Articles | Volume 16, issue 4
Clim. Past, 16, 1617–1642, 2020
Clim. Past, 16, 1617–1642, 2020
Research article
27 Aug 2020
Research article | 27 Aug 2020

Investigating interdecadal salinity changes in the Baltic Sea in a 1850–2008 hindcast simulation

Hagen Radtke et al.

Related authors

The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638,,, 2022
Short summary
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540,,, 2022
Short summary
ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM
Tobias Peter Bauer, Peter Holtermann, Bernd Heinold, Hagen Radtke, Oswald Knoth, and Knut Klingbeil
Geosci. Model Dev., 14, 4843–4863,,, 2021
Short summary
Model uncertainties of a storm and their influence on microplastics and sediment transport in the Baltic Sea
Robert Daniel Osinski, Kristina Enders, Ulf Gräwe, Knut Klingbeil, and Hagen Radtke
Ocean Sci., 16, 1491–1507,,, 2020
Short summary
Ensemble hindcasting of wind and wave conditions with WRF and WAVEWATCH III® driven by ERA5
Robert Daniel Osinski and Hagen Radtke
Ocean Sci., 16, 355–371,,, 2020
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Centennial-Decadal
Volcanic impact on the Atlantic Ocean over the last millennium
J. Mignot, M. Khodri, C. Frankignoul, and J. Servonnat
Clim. Past, 7, 1439–1455,,, 2011
The global ocean circulation on a retrograde rotating earth
V. Kamphuis, S. E. Huisman, and H. A. Dijkstra
Clim. Past, 7, 487–499,,, 2011

Cited articles

Aguiar-Conraria, L. and Soares, M. J.: The continuous wavelet transform: A primer, Tech. Rep. 16, Núcleo de Investigação em Políticas Económicas, Universidade do Minho, Minho, Portugal, available at: (last access: 18 August 2020), 2011. a
Axell, L. B.: Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea, J. Geophys. Res.-Oceans, 107, 3204,, 2002. a
Bergström, S. and Carlsson, B.: River runoff to the Baltic Sea – 1950–1990, Ambio, 23, 280–287, 1994. a
Burchard, H., Bolding, K., Feistel, R., Gräwe, U., Klingbeil, K., MacCready, P., Mohrholz, V., Umlauf, L., and van der Lee, E. M.: The Knudsen theorem and the Total Exchange Flow analysis framework applied to the Baltic Sea, Prog. Oceanogr., 165, 268–286,, 2018. a
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S.: Ocean turbulence. Part I: One-point closure model – Momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31, 1413–1426,<1413:OTPIOP>2.0.CO;2, 2001. a
Short summary
During the last century, salinity in the Baltic Sea showed a multidecadal oscillation with a period of 30 years. Using a numerical circulation model and wavelet coherence analysis, we demonstrate that this variation has at least two possible causes. One driver is river runoff which shows a 30-year variation. The second one is a variation in the frequency of strong inflows of saline water across Darss Sill which also contains a pronounced 30-year period.