Articles | Volume 16, issue 4
Clim. Past, 16, 1617–1642, 2020
https://doi.org/10.5194/cp-16-1617-2020
Clim. Past, 16, 1617–1642, 2020
https://doi.org/10.5194/cp-16-1617-2020
Research article
27 Aug 2020
Research article | 27 Aug 2020

Investigating interdecadal salinity changes in the Baltic Sea in a 1850–2008 hindcast simulation

Hagen Radtke et al.

Related authors

The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022,https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022,https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM
Tobias Peter Bauer, Peter Holtermann, Bernd Heinold, Hagen Radtke, Oswald Knoth, and Knut Klingbeil
Geosci. Model Dev., 14, 4843–4863, https://doi.org/10.5194/gmd-14-4843-2021,https://doi.org/10.5194/gmd-14-4843-2021, 2021
Short summary
Model uncertainties of a storm and their influence on microplastics and sediment transport in the Baltic Sea
Robert Daniel Osinski, Kristina Enders, Ulf Gräwe, Knut Klingbeil, and Hagen Radtke
Ocean Sci., 16, 1491–1507, https://doi.org/10.5194/os-16-1491-2020,https://doi.org/10.5194/os-16-1491-2020, 2020
Short summary
Ensemble hindcasting of wind and wave conditions with WRF and WAVEWATCH III® driven by ERA5
Robert Daniel Osinski and Hagen Radtke
Ocean Sci., 16, 355–371, https://doi.org/10.5194/os-16-355-2020,https://doi.org/10.5194/os-16-355-2020, 2020
Short summary

Related subject area

Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Centennial-Decadal
Volcanic impact on the Atlantic Ocean over the last millennium
J. Mignot, M. Khodri, C. Frankignoul, and J. Servonnat
Clim. Past, 7, 1439–1455, https://doi.org/10.5194/cp-7-1439-2011,https://doi.org/10.5194/cp-7-1439-2011, 2011
The global ocean circulation on a retrograde rotating earth
V. Kamphuis, S. E. Huisman, and H. A. Dijkstra
Clim. Past, 7, 487–499, https://doi.org/10.5194/cp-7-487-2011,https://doi.org/10.5194/cp-7-487-2011, 2011

Cited articles

Aguiar-Conraria, L. and Soares, M. J.: The continuous wavelet transform: A primer, Tech. Rep. 16, Núcleo de Investigação em Políticas Económicas, Universidade do Minho, Minho, Portugal, available at: https://repositorium.sdum.uminho.pt/bitstream/1822/12398/4/NIPE_WP_16_2011.pdf (last access: 18 August 2020), 2011. a
Axell, L. B.: Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea, J. Geophys. Res.-Oceans, 107, 3204, https://doi.org/10.1029/2001JC000922, 2002. a
Bergström, S. and Carlsson, B.: River runoff to the Baltic Sea – 1950–1990, Ambio, 23, 280–287, 1994. a
Burchard, H., Bolding, K., Feistel, R., Gräwe, U., Klingbeil, K., MacCready, P., Mohrholz, V., Umlauf, L., and van der Lee, E. M.: The Knudsen theorem and the Total Exchange Flow analysis framework applied to the Baltic Sea, Prog. Oceanogr., 165, 268–286, https://doi.org/10.1016/j.pocean.2018.04.004, 2018. a
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S.: Ocean turbulence. Part I: One-point closure model – Momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31, 1413–1426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2, 2001. a
Download
Short summary
During the last century, salinity in the Baltic Sea showed a multidecadal oscillation with a period of 30 years. Using a numerical circulation model and wavelet coherence analysis, we demonstrate that this variation has at least two possible causes. One driver is river runoff which shows a 30-year variation. The second one is a variation in the frequency of strong inflows of saline water across Darss Sill which also contains a pronounced 30-year period.