Articles | Volume 16, issue 4
https://doi.org/10.5194/cp-16-1617-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1617-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating interdecadal salinity changes in the Baltic Sea in a 1850–2008 hindcast simulation
Hagen Radtke
CORRESPONDING AUTHOR
Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
Sandra-Esther Brunnabend
Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
present address: Department of Research and Development, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Ulf Gräwe
Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
H. E. Markus Meier
Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
Department of Research and Development, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Related authors
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Tobias Peter Bauer, Peter Holtermann, Bernd Heinold, Hagen Radtke, Oswald Knoth, and Knut Klingbeil
Geosci. Model Dev., 14, 4843–4863, https://doi.org/10.5194/gmd-14-4843-2021, https://doi.org/10.5194/gmd-14-4843-2021, 2021
Short summary
Short summary
We present the coupled atmosphere–ocean model system ICONGETM. The added value and potential of using the latest coupling technologies are discussed in detail. An exchange grid handles the different coastlines from the unstructured atmosphere and the structured ocean grids. Due to a high level of automated processing, ICONGETM requires only minimal user input. The application to a coastal upwelling scenario demonstrates significantly improved model results compared to uncoupled simulations.
Robert Daniel Osinski, Kristina Enders, Ulf Gräwe, Knut Klingbeil, and Hagen Radtke
Ocean Sci., 16, 1491–1507, https://doi.org/10.5194/os-16-1491-2020, https://doi.org/10.5194/os-16-1491-2020, 2020
Short summary
Short summary
This study investigates the impact of the uncertainty in atmospheric data of a storm event on the transport of microplastics and sediments. The model chain includes the WRF atmospheric model, the WAVEWATCH III® wave model, and the GETM regional ocean model as well as a sediment transport model based on the FABM framework. An ensemble approach based on stochastic perturbations of the WRF model is used. We found a strong impact of atmospheric uncertainty on the amount of transported material.
Robert Daniel Osinski and Hagen Radtke
Ocean Sci., 16, 355–371, https://doi.org/10.5194/os-16-355-2020, https://doi.org/10.5194/os-16-355-2020, 2020
Short summary
Short summary
The idea of this study is to quantify the uncertainty in hindcasts of severe storm events by applying a state-of-the-art ensemble generation technique. Other ensemble generation techniques are tested. The atmospheric WRF model is driven by the ERA5 reanalysis. A setup of the Wavewatch III® wave model for the Baltic Sea is used with the wind fields produced with the WRF ensemble. The effect of different spatio-temporal resolutions of the wind fields on the significant wave height is investigated.
Daniel Neumann, Matthias Karl, Hagen Radtke, Volker Matthias, René Friedland, and Thomas Neumann
Ocean Sci., 16, 115–134, https://doi.org/10.5194/os-16-115-2020, https://doi.org/10.5194/os-16-115-2020, 2020
Short summary
Short summary
The study evaluates how much bioavailable nitrogen is contributed to the nitrogen budget of the western Baltic Sea by deposition of shipping-emitted nitrogen oxides. Bioavailable nitrogen compounds are nutrients for phytoplankton (algae). Excessive input of nutrients into water bodies may lead to eutrophication: more algal blooms with subsequently more oxygen limitation at the seafloor. Hence, reducing shipping emissions might reduce the anthropogenic pressure on the marine ecosystem.
Hagen Radtke, Marko Lipka, Dennis Bunke, Claudia Morys, Jana Woelfel, Bronwyn Cahill, Michael E. Böttcher, Stefan Forster, Thomas Leipe, Gregor Rehder, and Thomas Neumann
Geosci. Model Dev., 12, 275–320, https://doi.org/10.5194/gmd-12-275-2019, https://doi.org/10.5194/gmd-12-275-2019, 2019
Short summary
Short summary
This paper describes a coupled benthic–pelagic biogeochemical model, ERGOM-SED. We demonstrate its use in a one-dimensional physical model, which is horizontally integrated and vertically resolved. We describe the application of the model to seven stations in the south-western Baltic Sea. The model was calibrated using pore water profiles from these stations. We compare the model results to these and to measured sediment compositions, benthopelagic fluxes and bioturbation intensities.
Daniel Neumann, Hagen Radtke, Matthias Karl, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-365, https://doi.org/10.5194/bg-2018-365, 2018
Publication in BG not foreseen
Short summary
Short summary
The contribution of atmospheric nitrogen deposition to the marine dissolved inorganic nitrogen (DIN) pool of the North and Baltic Sea was assessed for the year 2012. Atmospheric deposition accounted for approximately 10 % to 15 % of the DIN but its residence time differed between both water bodies. The nitrogen contributions of atmospheric shipping and agricultural imissions also were assessed. Particularly the latter source had a large impact in coastal regions.
Daniel Neumann, Matthias Karl, Hagen Radtke, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-364, https://doi.org/10.5194/bg-2018-364, 2018
Manuscript not accepted for further review
Short summary
Short summary
Atmospheric nitrogen deposition contributes 20 % to 40 % to bioavailable nitrogen inputs into the North Sea and Baltic Sea. Excessive bioavailable nitrogen may lead to intensified algal blooms in these water bodies resulting in several negative consequences for the marine ecosystem. We traced atmospheric nitrogen in the marine ecosystem via an ecosystem model and estimated the contribution of atmospheric nitrogen to plankton biomass in different regions of the North and Baltic Sea over five years.
Daniel Neumann, René Friedland, Matthias Karl, Hagen Radtke, Volker Matthias, and Thomas Neumann
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-71, https://doi.org/10.5194/os-2018-71, 2018
Revised manuscript not accepted
Short summary
Short summary
We found that refining the spatial resolution of nitrogen deposition data had low impact on marine nitrogen compounds compared to the impact by nitrogen deposition data sets of different origin (other model). The shipping sector had a contribution of up to 10 % to the marine dissolved inorganic nitrogen.
José A. Jiménez, Gundula Winter, Antonio Bonaduce, Michael Depuydt, Giulia Galluccio, Bart van den Hurk, H. E. Markus Meier, Nadia Pinardi, Lavinia G. Pomarico, and Natalia Vazquez Riveiros
State Planet, 3-slre1, 3, https://doi.org/10.5194/sp-3-slre1-3-2024, https://doi.org/10.5194/sp-3-slre1-3-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (SLR) has done a scoping study involving stakeholders from government and academia to identify gaps and needs in SLR information, impacts, and policies across Europe. Gaps in regional SLR projections and uncertainties were found, while concerns were raised about shoreline erosion and emerging problems like saltwater intrusion and ineffective adaptation plans. The need for improved communication to make better decisions on SLR adaptation was highlighted.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-198, https://doi.org/10.5194/nhess-2024-198, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This study divides the sea level components that contribute to extreme sea levels in the Baltic Sea into three parts: the filling state of the Baltic Sea, seiches and storm surges. In the western part of the Baltic Sea, storm surges are the main factor, while in the central and northern parts, the filling state plays a larger role. Using a numerical model, we show that wind and air pressure are the main drivers of these events, with Atlantic sea level also playing a small role.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2685, https://doi.org/10.5194/egusphere-2024-2685, 2024
Short summary
Short summary
Forecasting river runoff, crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using Convolutional Long Short-Term Memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Marvin Lorenz and Ulf Gräwe
Ocean Sci., 19, 1753–1771, https://doi.org/10.5194/os-19-1753-2023, https://doi.org/10.5194/os-19-1753-2023, 2023
Short summary
Short summary
We study the variability of extreme sea levels in a 13 member hindcast ensemble for the Baltic Sea. The ensemble mean shows good agreement with observations regarding return levels and trends. However, we find great variability and uncertainty within the ensemble. We argue that the variability of storms in the atmospheric data directly translates into the variability of the return levels. These results highlight the need for large regional ensembles to minimise uncertainties.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023, https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Short summary
The Baltic Earth Assessment Reports summarise the current state of knowledge on Earth system science in the Baltic Sea region. The 10 review articles focus on the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Some highlights of the results are presented here.
Pia Kolb, Anna Zorndt, Hans Burchard, Ulf Gräwe, and Frank Kösters
Ocean Sci., 18, 1725–1739, https://doi.org/10.5194/os-18-1725-2022, https://doi.org/10.5194/os-18-1725-2022, 2022
Short summary
Short summary
River engineering measures greatly changed tidal dynamics in the Weser estuary. We studied the effect on saltwater intrusion with numerical models. Our analysis shows that a deepening of the navigation channel causes saltwater to intrude further into the Weser estuary. This effect is mostly masked by the natural variability of river discharge. In our study, it proved essential to recalibrate individual hindcast models due to differences in sediments, bed forms, and underlying bathymetric data.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Tobias Peter Bauer, Peter Holtermann, Bernd Heinold, Hagen Radtke, Oswald Knoth, and Knut Klingbeil
Geosci. Model Dev., 14, 4843–4863, https://doi.org/10.5194/gmd-14-4843-2021, https://doi.org/10.5194/gmd-14-4843-2021, 2021
Short summary
Short summary
We present the coupled atmosphere–ocean model system ICONGETM. The added value and potential of using the latest coupling technologies are discussed in detail. An exchange grid handles the different coastlines from the unstructured atmosphere and the structured ocean grids. Due to a high level of automated processing, ICONGETM requires only minimal user input. The application to a coastal upwelling scenario demonstrates significantly improved model results compared to uncoupled simulations.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Robert Daniel Osinski, Kristina Enders, Ulf Gräwe, Knut Klingbeil, and Hagen Radtke
Ocean Sci., 16, 1491–1507, https://doi.org/10.5194/os-16-1491-2020, https://doi.org/10.5194/os-16-1491-2020, 2020
Short summary
Short summary
This study investigates the impact of the uncertainty in atmospheric data of a storm event on the transport of microplastics and sediments. The model chain includes the WRF atmospheric model, the WAVEWATCH III® wave model, and the GETM regional ocean model as well as a sediment transport model based on the FABM framework. An ensemble approach based on stochastic perturbations of the WRF model is used. We found a strong impact of atmospheric uncertainty on the amount of transported material.
Robert Daniel Osinski and Hagen Radtke
Ocean Sci., 16, 355–371, https://doi.org/10.5194/os-16-355-2020, https://doi.org/10.5194/os-16-355-2020, 2020
Short summary
Short summary
The idea of this study is to quantify the uncertainty in hindcasts of severe storm events by applying a state-of-the-art ensemble generation technique. Other ensemble generation techniques are tested. The atmospheric WRF model is driven by the ERA5 reanalysis. A setup of the Wavewatch III® wave model for the Baltic Sea is used with the wind fields produced with the WRF ensemble. The effect of different spatio-temporal resolutions of the wind fields on the significant wave height is investigated.
Daniel Neumann, Matthias Karl, Hagen Radtke, Volker Matthias, René Friedland, and Thomas Neumann
Ocean Sci., 16, 115–134, https://doi.org/10.5194/os-16-115-2020, https://doi.org/10.5194/os-16-115-2020, 2020
Short summary
Short summary
The study evaluates how much bioavailable nitrogen is contributed to the nitrogen budget of the western Baltic Sea by deposition of shipping-emitted nitrogen oxides. Bioavailable nitrogen compounds are nutrients for phytoplankton (algae). Excessive input of nutrients into water bodies may lead to eutrophication: more algal blooms with subsequently more oxygen limitation at the seafloor. Hence, reducing shipping emissions might reduce the anthropogenic pressure on the marine ecosystem.
Hagen Radtke, Marko Lipka, Dennis Bunke, Claudia Morys, Jana Woelfel, Bronwyn Cahill, Michael E. Böttcher, Stefan Forster, Thomas Leipe, Gregor Rehder, and Thomas Neumann
Geosci. Model Dev., 12, 275–320, https://doi.org/10.5194/gmd-12-275-2019, https://doi.org/10.5194/gmd-12-275-2019, 2019
Short summary
Short summary
This paper describes a coupled benthic–pelagic biogeochemical model, ERGOM-SED. We demonstrate its use in a one-dimensional physical model, which is horizontally integrated and vertically resolved. We describe the application of the model to seven stations in the south-western Baltic Sea. The model was calibrated using pore water profiles from these stations. We compare the model results to these and to measured sediment compositions, benthopelagic fluxes and bioturbation intensities.
Beate Stawiarski, Stefan Otto, Volker Thiel, Ulf Gräwe, Natalie Loick-Wilde, Anna K. Wittenborn, Stefan Schloemer, Janine Wäge, Gregor Rehder, Matthias Labrenz, Norbert Wasmund, and Oliver Schmale
Biogeosciences, 16, 1–16, https://doi.org/10.5194/bg-16-1-2019, https://doi.org/10.5194/bg-16-1-2019, 2019
Short summary
Short summary
The understanding of surface water methane production in the world oceans is still poor. By combining field studies and incubation experiments, our investigations suggest that zooplankton contributes to subthermocline methane enrichments in the central Baltic Sea by methane production within the digestive tract of copepods and/or by methane production through release of methane precursor substances into the surrounding water, followed by microbial degradation to methane.
Daniel Neumann, Hagen Radtke, Matthias Karl, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-365, https://doi.org/10.5194/bg-2018-365, 2018
Publication in BG not foreseen
Short summary
Short summary
The contribution of atmospheric nitrogen deposition to the marine dissolved inorganic nitrogen (DIN) pool of the North and Baltic Sea was assessed for the year 2012. Atmospheric deposition accounted for approximately 10 % to 15 % of the DIN but its residence time differed between both water bodies. The nitrogen contributions of atmospheric shipping and agricultural imissions also were assessed. Particularly the latter source had a large impact in coastal regions.
Daniel Neumann, Matthias Karl, Hagen Radtke, and Thomas Neumann
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-364, https://doi.org/10.5194/bg-2018-364, 2018
Manuscript not accepted for further review
Short summary
Short summary
Atmospheric nitrogen deposition contributes 20 % to 40 % to bioavailable nitrogen inputs into the North Sea and Baltic Sea. Excessive bioavailable nitrogen may lead to intensified algal blooms in these water bodies resulting in several negative consequences for the marine ecosystem. We traced atmospheric nitrogen in the marine ecosystem via an ecosystem model and estimated the contribution of atmospheric nitrogen to plankton biomass in different regions of the North and Baltic Sea over five years.
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018, https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Short summary
This paper investigates how phytoplankton concentrations in the Baltic Sea co-vary with nutrient concentrations and other key variables on inter-annual timescales in a model integration over the years 1850–2008. The study area is not only affected by climate change; it has also been subjected to greatly increased nutrient loads due to extensive use of agricultural fertilizers. The results indicate the largest inter-annual coherence of phytoplankton with the limiting nutrient.
Daniel Neumann, René Friedland, Matthias Karl, Hagen Radtke, Volker Matthias, and Thomas Neumann
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-71, https://doi.org/10.5194/os-2018-71, 2018
Revised manuscript not accepted
Short summary
Short summary
We found that refining the spatial resolution of nitrogen deposition data had low impact on marine nitrogen compounds compared to the impact by nitrogen deposition data sets of different origin (other model). The shipping sector had a contribution of up to 10 % to the marine dissolved inorganic nitrogen.
Sofia Saraiva, H. E. Markus Meier, Helén Andersson, Anders Höglund, Christian Dieterich, Robinson Hordoir, and Kari Eilola
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2018-16, https://doi.org/10.5194/esd-2018-16, 2018
Revised manuscript not accepted
Short summary
Short summary
Uncertainties are estimated in Baltic Sea climate projections by performing scenarios combining 4 Global Climate Models, 2 future gas emissions (RCP4.5, RCP8.5) and 3 nutrient load scenarios. Results on primary production, nitrogen fixation, and hypoxic areas show that uncertainties caused by the nutrients loads are greater than uncertainties due to GCMs and RCPs. In all scenarios, nutrient load abatement strategy, Baltic Sea Action Plan, will lead to an improvement in the environmental state.
Ye Liu, H. E. Markus Meier, and Kari Eilola
Biogeosciences, 14, 2113–2131, https://doi.org/10.5194/bg-14-2113-2017, https://doi.org/10.5194/bg-14-2113-2017, 2017
Short summary
Short summary
From the reanalysis, nutrient transports between sub-basins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections, are calculated. Further, the spatial distributions of regions with nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea. For the calculation of sub-basin budgets, the location of the lateral borders of the sub-basins is crucial.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, H. E. Bal, F. Seinstra, B. van Werkhoven, J. Maassen, and M. van Meersbergen
Ocean Sci., 13, 47–60, https://doi.org/10.5194/os-13-47-2017, https://doi.org/10.5194/os-13-47-2017, 2017
Short summary
Short summary
An important contribution to future changes in regional sea level extremes is due to the changes in intrinsic ocean variability, in particular ocean eddies. Here, we study a scenario of future dynamic sea level (DSL) extremes using a strongly eddying version of the Parallel Ocean Program. Changes in 10-year return time DSL extremes are very inhomogeneous over the globe and are related to changes in ocean currents and corresponding regional shifts in ocean eddy pathways.
Elin Almroth-Rosell, Moa Edman, Kari Eilola, H. E. Markus Meier, and Jörgen Sahlberg
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, https://doi.org/10.5194/bg-13-5753-2016, 2016
Short summary
Short summary
Nutrients from land have been discussed to increase eutrophication in the open sea. This model study shows that the coastal zone works as an efficient filter. Water depth and residence time regulate the retention that occurs mostly in the sediment due to processes such as burial and denitrification. On shorter timescales the retention capacity might seem less effective when the land load of nutrients decreases, but with time the coastal zone can import nutrients from the open sea.
Joeran Maerz, Richard Hofmeister, Eefke M. van der Lee, Ulf Gräwe, Rolf Riethmüller, and Kai W. Wirtz
Biogeosciences, 13, 4863–4876, https://doi.org/10.5194/bg-13-4863-2016, https://doi.org/10.5194/bg-13-4863-2016, 2016
Short summary
Short summary
We investigated sinking velocity (ws) of suspended particulate matter (SPM) in the German Bight. By inferring ws indirectly from an extensive turbidity data set and hydrodynamic model results, we found enhanced ws in a coastal transition zone. Combined with known residual circulation patterns, this led to a new conceptual understanding of the retention of fine minerals and nutrients in shallow coastal areas. The retention is likely modulated by algal excretions enhancing flocculation of SPM.
Rahel Vortmeyer-Kley, Ulf Gräwe, and Ulrike Feudel
Nonlin. Processes Geophys., 23, 159–173, https://doi.org/10.5194/npg-23-159-2016, https://doi.org/10.5194/npg-23-159-2016, 2016
Short summary
Short summary
Since eddies play a major role in the dynamics of oceanic flows, it is of great interest to gain information about their tracks, lifetimes and shapes. We develop an eddy tracking tool based on structures in the flow with collecting (attracting) or separating (repelling) properties. In test cases mimicking oceanic flows it yields eddy lifetimes close to the analytical ones. It even provides a detailed view of the dynamics that can be useful to gain more insight into eddy dynamics in oceanic flows.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, B. van Werkhoven, H. E. Bal, F. Seinstra, J. Maassen, and M. van Meersbergen
Ocean Sci., 10, 881–891, https://doi.org/10.5194/os-10-881-2014, https://doi.org/10.5194/os-10-881-2014, 2014
Short summary
Short summary
Regional sea surface height (SSH) changes due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated with a high- and low-resolution model. A rapid decrease of the AMOC in the high-resolution version induces shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the low-resolution version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.
M. Duran-Matute, T. Gerkema, G. J. de Boer, J. J. Nauw, and U. Gräwe
Ocean Sci., 10, 611–632, https://doi.org/10.5194/os-10-611-2014, https://doi.org/10.5194/os-10-611-2014, 2014
B. van Werkhoven, J. Maassen, M. Kliphuis, H. A. Dijkstra, S. E. Brunnabend, M. van Meersbergen, F. J. Seinstra, and H. E. Bal
Geosci. Model Dev., 7, 267–281, https://doi.org/10.5194/gmd-7-267-2014, https://doi.org/10.5194/gmd-7-267-2014, 2014
Related subject area
Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Centennial-Decadal
Volcanic impact on the Atlantic Ocean over the last millennium
The global ocean circulation on a retrograde rotating earth
J. Mignot, M. Khodri, C. Frankignoul, and J. Servonnat
Clim. Past, 7, 1439–1455, https://doi.org/10.5194/cp-7-1439-2011, https://doi.org/10.5194/cp-7-1439-2011, 2011
V. Kamphuis, S. E. Huisman, and H. A. Dijkstra
Clim. Past, 7, 487–499, https://doi.org/10.5194/cp-7-487-2011, https://doi.org/10.5194/cp-7-487-2011, 2011
Cited articles
Aguiar-Conraria, L. and Soares, M. J.: The continuous wavelet transform: A
primer, Tech. Rep. 16, Núcleo de Investigação em Políticas Económicas,
Universidade do Minho, Minho, Portugal, available at:
https://repositorium.sdum.uminho.pt/bitstream/1822/12398/4/NIPE_WP_16_2011.pdf (last access: 18 August 2020),
2011. a
Axell, L. B.: Wind-driven internal waves and Langmuir circulations in a
numerical ocean model of the southern Baltic Sea, J. Geophys.
Res.-Oceans, 107, 3204, https://doi.org/10.1029/2001JC000922, 2002. a
Bergström, S. and Carlsson, B.: River runoff to the Baltic Sea –
1950–1990, Ambio, 23, 280–287, 1994. a
Burchard, H., Bolding, K., Feistel, R., Gräwe, U., Klingbeil, K., MacCready,
P., Mohrholz, V., Umlauf, L., and van der Lee, E. M.: The Knudsen theorem
and the Total Exchange Flow analysis framework applied to the Baltic
Sea, Prog. Oceanogr., 165, 268–286,
https://doi.org/10.1016/j.pocean.2018.04.004, 2018. a
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S.: Ocean turbulence.
Part I: One-point closure model – Momentum and heat vertical
diffusivities, J. Phys. Oceanogr., 31, 1413–1426,
https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2, 2001. a
Cyberski, J., Wróblewski, A., and Stewart, J.: Riverine water inflows and the Baltic Sea water volume 1901–1990, Hydrol. Earth Syst. Sci., 4, 1–11, https://doi.org/10.5194/hess-4-1-2000, 2000. a
Elsberry, R. L. and Garwood Jr., R. W.: Sea-surface temperature anomaly
generation in relation to atmospheric storms, B. Am.
Meteorol. Soc., 59, 786–789, 1978. a
Gailiušis, B., Kriaučiūnienė, J., Jakimavičius, D., and Šarauskienė, D.:
The variability of long-term runoff series in the Baltic Sea drainage
basin, Baltica, 24, 45–54, 2011. a
Good, R. and Fletcher, H. J.: Reporting explained variance, J. Res. Sci. Teach., 18, 1–7, https://doi.org/10.1002/tea.3660180102, 1981. a
Graham, P.: Modeling runoff to the Baltic Sea, Ambio, 28, 328–334, 1999. a
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004. a
Gräwe, U., Klingbeil, K., Kelln, J., and Dangendorf, S.: Decomposing mean sea
level rise in a semi-enclosed basin, the Baltic Sea, J. Climate, 32, 3089–3108,
https://doi.org/10.1175/JCLI-D-18-0174.1, 2019. a
Gustafsson, B. G. and Andersson, H. C.: Modeling the exchange of the Baltic
Sea from the meridional atmospheric pressure difference across the North
Sea, J. Geophys. Res.-Ocean., 106, 19731–19744,
https://doi.org/10.1029/2000JC000593, 2001. a
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. M.,
Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and
Zorita, E.: Reconstructing the development of Baltic Sea eutrophication
1850–2006, Ambio, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x, 2012. a
Hansson, D., Eriksson, C., Omstedt, A., and Chen, D.: Reconstruction of river
runoff to the Baltic Sea, AD 1500–1995, Int. J.
Climatol., 31, 696–703, https://doi.org/10.1002/joc.2097, 2011. a, b, c
Holtermann, P. L., Umlauf, L., Tanhua, T., Schmale, O., Rehder, G., and Waniek,
J. J.: The Baltic Sea tracer release experiment: 1. Mixing rates,
J. Geophys. Res.-Ocean., 117, C01021, https://doi.org/10.1029/2011JC007439,
2012. a
Håkansson, B. G., Broman, B., and Dahlin, H.: The flow of water and salt in
the Sound during the Baltic Major Inflow event in January 1993,
Tech. Rep. 1993/C:57, ICES, Copenhagen, available at:
http://www.ices.dk/sites/pub/CM Doccuments/1993/C/1993_C57.pdf (last access: 18 August 2020),
1993. a
Höflich, K., Lehmann, A., and Myrberg, K.: Towards an improved mechanistic
understanding of major saltwater inflows into the Baltic Sea,
oral presentation at the 11th Baltic Sea
Science Congress, Rostock, June 2017, Zenodo, https://doi.org/10.5281/zenodo.3567086, 2017. a
Höflich, K., Lehmann, A., and Myrberg, K.: Decadal variations in barotropic
inflow characteristics and their relation with Baltic Sea salinity
variability, oral presentation at the 2nd
Baltic Earth Conference in Helsingør, Denmark, June 2018, Zenodo, https://doi.org/10.5281/zenodo.3567070, 2018. a
Höglund, A., Meier, H. E. M., Broman, B., and Kriezi, E.: Validation and
correction of regionalised ERA-40 wind fields over the Baltic Sea using
the Rossby Centre Atmosphere model RCA3.0, Tech. Rep. 97, SMHI,
Norrköping,
available at: http://smhi.diva-portal.org/smash/get/diva2:947574/FULLTEXT01.pdf (last access: 18 August 2020),
2009. a
ICES: ICES Oceanography, available at:
https://ocean.ices.dk/HydChem/HydChem.aspx?plot=yes (last access:
14 February 2020), 2019. a
Jones, P. D., Jonsson, T., and Wheeler, D.: Extension to the North Atlantic
oscillation using early instrumental pressure observations from Gibraltar
and south-west Iceland, Int. J. Climatol., 17,
1433–1450,
https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P,
1998. a, b
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.:
Reassessing biases and other uncertainties in sea surface temperature
observations measured in situ since 1850: 1. Measurement and sampling
uncertainties, J. Geophys. Res., 116, D14103,
https://doi.org/10.1029/2010JD015218, 2011a. a
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.:
Reassessing biases and other uncertainties in sea surface temperature
observations measured in situ since 1850: 2. Biases and homogenization,
J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220,
2011b. a
Khlebovich, V. V.: Aspects of animal evolution related to critical salinity and
internal state, Mar. Biol., 2, 338–345, https://doi.org/10.1007/BF00355713, 1969. a
Kniebusch, M., Meier, H. E. M., Neumann, T., and Börgel, F.: Temperature
Variability of the Baltic Sea Since 1850 and Attribution to
Atmospheric Forcing Variables, J. Geophys. Res.-Oceans,
124, 4168–4187, https://doi.org/10.1029/2018JC013948, 2019. a
Langmuir, I.: Surface motion of water induced by wind, Science, 87, 119–123,
1938. a
Lass, H. U. and Matthäus, W.: On temporal wind variations forcing salt water
inflows into the Baltic Sea, Tellus A, 48, 663–671,
https://doi.org/10.1034/j.1600-0870.1996.t01-4-00005.x, 1996. a
Leibniz Institute for Baltic Sea Research Warnemünde: GETM – A 3D hydrodynamic model for coastal oceans, https://getm.eu/, last access: 18 August 2020. a
Mårtensson, S., Meier, H. E. M., Pemberton, P., and Haapala, J.: Ridged sea
ice characteristics in the Arctic from a coupled multicategory sea ice
model, J. Geophys. Res.-Oceans, 117, C00D15,
https://doi.org/10.1029/2010JC006936, 2012. a
MacCready, P.: Calculating Estuarine Exchange Flow Using Isohaline
Coordinates, J. Phys. Oceanogr., 41, 1116–1124,
https://doi.org/10.1175/2011JPO4517.1, 2011. a
MacKenzie, B. R., Gislason, H., Möllmann, C., and Köster, F. W.: Impact of
21st century climate change on the Baltic Sea fish community and
fisheries, Glob. Change Biol., 13, 1348–1367,
https://doi.org/10.1111/j.1365-2486.2007.01369.x, 2007. a
Malmberg, S.-A. and Svansson, A.: Variations in the physical marine environment
in relation to climate, Tech. Rep. 1982/Gen:4, International Council for the
Exploration of the Sea, Copenhagen, available at:
http://www.ices.dk/sites/pub/CM Doccuments/1982/Gen/1982_Gen4.pdf (last access: 18 August 2020),
not to be cited without prior reference to the authors!, 1982. a, b
Maraun, D. and Kurths, J.: Cross wavelet analysis: significance testing and pitfalls, Nonlin. Processes Geophys., 11, 505–514, https://doi.org/10.5194/npg-11-505-2004, 2004. a
Meier, H. E. M.: Modeling the pathways and ages of inflowing salt- and
freshwater in the Baltic Sea, Estuar. Coast. Shelf Sci., 74,
610–627, https://doi.org/10.1016/j.ecss.2007.05.019, 2007. a
Meier, H. E. M. and Kauker, F.: Sensitivity of the Baltic Sea salinity to
the freshwater supply, Clim. Res., 24, 231–242,
https://doi.org/10.3354/cr024231,
2003a. a, b
Meier, H. E. M., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch, M.,
Höglund, A., Pemberton, P., Liu, Y., Väli, G., and Saraiva, S.:
Disentangling the impact of nutrient load and climate changes on Baltic
Sea hypoxia and eutrophication since 1850, Clim. Dynam., 53,
1145–1166, https://doi.org/10.1007/s00382-018-4483-x, 2018a. a, b, c, d
Meier, H. M., Andersson, H. C., Arheimer, B., Blenckner, T., Chubarenko, B.,
Donnelly, C., Eilola, K., Gustafsson, B. G., Hansson, A., and Havenhand, J.:
Comparing reconstructed past variations and future projections of the
Baltic Sea ecosystem – first results from multi-model ensemble
simulations, Environ. Res. Lett., 7, 034005,
https://doi.org/10.1088/1748-9326/7/3/034005, 2012. a
Meier, H. M., Väli, G., Naumann, M., Eilola, K., and Frauen, C.: Recently
accelerated oxygen consumption rates amplify deoxygenation in the Baltic
Sea, J. Geophys. Res.-Oceans, 123, 3227–3240,
https://doi.org/10.1029/2017JC013686, 2018b. a
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys., 20, 851–875,
https://doi.org/10.1029/RG020i004p00851, 1982. a
Mikulski, Z.: Inflow from drainage basin, in: Water Balance of the Baltic
Sea, vol. 16 of Baltic Sea Environment Proceedings, pp.
24–34, Baltic Marine Environment Protection Commission, Helsinki, 1986. a
Rodhe, J. and Winsor, P.: On the influence of the freshwater supply on the
Baltic Sea mean salinity, Tellus A, 54, 175–186,
https://doi.org/10.1034/j.1600-0870.2002.01307.x, 2002. a, b
Rodhe, J. and Winsor, P.: On the influence of the freshwater supply on the
Baltic Sea mean salinity, Tellus A, 55, 455–456,
https://doi.org/10.1034/j.1600-0870.2003.00037.x, 2003. a
Schenk, F. and Zorita, E.: Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling, Clim. Past, 8, 1681–1703, https://doi.org/10.5194/cp-8-1681-2012, 2012. a, b, c
Schimanke, S. and Meier, H. E. M.: Decadal-to-Centennial Variability of
Salinity in the Baltic Sea, J. Climate, 29, 7173–7188,
https://doi.org/10.1175/JCLI-D-15-0443.1
2016. a
Schott, F.: Der Oberflächensalzgehalt in der Nordsee, Deutsche
Hydrografische Zeitschrift, p. 58, 1966. a
Seifert, T., Tauber, F., and Kayser, B.: A high resolution spherical grid
topography of the Baltic Sea – 2nd edition, available at:
https://www.io-warnemuende.de/topography-of-the-baltic-sea.html
(last access: 14 February 2020), 2001. a
Simpson, G.: Modelling seasonal data with GAMs, available at:
https://www.fromthebottomoftheheap.net/2014/05/09/modelling-seasonal-data-with-gam/ (last access: 18 August 2020),
2014. a
Smagorinsky, J.: General circulation experiments with the primitive equations:
I. The basic experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
SMHI: Ladda ner meteorologiska observationer, available at:
https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer/#param=airtemperatureInstant,stations=all
(last access: 14 February 2020), 2019. a
Umlauf, L. and Burchard, H.: Second-order turbulence closure models for
geophysical boundary layers. A review of recent work, Cont. Shelf
Res., 25, 795–827, https://doi.org/10.1016/j.csr.2004.08.004, 2005. a
van Oldenborgh, G. J., te Raa, L. A., Dijkstra, H. A., and Philip, S. Y.: Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean, Ocean Sci., 5, 293–301, https://doi.org/10.5194/os-5-293-2009, 2009.
a, b
Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J.,
Montesino-Pouzols, F., Corona, F., Junker, K., Meier, H. M., and Dippner,
J. W.: Scenario simulations of future salinity and ecological consequences in
the Baltic Sea and adjacent North Sea areas–implications for
environmental monitoring, Ecol. Ind., 50, 196–205,
https://doi.org/10.1016/j.ecolind.2014.10.019, 2015. a
Walin, G.: A theoretical framework for the description of estuaries, Tellus,
29, 128–136, https://doi.org/10.3402/tellusa.v29i2.11337, 1977. a
Walin, G.: On the relation between sea-surface heat flow and thermal
circulation in the ocean, Tellus, 34, 187–195,
https://doi.org/10.1111/j.2153-3490.1982.tb01806.x, 1982. a
Winsor, P., Rodhe, J., and Omstedt, A.: Baltic Sea ocean climate: an analysis
of 100 yr of hydrographic data with focus on the freshwater budget, Clim.
Res., 18, 5–15, https://doi.org/10.3354/cr018005, 2001. a
Winton, M.: A reformulated three-layer sea ice model, J. Atmos.
Ocean. Tech., 17, 525–531,
https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2, 2000. a
Zorita, E. and Laine, A.: Dependence of salinity and oxygen concentrations in
the Baltic Sea on large-scale atmospheric circulation, Clim. Res.,
14, 25–41, https://doi.org/10.3354/cr014025, 2000. a
Short summary
During the last century, salinity in the Baltic Sea showed a multidecadal oscillation with a period of 30 years. Using a numerical circulation model and wavelet coherence analysis, we demonstrate that this variation has at least two possible causes. One driver is river runoff which shows a 30-year variation. The second one is a variation in the frequency of strong inflows of saline water across Darss Sill which also contains a pronounced 30-year period.
During the last century, salinity in the Baltic Sea showed a multidecadal oscillation with a...