S, Hesselbo, S. P., and Feist-Burkhardt,
S.: Isotopic and palynological evidence for a new Early Jurassic
environmental perturbation, Palaeogeogr. Palaeocl., 374,
16–27, 2013.
Robinson, S. A., Andrews, J. E., Hesselbo, S. P., Radley, J. D., Dennis, P.
F., Harding, I. C., and Allen, P.: Atmospheric pCO2 and depositional
environment from stable-isotope geochemistry of calcrete nodules (Barremian,
Lower Cretaceous, Wealden Beds, England), J. Geol. Soc., London, 159,
215–224, 2002.
Robinson, S. A., Ruhl, M., Astley, D. L., Naafs, B. D. A., Farnsworth, A.
J., Bown, P. R., Jenkyns, H. C., Lunt D. J., O'Brien, C., Pancost, R. D.,
and Markwick, P. J.: Early Jurassic North Atlantic sea-surface temperatures
from TEX86 palaeothermometry, Sedimentology, 64, 215–230, https://doi.org/10.1111/sed.12321, 2017.
Romanek, C., Grossman, E., and Morse, J.: Carbon isotopic fractionation in
synthetic aragonite and calcite: effects of temperature and precipitation
rate, Geochim. Cosmochim. Ac., 56, 419–430, 1992.
Rosales, I., Quesada, S., and Robles, S.: Primary and diagenetic isotopic
signals in fossils and hemipelagic carbonates: the Lower Jurassic of
northern Spain, Sedimentology, 48, 1149–1169, 2001.
Royer, D. L.: CO2-forced climate thresholds during the Phanerozoic:
Geochim. Cosmochim. Ac., 70, 5665–5675, https://doi.org/10.1016/j.gca.2005.11.031,
2006.
Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H., Baudin, F., Parisi, G.,
and Maseti, D.: Carbon isotope records of the Early Jurassic (Toarcian)
oceanic anoxic event from the Valdorbia (Umbria-Marche Apennines) and Monte
Mangart (Julian Alps) sections: palaeogeographic and stratigraphic
implications, Sedimentology, 56, 1307–1328, 2009.
SBG (Sichuan Bureau of Geology): Reports of 1:200 000 Regional Geology
Investigations (Profile Qianjiang), 48, 1975 (in Chinese).
SBG (Sichuan Bureau of Geology): Reports of 1:200 000 Regional Geology
Investigations (Profile Xuyong), 55, 1976 (in Chinese).
SBG (Sichuan Bureau of Geology): Reports of 1:200 000 Regional Geology
Investigations (Profiles Suining, Zigong, Neijiang, Yibin, and Luzhou),
43–50, 1980 (in Chinese).
SBGM (Sichuan Bureau of Geology and Mineral Resources): Geology of Sichuan
Province, Geol. Publ. House, Beijing, 730, 1991 (in Chinese with English
summary).
SBGM: Lithostratigraphy of Sichuan Province, China Uni. Geosci. Press,
Wuhan, 388, 1997 (in Chinese).
Schaller, M. F., Wright, J. D., and Kent, D. V.: Atmospheric pCO2
perturbations associated with the Central Atlantic Magmatic Province,
Science, 331, 1404–1409, https://doi.org/10.1126/science.1199011, 2011.
Sellwood, B. W. and Valdes, P. J.: Jurassic climates, P. Geologist Assoc.,
119, 5–17, 2008.
Scotese, C. R.: Atlas of Jurassic Paleogeographic Maps, PALEOMAP Atlas for
ArcGIS, volume 4, The Jurassic and Triassic, Maps 32–42, Mollweide
Projection, PALEOMAP Project, Evanston, IL, https://doi.org/10.13140/2.1.4850.4321, 2014.
Slater, S. M., Twitchett, R. J., Danise, S., and Vajda, V.: Substantial
vegetation response to Early Jurassic global warming with impacts on oceanic
anoxia, Nature Geo., 12, 462–467, https://doi.org/10.1038/s41561-019-0349-z, 2019.
Soil Survey Staff: Keys to Soil Taxonomy, Pocahontas Press, Blacksburg, Virginia, 1998.
Steinthorsdottir, M. and Vajda, V.: Early Jurassic (late Pliensbachian)
CO2 concentrations based 5 on stomatal analysis of fossil conifer
leaves from eastern Australia, Gondwana Res., 27, 829–897, 2015.
Storm, M. S., Hesselbo, S. P., Jenkyns, H. C., Ruhl, M., Ullmann, C. V., Xu,
W., Leng, M. J., Riding, J. B., and Gorbanenko, O.: Orbital pacing and secular
evolution of the Early Jurassic carbon cycle, P. Natl. Acad. Sci. USA, 117, 3974–3982, https://doi.org/10.1073/pnas.1912094117, 2020.
Suan, G., Mattioli, E., Pittet, B., Mailliot, S., and Lécuyer, C.:
Evidence for major environmental perturbation prior to and during the
Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin,
Portugal, Paleoceanography, 23, PA1202, https://doi.org/10.1029/2007PA001459,
2008.
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B.,
Duarte, L. V., Philippe, M., Reggiani, L., and Martineau, F.: Secular
environmental precursors to Early Toarcian (Jurassic) extreme climate
changes, Earth Planet. Sci. Letts., 290, 448–458, https://doi.org/10.1016/j.epsl.2009.12.047, 2010.
Suchechi, R. K., Hubert, F. F., and Birney de Wet, C. C.: Isotopic imprint of climate and hydrogeochemistry on terrestrial strata of the Triassic-Jurassic Hartford and Fundy rift basins, J. Sediment. Petr., 58, 801–811, 1988.
Talbot, M. R.: A review of the palaeohydrological interpretation of carbon
and oxygen isotopic ratios in primary lacustrine carbonates, Chem. Geol.
(Isotope Geoscience Section), 80, 261–279, 1990.
Tanner, L. H. and Lucas, S.: The Whitmore Point Member of the Moenave
Formation: Early Jurassic Dryland Lakes on the Colorado Plateau,
Southwestern USA, Volum. Jur., 6, 11–21, 2008.
Tanner, L. H., Hubert, J. F., Coffey, B. P., and McInerney, D. P.: Stability
of atmospheric CO2 levels across the Triassic/Jurassic boundary,
Nature, 411, 675–677, 2001.
Them II, T. R., Gill, B. C., Caruthers, A. H., Gröcke, D. R., Tulsky, E.
T., Martindale, R. C., Poulton, T. P., and Smit, P. L.: High-resolution
carbon isotope records of the Toarcian oceanic anoxic event (Early Jurassic)
from North America and implications for the global drivers of the Toarcian
carbon cycle, Earth Planet. Sci. Lett., 459, 118–126, 2017.
Tramoy, R., Schnyder, J., Nguyen, Tu T. T., Yans, J., Jacob, J., Sebilo, M.,
Derenne, S., Philippe, M., Huguet, A., Pons, D., and Baudin, F.: The
Pliensbachian-Toarcian paleoclimate transition: New insights from organic
geochemistry and C, H, N isotopes in a continental section from Central
Asia, Palaeogeogr. Palaeocl., 461, 310–327, 2016.
Tucker, M. E.: Sedimentary rocks in the field – a practical guide (4th ed.),
Wiley-Blackwell, Chichester, England, 276 pp., 2011.
Vandeginste, V. and John, C. M.: Influence of climate and dolomite
composition on dedolomitization: insights from a multi-proxy study in the
central Oman Mountains, J. Sediment. Res., 82, 177–195, https://doi.org/10.2110/jsr.2012.19, 2012.
van de Schootbrugge, B., Bailey, T. R., Katz, M. E., Wright, J. D.,
Rosenthal, Y., Feist-Burkhardt, S., and Falkowski, P. G.: Early Jurassic
climate change and the radiation of organic walled phytoplankton in the
Tethys Sea, Paleobiology, 31, 73–97, 2005.
van de Schootbrugge, B., Bachan, A., Suan, G., Richoz, S., and Payne, J. L.:
Microbes, mud, and methane: Cause and consequence of recurrent Early
Jurassic anoxia following the end-Triassic mass-extinction, Palaeontology, 56,
685–709, 2013.
Vasconcelos, C., McKenzie, J. A., Bernasconi, S., Grujic, D., and Tien, A.
J.: Microbial mediation as a possible mechanism for natural dolomite
formation at low temperatures, Nature, 377, 220–222, 1995.
Veizer, J., Godderis, Y., and François, L. M.: Evidence for decoupling
of atmospheric CO2 and global climate during the Phanerozoic eon,
Nature, 408, 698–701, 2000.
Wang, Q. W., Liang, B., and Kan, Z. Z.: Carbon and oxygen isotopic compositions
of lacustrine carbonates of the Early Jurassic Ziliujing Formation in the
Sichuan Basin and their paleolimnological significance, J. Min. Petr.,
26, 87–91, 2006 (in Chinese with English abstract).
Wang, Y. D., Mosbrugger, V., and Zhang, H.: Early to Middle Jurassic
vegetation and climatic events in the Qaidam Basin, Northwest China,
Palaeogeogr. Palaeocl., 224, 200–216,
https://doi.org/10.1016/j.palaeo.2005.03.035, 2005.
Wang, Y. D., Fu, B. H., Xie, X. P., Huang, Q. S., Li, K., Liu, Z. S., Yu, J.
X., Pan, Y. H., Tian, N., and Jiang, Z. K.: The Terrestrial Triassic and
Jurassic Systems in the Sichuan Basin, China, in: Contributions to the
8th International Congress odd the Jurassic System, edited by: Sha, J.
G., Shi, X. Y., Zhou, Z. H., and Wang, Y. D., Uni. Sci. Techn., China Press,
Hefei, Anhui, 1–136, 2010 (in Chinese).
Warren, J.: Dolomite: occurrence, evolution and economically important
associations, Earth Sci. Rev., 52, 1–81, 2000.
Wei, M.: Continental Mesozoic Stratigraphy and Paleontology in the Sichuan
Basin, People's Publ. House of Sichuan, Chengdu, 346–363, 1982 (in Chinese
with English summary).
Wen, W. and Zhao, B.: Stratigraphic character and sedimentary facies of the
Ziliujing Formation in the Pujiang-Ya'An area, Sichuan province, J.
Stratigr., 34, 219–224, 2010 (in Chinese with English abstract).
Wright, V. P.: Paleosol Recognition: A guide to early diagenesis in
terrestrial settings (Chapter 12), in: Developments in Sedimentology, edited
by: Wolf, K. H. and Chilingarian, G. V., Elsevier, Amsterdam, the Netherlands, 47, 591–619, 1992.
Xu, W. M., Ruhl, M., Jenkyns, H. C., Hesselbo. S. P., Riding, J. B., Selby,
D., Naafs, B. D. A., Weijers, J. W. H., Pancost, R. D., Tegelaar, E. W., and
Idiz, E. F.: Carbon sequestration in an expanded lake system during the
Toarcian oceanic anoxic event, Nat. Geosci., 129–135, https://doi.org/10.1038/NGEO2871, 2017.
Xu, W. M, Ruhl, M., Jenkyns, H. C., Leng, M. J., Huggett, J. M., Minisini,
D., Ullmann, C. V., Riding, J. B., Weijers, J. W. H., Storm, M. S.,
Percival, L. M. E., Tosca, N. J., Idiz, E. F., Tegelaar, E. W., and Hesselbo, S. P.: Evolution of the Toarcian (Early Jurassic) carbon-cycle and global
climatic controls on local sedimentary processes (Cardigan Bay Basin, UK),
Earth Planet. Sci. Lett., 484, 396–411, 2018.
Yang, G. L.: Heavy mineral stratigraphy of Mesozoic continental clastic
facies in Yaxi area, northern Guizhou, J. Stratigr., 39, 89–96, 2015 (in
Chinese with English abstract).
Ye, M. N., Liu, X. Y., and Huang, G. Q.: Late Triassic and Early-Middle
Jurassic fossil plants from northeastern Sichuan, Sci. Techn. Press., Hefei,
Anhui, 1986 (in Chinese with English summary).
Zhang, X. S., Zhao, B., Tan, M., Zhou, B. Y., and Sun, J.: Stratigraphic
Characteristics of Ziliujing Formation, Jurassic Series and Discovery of
Dinosaur Footprints in Dafang, Guizhou, Geol. Guizhou, 33, 50–70, 2016 (in
Chinese with English abstract).
Zhang, Z. L. and Meng, F. S.: Chapter 2, the Jurassic. In Zhang Zhenlai and
Meng Fansong eds. The Triassic-Jurassic Biostratigraphy in Yangtze Gorges
(4), Geol. Publ. House, Beijing, 408, 1987 (in Chinese with English
summary).
Short summary
This work presents the observation of the Early Jurassic terrestrial climate from the Sichuan paleobasin, southeastern China. Results manifest a (semi)arid climate in the study area, where the climate pattern is similar to the Colorado Plateau. The estimated atmospheric carbon dioxide concentration is 980–2610 ppmV with a mean of 1660 ppmV. The change of carbon dioxide concentration is compatible with the excursions of stable isotopes and seawater temperature from the coeval marine sediments.
This work presents the observation of the Early Jurassic terrestrial climate from the Sichuan...