Articles | Volume 16, issue 5
https://doi.org/10.5194/cp-16-1987-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1987-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wet–dry status change in global closed basins between the mid-Holocene and the Last Glacial Maximum and its implication for future projection
Xinzhong Zhang
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Yu Li
CORRESPONDING AUTHOR
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Wangting Ye
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Simin Peng
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Yuxin Zhang
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Hebin Liu
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Yichan Li
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Qin Han
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Lingmei Xu
Key Laboratory of Western China's Environmental Systems (Ministry of
Education), College of Earth and Environmental Sciences, Center for
Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University,
Lanzhou 730000, China
Related authors
No articles found.
Simin Peng, Yu Li, Zhansen Zhang, Mingjun Gao, Xiaowen Chen, Junjie Duan, and Yaxin Xue
Clim. Past, 20, 2415–2429, https://doi.org/10.5194/cp-20-2415-2024, https://doi.org/10.5194/cp-20-2415-2024, 2024
Short summary
Short summary
The simultaneity of rain and heat is an important hypothesis containing the summer and winter precipitation regimes. In this paper, eastern and part of central Asia (EA and CA) with a summer precipitation regime are selected to study the dry/wet status on multiple timescales since the Last Glacial Maximum. We found that although climate difference in EA and CA universally exists, climate linkages in EA and part of CA with a summer precipitation regime can be uncovered.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Yu Li and Yuxin Zhang
Clim. Past, 16, 2239–2254, https://doi.org/10.5194/cp-16-2239-2020, https://doi.org/10.5194/cp-16-2239-2020, 2020
Short summary
Short summary
Monsoons and westerly winds interact with each other in the middle to low latitudes. We track millennial-scale evolution characteristics of monsoons and westerly winds over the past 21 000 years. In the monsoon-dominated regions of Asia, a humid climate prevails in the past 6000–10 000 years, while in the westerly-wind-dominated regions of Asia, the climate is relatively humid around 21 000 years and 6000 years ago.
Related subject area
Subject: Feedback and Forcing | Archive: Terrestrial Archives | Timescale: Holocene
Viticulture extension in response to global climate change drivers – lessons from the past and future projections
Volcanism and climate change as drivers in Holocene depositional dynamic of Laguna del Maule (Andes of central Chile – 36° S)
Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales
Joel Guiot, Nicolas Bernigaud, Alberte Bondeau, Laurent Bouby, and Wolfgang Cramer
Clim. Past, 19, 1219–1244, https://doi.org/10.5194/cp-19-1219-2023, https://doi.org/10.5194/cp-19-1219-2023, 2023
Short summary
Short summary
In the Mediterranean the vine has been an important part of the economy since Roman times. Viticulture expanded within Gaul during warmer climate phases and regressed during cold periods. Now it is spreading strongly to northern Europe and suffering from drought in North Africa, Spain, and southern Italy. This will worsen if global warming exceeds 2 °C above the preindustrial period. While the driver of this is increased greenhouse gases, we show that the main past forcing was volcanic activity.
Matías Frugone-Álvarez, Claudio Latorre, Fernando Barreiro-Lostres, Santiago Giralt, Ana Moreno, Josué Polanco-Martínez, Antonio Maldonado, María Laura Carrevedo, Patricia Bernárdez, Ricardo Prego, Antonio Delgado Huertas, Magdalena Fuentealba, and Blas Valero-Garcés
Clim. Past, 16, 1097–1125, https://doi.org/10.5194/cp-16-1097-2020, https://doi.org/10.5194/cp-16-1097-2020, 2020
Short summary
Short summary
The manuscript identifies the main volcanic phases in the Laguna del Maule volcanic field and their impact in the lake basin through the late glacial and Holocene. We show that the bio-productivity and geochemical variabilities in the lake are related with climatic dynamics type ENSO, SPA and SWW and that the main phases are synchronous with the major regional climate changes on millennial timescales.
Markus Czymzik, Raimund Muscheler, and Achim Brauer
Clim. Past, 12, 799–805, https://doi.org/10.5194/cp-12-799-2016, https://doi.org/10.5194/cp-12-799-2016, 2016
Short summary
Short summary
Integrating discharge data of the River Ammer back to 1926 and a 5500-year flood layer record from an annually laminated sediment core of the downstream Ammersee allowed investigating changes in the frequency of major floods in Central Europe on interannual to multi-centennial timescales. Significant correlations between flood frequency variations in both archives and changes in the activity of the Sun suggest a solar influence on the frequency of these hydrometeorological extremes.
Cited articles
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A.,
Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K.,
Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y.,
Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid
ecosystems in the trend and variability of the land CO2 sink, Science,
348, 895–899, https://doi.org/10.1126/science.aaa1668, 2015.
An, Z., Porter, S. C., Kutzbach, J. E., Wu, X., Wang, S., Liu, X., Li, X.,
and Zhou, W.: Asynchronous Holocene optimum of the East Asian monsoon,
Quaternary Sci. Rev., 19, 743–762,
https://doi.org/10.1016/s0277-3791(99)00031-1, 2000.
Bacon, S., Jayko, A., Owen, L., Lindvall, S., Rhodes, E., Schumer, R., and
Decker, D.: A 50,000-year record of lake-level variations and overflow from
Owens Lake, eastern California, USA, Quaternary Sci. Rev., 238, 106312,
https://doi.org/10.1016/j.quascirev.2020.106312, 2020.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.:. The
configuration of Northern Hemisphere ice sheets through the Quaternary, Nat.
Commun., 10, 1–10, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Bernal, J. P., Cruz, F. W., Stríkis, N. M., Wang, X., Deininger, M.,
Catunda, M. C. A., Ortega-Obregóna, C., Cheng, H., Edwards, R. L., and
Auler, A. S.: High-resolution Holocene South American monsoon history
recorded by a speleothem from Botuverá Cave, Brazil, Earth Planet. Sci.
Lett., 450, 186–196, https://doi.org/10.1016/j.epsl.2016.06.008, 2016.
Bhattacharya, T., Tierney, J. E., Addison, J. A., and Murray, J. W.:
Ice-sheet modulation of deglacial North American monsoon intensification,
Nat. Geosci., 11, 848–852, https://doi.org/10.1038/s41561-018-0220-7,
2018.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., and Zhao, Y.: Evaluation of climate
models using palaeoclimatic data, Nat. Clim. Chang., 2, 417–424,
https://doi.org/10.1038/nclimate1456, 2012.
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J.,
and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for
near-future climates, P. Natl. Acad. Sci. USA., 115, 13288–13293,
https://doi.org/10.1073/pnas.1809600115, 2018.
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D. B., and Boomer,
I.: Holocene moisture evolution in arid central Asia and its out-of-phase
relationship with Asian monsoon history, Quaternary Sci. Rev., 27,
351–364, https://doi.org/10.1016/j.quascirev.2007.10.017, 2008.
Chen, F., Chen, J., Huang, W., Chen, S., Huang, X., Jin, L., Jia, J., Zhang,
X., An, C., Zhang, J., Zhao, Y., Yu, Z., Zhang, R., Liu, J., Zhou, A., and
Feng, S.: Westerlies Asia and monsoonal Asia: Spatiotemporal differences in
climate change and possible mechanisms on decadal to sub-orbital timescales,
Earth-Sci. Rev., 192, 337–354,
https://doi.org/10.1016/j.earscirev.2019.03.005, 2019.
Chen, J., Chen, F., Feng, S., Huang, W., Liu, J., and Zhou, A.:
Hydroclimatic changes in China and surroundings during the Medieval Climate
Anomaly and Little Ice Age: spatial patterns and possible mechanisms,
Quaternary Sci. Rev., 107, 98–111,
https://doi.org/10.1016/j.quascirev.2014.10.012, 2015.
Chen, X., Wang, S., Hu, Z., Zhou, Q., and Qi, H.: Spatiotemporal
characteristics of seasonal precipitation and their relationships with enso
in central asia during 1901–2013, J. Geogr. Sci., 28, 1341–1368,
https://doi.org/10.1007/s11442-018-1529-2, 2018.
Climatic Research Unit: High-resolution gridded datasets (and derived products), available at: https://crudata.uea.ac.uk/cru/data/hrg/, last access: 28 October 2020.
COHMAP Members: Oxford Lake Levels Database, IGBP PAGES/World Data Center-
A for Paleoclimatology Data Contribution Series # 94-028, NOAA/NGDC
Paleoclimatology Program, Boulder CO, USA, 1994.
Contoux, C., Jost, A., Ramstein, G., Sepulchre, P., Krinner, G., and Schuster, M.: Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene, Clim. Past, 9, 1417–1430, https://doi.org/10.5194/cp-9-1417-2013, 2013.
Dai, A.: Increasing drought under global warming in observations and models,
Nat. Clim. Chang., 3, 52–58, https://doi.org/10.1038/nclimate1633, 2013.
Dai, A., Fyfe, J. C., Xie, S. P., and Dai, X.: Decadal modulation of global
surface temperature by internal climate variability, Nat. Clim. Chang.,
5, 555–559, https://doi.org/10.1038/nclimate2605, 2015.
deMenocal, P. B. and Tierney, J. E.: Green Sahara: African Humid Periods
Paced by Earth's Orbital Changes, Nature Education Knowledge, 3, 1–6,
2012.
Du, W., Kang, S., Qin, X., Ji, Z., Sun, W., Chen, J., Yang, J., and Chen,
D.: Can summer monsoon moisture invade the Jade Pass in Northwestern China?
Clim. Dynam., 55, 3101–3115, https://doi.org/10.1007/s00382-020-05423-y, 2020.
Dyke, A. S.: An outline of North American deglaciation with emphasis on
central and northern Canada, in: Developments in Quaternary Sciences, edited
by: Ehlers, J. and Gibbard, P. L., 373–424,
https://doi.org/10.1016/s1571-0866(04)80209-4, 2004.
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013, 2013.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., and Vertenstein,
M.: The community climate system model version 4, J. Climate., 24,
4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global assessment of trends in wetting and drying over
land, Nat. Geosci., 7, 716–721, https://doi.org/10.1038/ngeo2247, 2014.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature
change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014.
Harrison, S. P. and Digerfeldt, G.: European lakes as paleohydrological and paleoclimatic indicators, Quaternary Sci. Rev., 12, 233–248, https://doi.org/10.1016/0277-3791(93)90079-2, 1993.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to
global warming, J. Climate., 19, 5686–5699,
https://doi.org/10.1175/jcli3990.1, 2006.
Hély, C., Lézine, A.-M., and contributors, A.: Holocene changes in African vegetation: tradeoff between climate and water availability, Clim. Past, 10, 681–686, https://doi.org/10.5194/cp-10-681-2014, 2014.
Hu, Z., Chen, X., Chen, D., Li, J., Wang, S., Zhou, Q., Yin, G., and Guo,
M.: “Dry gets drier, wet gets wetter”: A case study over the arid regions
of central Asia, Int. J. Climatol., 39, 1072–1091,
https://doi.org/10.1002/joc.5863, 2019.
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland
expansion under climate change, Nat. Clim. Chang., 6, 166–171,
https://doi.org/10.1038/nclimate2837, 2016.
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z.,
Guo, W., Li, Z., Zhang, L., Liu, Y., Yu, H., He, Y., Xie, Y., Guan, X., Ji,
M., Lin, L., Wang, S., Yan, H., and Wang, G.: Dryland climate change: Recent
progress and challenges, Rev. Geophys., 55, 719–778,
https://doi.org/10.1002/2016rg000550, 2017.
Huang, X., Oberhansli, H., Von Suchodoletz, H., Prasad, S., Sorrel, P.,
Plessen, B., Mathis, M., and Usubaliev, R.: Hydrological changes in western
Central Asia (Kyrgyzstan) during the Holocene as inferred from a
palaeolimnological study in lake Son Kul, Quaternary Sci. Rev., 103,
134–152, https://doi.org/10.1016/j.quascirev.2014.09.012, 2014.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United
Kingdom, 2013.
Jansen, E., Christensen, J. H., Dokken, T., Nisancioglu, K. H., Vinther, B.
M., Capron, E., Guo, C., Jensen, M. F., Langen, P. L., Pedersen, R. A.,
Yang, S., Bentsen, M., Kjær, H. A., Sadatzki, H., Sessford, E., and
Stendel, M.: Past perspectives on the present era of abrupt Arctic climate
change, Nat. Clim. Chang., 10, 714–721,
https://doi.org/10.1038/s41558-020-0860-7, 2020.
Jenny, J. P., Koirala, S., Gregory-Eaves, I., Francus, P., Niemann, C.,
Ahrens, B., Brovkin, V., Baud, A., Ojala, A., Normandeau, A., Zolitschka,
B., and Carvalhais, N.: Human and climate global-scale imprint on sediment
transfer during the Holocene, P. Natl. Acad. Sci. USA., 116,
22972–22976, https://doi.org/10.1073/pnas.1908179116, 2019.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: general specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kohfeld, K. E. and Harrison, S. P.: How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets, Quaternary Sci. Rev., 19, 321–346, https://doi.org/10.1016/S0277-3791(99)00068-2, 2000.
Kohfeld, K. E., Graham, R. M., Boer, A. M. D., Sime, L. C., Wolff, E. W.,
Quéré, C. L., and Boop, L.: Southern hemisphere westerly wind
changes during the last glacial maximum: paleo-data synthesis, Quaternary
Sci. Rev., 68, 76–95, https://doi.org/10.1016/j.quascirev.2013.01.017,
2013.
Kuhnt, W., Holbourn, A., Xu, J., Opdyke, B., De Deckker, P., Röhl, U.,
and Mudelsee, M.: Southern Hemisphere control on Australian monsoon
variability during the late deglaciation and Holocene, Nat. Commun., 6,
1–7, https://doi.org/10.1038/ncomms6916, 2015.
Lachniet, M. S., Denniston, R. F., Asmerom, Y., and Polyak, V. J.: Orbital control of western North America atmospheric circulation and climate over two glacial cycles, Nat. Commun., 5, 1–8,
https://doi.org/10.1038/ncomms4805, 2014.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and
Levrard, B.: A long term numerical solution for the insolation quantities of
the Earth, Astron. Astr., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Lawrence Livermore National Laboratory: ESGF@DOE/LLNL, available at: https://esgf-node.llnl.gov/projects/esgf-llnl/, last access: 28 October 2020.
Lebamba, J., Vincens, A., and Maley, J.: Pollen, vegetation change and climate at Lake Barombi Mbo (Cameroon) during the last ca. 33 000 cal yr BP: a numerical approach, Clim. Past, 8, 59–78, https://doi.org/10.5194/cp-8-59-2012, 2012.
Lehner, B. and Grill G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013.
Lézine, A. M., Hély, C., Grenier, C., Braconnot, P., and Krinner,
G.: Sahara and Sahel vulnerability to climate changes, lessons from Holocene
hydrological data, Quaternary Sci. Rev., 30, 3001–3012,
https://doi.org/10.1016/j.quascirev.2011.07.006, 2011.
Li, G., Zhang, H., Liu, X., Yang, H., Wang, X., Zhang, X., Jonell, T.,
Zhang, Y., Huang, X., Wang, Z., Wang, Y., Yu, L., and Xia, D.: Paleoclimatic
changes and modulation of East Asian summer monsoon by high-latitude forcing
over the last 130,000 years as revealed by independently dated
loess-paleosol sequences on the NE Tibetan Plateau, Quaternary Sci. Rev.,
237, 106283, https://doi.org/10.1016/j.quascirev.2020.106283, 2020.
Li, J., Dodson, J., Yan, H., Cheng, B., Zhang, X., Xu, Q., Ni, J., and Lu,
F.: Quantitative precipitation estimates for the northeastern
Qinghai-Tibetan Plateau over the last 18,000 years, J. Geophys. Res.-Atmos.,
122, 5132–5143, https://doi.org/10.1002/2016jd026333, 2017.
Li, X., Liu, X., Qiu, L., An, Z., and Yin, Z. Y.: Transient simulation of
orbital-scale precipitation variation in monsoonal East Asia and arid
central Asia during the last 150 ka, J. Geophys. Res.-Atmos., 118,
7481–7488, https://doi.org/10.1002/jgrd.50611, 2013.
Li, Y. and Harrison, S. P.: Simulations of the impact of orbital forcing
and ocean on the Asian summer monsoon during the Holocene, Global. Planet.
Change., 60, 505–522, https://doi.org/10.1016/j.gloplacha.2007.06.002,
2008.
Li, Y. and Morrill, C.: Lake levels in Asia at the Last Glacial Maximum as
indicators of hydrologic sensitivity to greenhouse gas concentrations,
Quaternary Sci. Rev., 60, 1–12,
https://doi.org/10.1016/j.quascirev.2012.10.045, 2013.
Li, Y., Wang, Y. G., Houghton, R. A., and Tang, L. S.: Hidden carbon sink
beneath desert, Geophys. Res. Lett., 42, 5880–5887,
https://doi.org/10.1002/2015gl064222, 2015.
Li, Y., Zhang, C., Wang, N., Han, Q., Zhang, X., Liu, Y., Xu, L., and Ye,
W.: Substantial inorganic carbon sink in closed drainage basins globally,
Nat. Geosci., 10, 501–506, https://doi.org/10.1038/ngeo2972, 2017.
Li, Y., Liu, Y., Ye, W., Xu, L., Zhu, G., Zhang, X., and Zhang, C.: A new
assessment of modern climate change, China – An approach based on
paleo-climate, Earth-Sci. Rev., 177, 458–477,
https://doi.org/10.1016/j.earscirev.2017.12.017, 2018.
Ljungqvist, F. C., Krusic, P. J., Sundqvist, H. S., Zorita, E., Brattstr, M,
G., and Frank, D.: Northern hemisphere hydroclimate variability over the
past twelve centuries, Nature, 532, 94–98,
https://doi.org/10.1038/nature17418, 2016.
Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C., and
Williams, J. W.: Downscaled and debiased climate simulations for North
America from 21,000 years ago to 2100AD, Sci. Data., 3, 160048,
https://doi.org/10.1038/sdata.2016.48, 2016.
Lowry, D. P. and Morrill, C.: Is the Last Glacial Maximum a reverse analog
for future hydroclimate changes in the Americas?, Clim. Dynam., 52,
4407–4427, https://doi.org/10.1007/s00382-018-4385-y, 2019.
Magee, J. W., Miller, G. H., Spooner, N. A., and Questiaux, D.: Continuous
150 ky monsoon record from Lake Eyre, Australia: insolation-forcing
implications and unexpected Holocene failure, Geology, 32, 885–888,
https://doi.org/10.1130/g20672.1, 2004.
Mariotti, A.: How ENSO impacts precipitation in southwest central Asia,
Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007gl030078,
2007.
Masutomi, Y., Inui, Y., Takahashi, K. and Matsuoka, Y.: Development of
highly accurate global polygonal drainage basin data, Hydrol. Process., 23,
572–584, https://doi.org/10.1002/hyp.7186, 2009.
Metcalfe, S. E., Barron, J. A., and Davies, S. J.: The Holocene history of
the North American Monsoon:`known knowns' and `known unknowns' in
understanding its spatial and temporal complexity, Quaternary Sci. Rev.,
120, 1–27, https://doi.org/10.1016/j.quascirev.2015.04.004, 2015.
Middleton, N. J. and Thomas, D. S. G. (Eds.): World Atlas of Desertification, Edward Arnold, London, The United Kingdom, 1997.
Miebach, A., Niestrath, P., Roeser, P., and Litt, T.: Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial, Clim. Past, 12, 575–593, https://doi.org/10.5194/cp-12-575-2016, 2016.
NOAA: Paleoclimatology Datasets, available at: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets, last access: 28 October 2020.
Physical Sciences Laboratory: Climate Indices: Monthly Atmospheric and Ocean Time-Series, available at: https://psl.noaa.gov/data/climateindices/list/, last access: 28 October 2020.
Quade, J. and Broecker, W. S.: Dryland hydrology in a warmer world: Lessons
from the Last Glacial period, Eur. Phys. J. Spec. Top., 176, 21–36,
https://doi.org/10.1140/epjst/e2009-01146-y, 2009.
Rambeau, C. M. C.: Palaeoenvironmental reconstruction in the Southern Levant: synthesis, challenges, recent developments and perspectives, Philos. Trans. R. Soc. A., 368, 5225–5248, https://doi.org/10.1098/rsta.2010.0190, 2010.
Ramisch, A., Lockot, G., Haberzettl, T., Hartmann, K., Kuhn, G., Lehmkuhl,
F., Schimpf, S., Schulte, P., Stauch, G., Wang, R., Wünnemann, B., Yan,
D., Zhang, Y., and Diekmann, B.: A persistent northern boundary of Indian
Summer Monsoon precipitation over Central Asia during the Holocene, Sci.
Rep., 6, 1–7, https://doi.org/10.1038/srep25791, 2016.
Ran, M. and Feng, Z.: Holocene moisture variations across china and driving
mechanisms: a synthesis of climatic records, Quaternary Int., 313–314,
179–193, https://doi.org/10.1016/j.quaint.2013.09.034, 2013.
Rana, S., Mcgregor, J., and Renwick, J.: Wintertime precipitation
climatology and ENSO sensitivity over central southwest Asia, Int. J.
Climatol., 37, 1494–1509, https://doi.org/10.1002/joc.4793, 2017.
Rana, S., McGregor, J., and Renwick, J.: Dominant modes of winter
precipitation variability over Central Southwest Asia and inter-decadal
change in the ENSO teleconnection, Clim. Dynam., 53, 5689–5707,
https://doi.org/10.1007/s00382-019-04889-9, 2019.
Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.
Routson, C. C., McKay, N. P., Kaufman, D. S., Erb, M. P., Goosse, H.,
Shuman, B. N., Rodysill, J. R., and Ault, T.: Mid-latitude net precipitation
decreased with Arctic warming during the Holocene, Nature, 568, 83–87,
https://doi.org/10.1038/s41586-019-1060-3, 2019.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y. H., Cheng, Y., Clune, T. L., Genio, A. D., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M. S., and Zhang, J. L.:
Configuration and assessment of the GISS ModelE2 contributions to the CMIP5
archive. J. Adv. Model. Earth Sy., 6, 141–184,
https://doi.org/10.1002/2013ms000265, 2014.
Shakun, J. D. and Carlson, A. E.: A global perspective on Last Glacial
Maximum to Holocene climate change, Quaternary Sci. Rev., 29,
1801–1816, https://doi.org/10.1016/j.quascirev.2010.03.016, 2010.
Shanahan, T. M., McKay, N. P., Hughen, K. A., Overpeck, J. T.,
Otto-Bliesner, B., Heil, C. W., King, J., Scholz, C. A., and Peck, J.: The
time-transgressive termination of the African Humid Period, Nat. Geosci.,
8, 140–144, https://doi.org/10.1038/ngeo2329, 2015.
Sime, L. C., Hodgson, D., Bracegirdle, T. J., Allen, C., Perren, B., Roberts, S., and de Boer, A. M.: Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models, Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, 2016.
Street-Perrott, F. A., Marchand, D. S., Roberts, N., and Harisson, S. P.:
Global Lake-Level Variations from 18,000 to 0 Years Ago: A Paleoclimatic
Analysis. U.S. Department of Energy Technical Report 46, Washington, D.C.
20545. Distributed by National Technical Information Service, Springfield,
VA 22161, 1989.
Tabor, K. and Williams, J. W.: Globally downscaled climate projections for
assessing the conservation impacts of climate change, Ecol. Appl., 20,
554–565, https://doi.org/10.1890/09-0173.1, 2010.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design. B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/bams-d-11-00094.1, 2012.
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., and Seager, R.:
Multidecadal variability in east african hydroclimate controlled by the
indian ocean, Nature, 493, 389–392,
https://doi.org/10.1038/nature11785, 2013.
Trenberth, K. E., Dai, A., Schrier, G. V. D., Jones, P. D., Barichivich, J.,
Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Chang., 4, 17–22, https://doi.org/10.1038/nclimate2067, 2013.
Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B.,
Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier,
M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G.,
Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S.,
Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin,
F.: The CNRM-CM5.1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y,
2013.
Wang, J., Song, C., Reager, J. T., Yao, F., Famiglietti, J. S., Sheng, Y.,
MacDonald, G. M., Brun, F., Schmied, H. M., Marston, R. A., and Wada, Y.:
Recent global decline in endorheic basin water storages, Nat. Geosci.,
11, 926–932, https://doi.org/10.1038/s41561-018-0265-7, 2018.
Wang, P. X., Wang, B., Cheng, H., Fasullo, J., Guo, Z. T., Kiefer, T., and Liu, Z. Y.: The global monsoon across timescales: coherent variability of regional monsoons, Clim. Past, 10, 2007–2052, https://doi.org/10.5194/cp-10-2007-2014, 2014.
Wang, P. X., Wang, B., Cheng, H., Fasullo, J., Guo, Z., Kiefer, T., and Liu,
Z.: The global monsoon across time scales: Mechanisms and outstanding
issues, Earth-Sci. Rev., 174, 84–121,
https://doi.org/10.1016/j.earscirev.2017.07.006, 2017.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P.,
Hahnenberger, M., Howe, F., and Moore, J.: Decline of the world's saline
lakes, Nat. Geosci., 10, 816–821, https://doi.org/10.1038/ngeo3052,
2017.
WWF: HydroSHEDS, HydroBASINS Version 1.0, available at: https://www.hydrosheds.org/page/hydrobasins, last access: 28 October 2020.
Xue, B., Yu, G., and Zhang, F. J.: Late quaternary lake database in China, Science Press, Beijing, 2017 (in Chinese).
Yu, G., Harrison, S. P., and Xue, B.: Lake status records from China: data
base documentation, MPI-BGC Tech Rep 4, 2001.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara,
M., Tanaka, T. Y., Shindo, E., Tsujino, H., and Deushi, M.: A new global
climate model of the Meteorological Research Institute: MRI-CGCM3: Model
description and basic performance, J. Meteorol. Soc. Jpn., 90, 23–64,
https://doi.org/10.2151/jmsj.2012-a02, 2012.
Zhan, S., Song, C., Wang, J., Sheng, Y., and Quan, J.: A global assessment
of terrestrial evapotranspiration increase due to surface water area change,
Earth's future, 7, 266–282, https://doi.org/10.1029/2018ef001066, 2019.
Zhang, J., Chen, F., Holmes, J. A., Li, H., Guo, X., Wang, J., Li, S.,
Lü, Y., Zhao, Y., and Qiang, M.: Holocene monsoon climate documented by
oxygen and carbon isotopes from lake sediments and peat bogs in China: a
review and synthesis, Quaternary Sci. Rev., 30, 1973–1987,
https://doi.org/10.1016/j.quascirev.2011.04.023, 2011.
Zhang, E,, Zhao, C., Xue, B., Liu, Z., Yu, Z., Chen, R., and Shen, J.:
Millennial-scale hydroclimate variations in southwest China linked to
tropical Indian Ocean since the Last Glacial Maximum, Geology, 45,
435–438, https://doi.org/10.1130/g38309.1, 2017.
Short summary
Many closed-basin lakes are now drying, causing water crisis in hinterlands; however, many were much wetter in a similar warm world 6000 years ago. Why do they respond differently and will it be wetter or drier? We assess the wet–dry status and mechanism at different timescales and suggest that moisture change in the past and future warm periods are controlled by summer and winter precipitation, respectively. Diversified responses in different closed basins need a more resilient strategy.
Many closed-basin lakes are now drying, causing water crisis in hinterlands; however, many were...