Articles | Volume 16, issue 4
https://doi.org/10.5194/cp-16-1127-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-16-1127-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years
Annalena A. Lochte
CORRESPONDING AUTHOR
Institute of Geoscience, Kiel University, Ludewig-Meyn Str. 10,
24118 Kiel, Germany
HOSST Graduate School, GEOMAR Helmholtz-Centre for Ocean Research Kiel, Wischofstraße
1–3, 24148 Kiel, Germany
Ralph Schneider
Institute of Geoscience, Kiel University, Ludewig-Meyn Str. 10,
24118 Kiel, Germany
Markus Kienast
Department of Oceanography, Dalhousie University, 1355 Oxford Street,
Halifax, Canada
Janne Repschläger
Department of Climate Geochemistry, Max Planck Institute for Chemistry, Hahn Meitner Weg 1, 55128 Mainz,
Germany
Thomas Blanz
Institute of Geoscience, Kiel University, Ludewig-Meyn Str. 10,
24118 Kiel, Germany
Dieter Garbe-Schönberg
Institute of Geoscience, Kiel University, Ludewig-Meyn Str. 10,
24118 Kiel, Germany
Nils Andersen
Leibniz Laboratory for Radiometric Dating and Stable Isotope
Research, Kiel University, Max-Eyth-Str. 11–13, 24118 Kiel, Germany
Related authors
No articles found.
Catherine Brenan, Markus Kienast, Vittorio Maselli, Christopher K. Algar, Benjamin Misiuk, and Craig J. Brown
Biogeosciences, 21, 4569–4586, https://doi.org/10.5194/bg-21-4569-2024, https://doi.org/10.5194/bg-21-4569-2024, 2024
Short summary
Short summary
Quantifying how much organic carbon is stored in seafloor sediments is key to assessing how human activities can accelerate the process of carbon storage at the seabed, an important consideration for climate change. This study uses seafloor sediment maps to model organic carbon content. Carbon estimates were 12 times higher when assuming the absence of detailed sediment maps, demonstrating that high-resolution seafloor mapping is critically important for improved estimates of organic carbon.
Alexandra Auderset, Sandi M. Smart, Yeongjun Ryu, Dario Marconi, Haojia Abby Ren, Lena Heins, Hubert Vonhof, Ralf Schiebel, Janne Repschläger, Daniel M. Sigman, Gerald H. Haug, and Alfredo Martínez-García
EGUsphere, https://doi.org/10.5194/egusphere-2024-2291, https://doi.org/10.5194/egusphere-2024-2291, 2024
Short summary
Short summary
This study investigates foraminifera-bound nitrogen isotopes (FB-δ15N) as a tool to study the history of photosymbiosis in planktic foraminifera. By analysing multiple species from the South Atlantic, we found that FB-δ15N differentiates between species with dinoflagellate symbionts and those without, probably due to internal ammonium recycling in the former. Overall, this study provides strong support for FB-δ15N as a tool for exploring the evolution of symbiosis in marine ecosystems.
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Maxim V. Portnyagin, Vera V. Ponomareva, Egor A. Zelenin, Lilia I. Bazanova, Maria M. Pevzner, Anastasia A. Plechova, Aleksei N. Rogozin, and Dieter Garbe-Schönberg
Earth Syst. Sci. Data, 12, 469–486, https://doi.org/10.5194/essd-12-469-2020, https://doi.org/10.5194/essd-12-469-2020, 2020
Short summary
Short summary
Tephra is fragmented material produced by explosive volcanic eruptions. Geochemically characterized tephra layers are excellent time marker horizons and samples of magma composition. TephraKam is database of the ages and chemical composition of volcanic glass in tephra from the Kamchatka volcanic arc (northwestern Pacific). TephraKam enables the identification of tephra sources, correlation and dating of natural archives, and reconstruction of spatiotemporal evolution of volcanism in Kamchatka.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Julien Schirrmacher, Mara Weinelt, Thomas Blanz, Nils Andersen, Emília Salgueiro, and Ralph R. Schneider
Clim. Past, 15, 617–634, https://doi.org/10.5194/cp-15-617-2019, https://doi.org/10.5194/cp-15-617-2019, 2019
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
C. van den Bogaard, B. J. L. Jensen, N. J. G. Pearce, D. G. Froese, M. V. Portnyagin, V. V. Ponomareva, and V. Wennrich
Clim. Past, 10, 1041–1062, https://doi.org/10.5194/cp-10-1041-2014, https://doi.org/10.5194/cp-10-1041-2014, 2014
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Holocene
Response of biological productivity to North Atlantic marine front migration during the Holocene
Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene
Reconstruction of Holocene oceanographic conditions in eastern Baffin Bay
Multiproxy evidence of the Neoglacial expansion of Atlantic Water to eastern Svalbard
Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?
Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison
Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event
The 4.2 ka event, ENSO, and coral reef development
Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea
Neoglacial climate anomalies and the Harappan metamorphosis
Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation
Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea
Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records
Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa
Holocene evolution of the North Atlantic subsurface transport
Changes in Holocene meridional circulation and poleward Atlantic flow: the Bay of Biscay as a nodal point
Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals
Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach
Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic
Late Weichselian and Holocene palaeoceanography of Storfjordrenna, southern Svalbard
Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions
The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event
Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea
Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr
Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records
Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Joanna Pawłowska, Magdalena Łącka, Małgorzata Kucharska, Jan Pawlowski, and Marek Zajączkowski
Clim. Past, 16, 487–501, https://doi.org/10.5194/cp-16-487-2020, https://doi.org/10.5194/cp-16-487-2020, 2020
Short summary
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Raymond S. Bradley and Jostein Bakke
Clim. Past, 15, 1665–1676, https://doi.org/10.5194/cp-15-1665-2019, https://doi.org/10.5194/cp-15-1665-2019, 2019
Short summary
Short summary
We review paleoceanographic and paleoclimatic records from the northern North Atlantic to assess the nature of climatic conditions at 4.2 ka BP. There was a general decline in temperatures after ~ 5 ka BP, which led to the onset of neoglaciation. Although a few records do show a distinct anomaly around 4.2 ka BP (associated with a glacial advance), this is not widespread and we interpret it as a local manifestation of the overall climatic deterioration that characterized the late Holocene.
Albert Català, Isabel Cacho, Jaime Frigola, Leopoldo D. Pena, and Fabrizio Lirer
Clim. Past, 15, 927–942, https://doi.org/10.5194/cp-15-927-2019, https://doi.org/10.5194/cp-15-927-2019, 2019
Short summary
Short summary
We present a new high-resolution sea surface temperature (SST) reconstruction for the Holocene (last 11 700 years) in the westernmost Mediterranean Sea. We identify three sub-periods: the Early Holocene with warmest SST; the Middle Holocene with a cooling trend ending at 4200 years, which is identified as a double peak cooling event that marks the transition between the Middle and Late Holocene; and the Late Holocene with very different behaviour in both long- and short-term SST variability.
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Lauren T. Toth and Richard B. Aronson
Clim. Past, 15, 105–119, https://doi.org/10.5194/cp-15-105-2019, https://doi.org/10.5194/cp-15-105-2019, 2019
Short summary
Short summary
We explore the hypothesis that a shift in global climate 4200 years ago (the 4.2 ka event) was related to the El Niño–Southern Oscillation (ENSO). We summarize records of coral reef development in the tropical eastern Pacific, where intensification of ENSO stalled reef growth for 2500 years starting around 4.2 ka. Because corals are highly sensitive to climatic changes, like ENSO, we suggest that records from coral reefs may provide important clues about the role of ENSO in the 4.2 ka event.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Masanobu Yamamoto, Seung-Il Nam, Leonid Polyak, Daisuke Kobayashi, Kenta Suzuki, Tomohisa Irino, and Koji Shimada
Clim. Past, 13, 1111–1127, https://doi.org/10.5194/cp-13-1111-2017, https://doi.org/10.5194/cp-13-1111-2017, 2017
Short summary
Short summary
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the Beaufort Gyre (BG) strength during the Holocene, consistent with a decrease in summer insolation. Multi-centennial variability in BG circulation is consistent with fluctuations in solar irradiance. The Bering Strait inflow shows intensification during the middle Holocene, associated with sea-ice retreat and an increase in marine production in the Chukchi Sea, which is attributed to a weaker Aleutian Low.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Quentin Dubois-Dauphin, Paolo Montagna, Giuseppe Siani, Eric Douville, Claudia Wienberg, Dierk Hebbeln, Zhifei Liu, Nejib Kallel, Arnaud Dapoigny, Marie Revel, Edwige Pons-Branchu, Marco Taviani, and Christophe Colin
Clim. Past, 13, 17–37, https://doi.org/10.5194/cp-13-17-2017, https://doi.org/10.5194/cp-13-17-2017, 2017
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
C. Consolaro, T. L. Rasmussen, G. Panieri, J. Mienert, S. Bünz, and K. Sztybor
Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, https://doi.org/10.5194/cp-11-669-2015, 2015
Short summary
Short summary
A sediment core collected from a pockmark field on the Vestnesa Ridge (~80N) in the Fram Strait is presented. Our results show an undisturbed sedimentary record for the last 14 ka BP and negative carbon isotope excursions (CIEs) during the Bølling-Allerød interstadials and during the early Holocene. Both CIEs relate to periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere, suggesting an apparent correlation with warm climatic events.
M. Łącka, M. Zajączkowski, M. Forwick, and W. Szczuciński
Clim. Past, 11, 587–603, https://doi.org/10.5194/cp-11-587-2015, https://doi.org/10.5194/cp-11-587-2015, 2015
Short summary
Short summary
Storfjordrenna was deglaciated about 13,950 cal yr BP. During the transition from the sub-glacial to glaciomarine setting, Arctic Waters dominated its hydrography. However, the waters were not uniformly cold and experienced several warmer spells. Atlantic Water began to flow onto the shelves off Svalbard and into Storfjorden during the early Holocene, leading to progressive warming and significant glacial melting. A surface-water cooling and freshening occurred in late Holocene.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
A. D. Tegzes, E. Jansen, and R. J. Telford
Clim. Past, 10, 1887–1904, https://doi.org/10.5194/cp-10-1887-2014, https://doi.org/10.5194/cp-10-1887-2014, 2014
D. E. Groot, S. Aagaard-Sørensen, and K. Husum
Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, https://doi.org/10.5194/cp-10-51-2014, 2014
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne
Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, https://doi.org/10.5194/cp-9-499-2013, 2013
Cited articles
Aebly, F. A. and Fritz, S. C.: Palaeohydrology of Kangerlussuaq (Søndre Strømfjord), west Greenland during the last ∼8000 years, Holocene, 19, 91–104, https://doi.org/10.1177/0959683608096601, 2009.
Alley, R. B., Clark, P. U., Keigwin, L. D., and Webb, R. S.: Making sense of millennial-scale climate change, Geophysical Monograph-American Geophysical Union, 112, 385–394, 1999.
Andresen, C. S., Björck, S., Bennike, O., and Bond, G.: Holocene climate changes in southern Greenland: evidence from lake sediments, J. Quaternary Sci., 19, 783–795, https://doi.org/10.1002/jqs.886, 2004.
Andresen, C. S., McCarthy, D. J., Valdemar Dylmer, C., Seidenkrantz, M. S., Kuijpers, A., and Lloyd, J. M.: Interaction between subsurface ocean waters and calving of the Jakobshavn Isbræ during the late Holocene, Holocene, 21, 211–224, https://doi.org/10.1177/0959683610378877, 2011.
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A.: Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate, Nat. Geosci., 6, 553–557, https://doi.org/10.1038/ngeo1859, 2013.
Axford, Y., Losee, S., Briner, J. P., Francis, D. R., Langdon, P. G., and Walker, I. R.: Holocene temperature history at the western Greenland Ice Sheet margin reconstructed from lake sediments, Quaternary Sci. Rev., 59, 87–100, https://doi.org/10.1016/j.quascirev.2012.10.024, 2013.
Barrientos, N., Lear, C. H., Jakobsson, M., Stranne, C., O'Regan, M., Cronin, T. M., Gukov,
A. Y., and Coxall, H. K.: Arctic Ocean benthic foraminifera Mg∕Ca ratios and global Mg∕Ca temperature
calibrations: New constraints at low temperatures, Geochim. Cosmochim.
Ac., 236, 240–259, https://doi.org/10.1016/j.gca.2018.02.036, 2018.
Bendle, J. and Rosell-Melé, A.: Distributions of UK37 and UK37′ in the surface waters and sediments of the Nordic Seas: Implications for paleoceanography, Geochem. Geophy. Geosy., 5, 11, https://doi.org/10.1029/2004GC000741, 2004.
Bendle, J., Rosell-Mele, A., and Ziveri, P.: Variability of unusual distribution of alkenones in the surface waters of the Nordic seas, Paleoceanography, 20, PA2001, https://doi.org/10.1029/2004PA001025, 2005.
Blanz, T., Emeis, K. C., and Siegel, H.: Controls on alkenone unsaturation ratios along the salinity gradient between the open ocean and the Baltic Sea, Geochim. Cosmochim. Ac., 69, 3589–3600, https://doi.org/10.1016/j.gca.2005.02.026, 2005.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P.,
Cullen, H., Hajdas, I., and Bonani, G.: A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science, 278, 1257–1266, https://doi.org/10.1126/science.278.5341.1257, 1997.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S.,
Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, ttps://doi.org/10.1126/science.1065680, 2001.
Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., and Sarnthein, M.: Molecular stratigraphy: a new tool for climatic assessment, Nature, 320, 129–133, https://doi.org/10.1038/320129a0, 1986.
Briner, J. P., Stewart, H. A. M., Young, N. E., Philipps, W., and Losee, S.: Using proglacial-threshold lakes to constrain fluctuations of the Jakobshavn Isbræ ice margin, western Greenland, during the Holocene, Quaternary Sci. Rev., 29, 3861–3874, https://doi.org/10.1016/j.quascirev.2010.09.005, 2010.
Briner, J. P., Kaufman, D. S., Bennike, O., and Kosnik, M. A.: Amino acid ratios in reworked marine bivalve shells constrain Greenland Ice Sheet history during the Holocene, Geology, 42, 75–78, https://doi.org/10.1130/G34843.1, 2014.
Chivall, D., M'Boule, D., Sinke-Schoen, D., Sinninghe Damsté, J. S., Schouten, S., and van der Meer, M. T. J.: The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae, Geochim. Cosmochim. Ac., 140, 381–390, https://doi.org/10.1016/j.gca.2014.05.043, 2014.
Clarke, R. A. and Gascard, J.-C.: The formation of Labrador Sea water. Part I: Large-scale processes, J. Phys. Oceanogr., 13, 1764–1778, https://doi.org/10.1175/1520-0485(1983)013<1764:TFOLSW>2.0.CO;2, 1983.
Cléroux, C., Debret, M., Cortijo, E., Duplessy, J. C., Dewilde, F., Reijmer, J., and Massei, N.: High-resolution sea surface reconstructions off Cape Hatteras over the last 10 ka, Paleoceanogr. Paleocl., 27, https://doi.org/10.1029/2011PA002184, 2012.
Conte, M. H., Thompson, A., Eglinton, G., and Green, J. C.: Lipid biomarker diversity in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) and the related species Gephyrocapsa oceanica, J. Phycol., 31, 272–282, https://doi.org/10.1111/j.0022-3646.1995.00272.x, 1995.
Cuny, J., Rhines, P. B., Niiler, P. P., and Bacon, S.: Labrador Sea boundary currents and the fate of the Irminger Sea Water, J. Phys. Oceanogr., 32, 627–647, https://doi.org/10.1175/1520-0485(2002)032<0627:LSBCAT>2.0.CO;2, 2002.
Deser, C., Walsh, J. E., and Timlin, M. S.: Arctic sea ice variability in the context of recent atmospheric circulation trends, J. Climate, 13, 617–633, https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2, 2000.
Dickson, R., Lazier, J., Meincke, J., Rhines, P., and Swift, J.: Long-term coordinated changes in the convective activity of the North Atlantic, Prog. Oceanogr., 38, 241–295, 1996.
Dickson, R. R., Osborn, T. J., Hurrell, J. W., Meincke, J., Blindheim, J., Adlandsvik, B., Vinje, T., Alekseev, G., and Maslowski, W.: The Arctic ocean response to the North Atlantic oscillation, J. Climate, 13, 2671–2696, https://doi.org/10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2, 2000.
Drinkwater, K.: Atmospheric and oceanic variability in the Northwest Atlantic during the 1980s and early 1990s, J. NW Atlantic fishery Sci., Dartmouth NS, 18, 77–97, 1996.
Eiríksson, J., Knudsen, K. L., Haflidason, H., and Henriksen, P.: Late-glacial and Holocene palaeoceanography of the North Icelandic shelf, J. Quaternary Sci., 15, 23–42, https://doi.org/10.1002/(SICI)1099-1417(200001)15:1<23::AID-JQS476>3.0.CO;2-8, 2000.
Etourneau, J., Schneider, R., Blanz, T., and Martinez, P.: Intensification of the Walker and Hadley atmospheric circulations during the Pliocene–Pleistocene climate transition, Earth Planet. Sc. Lett., 297, 103–110, https://doi.org/10.1016/j.epsl.2010.06.010, 2010.
Filippova, A., Kienast, M., Frank, M., and Schneider, R. R.: Alkenone paleothermometry in the North Atlantic: A review and synthesis of surface sediment data and calibrations, Geochem. Geophy. Geosy., 17, 1370–1382, https://doi.org/10.1002/2015GC006106, 2016.
Frajka-Williams, E. and Rhines, P. B.: Physical controls and interannual variability of the Labrador Sea spring phytoplankton bloom in distinct regions, Deep-Sea Res. Pt. I, 57, 541–552, https://doi.org/10.1016/j.dsr.2010.01.003, 2010.
Gelderloos, R., Straneo, F., and Katsman, C. A.: Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: lessons from the great-salinity anomaly years 1968–71, J. Climate, 25, 6743–6755, https://doi.org/10.1175/JCLI-D-11-00549.1, 2012.
Greaves, M., Caillon N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I., Clarke, L.,
Cooper, M., Daunt, C., Delaney, M., deMenocal, P., Dutton, A., Eggins, S., Elderfield, H., GarbeSchoenberg,
D., Goddard, E., Green, D., Groeneveld, J., Hastings, D., Hathorne, E., Kimoto, K.,
Klinkhammer, G., Labeyrie, L., Lea, D. W., Marchitto, T., Martínez‐Botí, M. A., Mortyn, P. G., Ni,
Y., Nuernberg, D., Paradis, G., Pena, L., Quinn, T., Rosenthal, Y., Russell, A., Sagawa, T.,
Sosdian, S., Stott, L., Tachikawa, K., Tappa, E., Thunell, R., and Wilson, P. A.: Interlaboratory comparison study of calibration standards for foraminiferal Mg∕Ca thermometry, Geochem. Geophy. Geosy., 9, 8, https://doi.org/10.1029/2008GC001974, 2008.
Harrison, W. G., Børsheim, K. Y., Li, W. K., Maillet, G. L., Pepin, P., Sakshaug, E., Skogen, M. D., and Yeats, P. A.: Phytoplankton production and growth regulation in the Subarctic North Atlantic: A comparative study of the Labrador Sea-Labrador/Newfoundland shelves and Barents/Norwegian/Greenland seas and shelves, Prog. Oceanogr., 114, 26–45, https://doi.org/10.1016/j.pocean.2013.05.003, 2013.
Hathorne, E., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., Caillon, N., Case, D.,
Cobb, K. M., Douville, E., deMenocal, P., Eisenhauer, A., Garbe‐Schönberg, D., Geibert, W.,
Goldstein, S., Hughen, K., Inoue, M., Kawahata, H., Kölling, M., Cornec, F. L., Linsley, B. K.,
McGregor, H. V., Montagna, P., Nurhati, I. S., Quinn, T. M., Raddatz, J., Rebaubier, H., Robinso,
L., Sadekov, A., Sherrell, R., Sinclair, D., Tudhope, A. W., Wei, G., Wong, H., Wu, H. C., and You, C.-F.: Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements, Geochem. Geophy. Geosy., 14, 3730–3750, https://doi.org/10.1002/ggge.20230, 2013.
Hillaire-Marcel, C., De Vernal, A., Bilodeau, G., and Weaver, A. J.: Absence of deep-water formation in the Labrador Sea during the last interglacial period, Nature, 410, 1073, https://doi.org/10.1038/35074059, 2001.
Hillaire-Marcel, C., De Vernal, A., and Piper, D. J.: Lake Agassiz final drainage event in the northwest North Atlantic, Geophys. Res. Lett., 34, 15, https://doi.org/10.1029/2007GL030396, 2007.
Hoffman, J. S., Carlson, A. E., Winsor, K., Klinkhammer, G. P., LeGrande, A. N., Andrews, J. T., and Strasser, J. C.: Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea, Geophys. Res. Lett., 39, 18, https://doi.org/10.1029/2012GL053047, 2012.
Hoogakker, B. A., McCave, I. N., Elderfield, H., Hillaire-Marcel, C., and Simstich, J.: Holocene climate variability in the Labrador Sea, J. Geol. Soc., 172, 272–277, https://doi.org/10.1144/jgs2013-097, 2015.
Hoogakker, B. A. A., Chapman, M. R., McCave, I. N., Hillaire-Marcel, C., Ellison, C. R. W., Hall, I. R., and Telford, R. J.: Dynamics of North Atlantic Deep Water masses during the Holocene, Paleoceanography, 26, PA4214, https://doi.org/10.1029/2011PA002155, 2011.
Hurrell, J. W.: Decadal trends in the north atlantic oscillation: regional temperatures and precipitation, Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676, 1995.
Jennings, A., Andrews, J., and Wilson, L.: Holocene environmental evolution of the SE Greenland Shelf North and South of the Denmark Strait: Irminger and East Greenland current interactions, Quaternary Sci. Rev., 30, 980–998, https://doi.org/10.1016/j.quascirev.2011.01.016, 2011.
Jennings, A., Andrews, J., Pearce, C., Wilson, L., and Ólfasdótttir, S.: Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre, Quaternary Sci. Rev., 107, 62–80, https://doi.org/10.1016/j.quascirev.2014.10.022, 2015.
Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J. T.: A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf, Holocene, 12, 49–58, https://doi.org/10.1191/0959683602hl519rp, 2002.
Jessen, C. A., Solignac, S., Nørgaard-Pedersen, N., Mikkelsen, N., Kuijpers, A., and Seidenkrantz, M. S.: Exotic pollen as an indicator of variable atmospheric circulation over the Labrador Sea region during the mid to late Holocene, J. Quaternary Sci., 26, 286–296, https://doi.org/10.1002/jqs.1453, 2011.
Jiang, H., Seidenkrantz, M. S., Knudsen, K. L., and Eríksson, J.: Late-Holocene summer sea-surface temperatures based on a diatom record from the north Icelandic shelf, Holocene, 12, 137–147, https://doi.org/10.1191/0959683602hl529rp, 2002.
Kaplan, M. R., Wolfe, A. P., and Miller, G. H.: Holocene environmental variability in southern Greenland inferred from lake sediments, Quaternary Res., 58, 149–159, https://doi.org/10.1006/qres.2002.2352, 2002.
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P.
J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., Dyke, A. S., Edwards, M. E., Eisner,
W. R., Gajewski, K., Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M. W.,
Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W., Otto-Bliesner, B. L.,
Porinchu, D. F., Rühland, K., Smol, J. P., Steig, E. J., and Wolfe, B. B.: Holocene thermal maximum in the western Arctic (0–180 W), Quaternary Sci. Rev., 23, 529–560, https://doi.org/10.1016/j.quascirev.2003.09.007, 2004.
Keigwin, L. D., Sachs, J. P., Rosenthal, Y., and Boyle, E. A.: The 8200 year BP event in the slope water system, western subpolar North Atlantic, Paleoceanography, 20, 2, https://doi.org/10.1029/2004PA001074, 2005.
Khatiwala, S. P., Fairbanks, R. G., and Houghton, R. W.: Freshwater sources to the coastal ocean off northeastern North America: Evidence from H18O∕H16O, J. Geophys. Res., 104, 18241–18255, https://doi.org/10.1029/1999JC900155, 1999.
Knudsen, K. L., Stabell, B., Seidenkrantz, M. S., Eiriksson, J., and Blake, W.: Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes, Boreas, 37, 346–376, https://doi.org/10.1111/j.1502-3885.2008.00035.x, 2008.
Krawczyk, D., Witkowski, A., Moros, M., Lloyd, J., Kuijpers, A., and Kierzek, A.: Late-Holocene diatom-inferred reconstruction of temperature variations of the West Greenland Current from Disko Bugt, central West Greenland, Holocene, 20, 659–666, https://doi.org/10.1177/0959683610371993, 2010.
Lazier, J. and Wright, D.: Annual velocity variations in the Labrador Current, J. Phys. Oceanogr., 23, 659–678, https://doi.org/10.1175/1520-0485(1993)023<0659:AVVITL>2.0.CO;2, 1993.
Lazier, J. R. N.: The renewal of Labrador Sea Water, Deep-Sea Res., 20, 341–353, https://doi.org/10.1016/0011-7471(73)90058-2, 1973.
Lazier, J. R. N.: Temperature and salinity changes in the deep Labrador Sea, 1962–1986, Deep-Sea Res., 35, 1247–1253, https://doi.org/10.1016/0198-0149(88)90080-5, 1988.
Lewis, C. F. M., Miller, A. A. L., Levac, E., Piper, D. J. W., and Sonnichsen, G. V.: Lake Agassiz outburst age and routing by Labrador Current and the 8.2 cal ka cold event, Quatern. Int., 260, 83–97, https://doi.org/10.1016/j.quaint.2011.08.023, 2012.
Lloyd, J. M., Park, L. A., Kuijpers, A., and Moros, M.: Early Holocene palaeoceanography and deglacial chronology of Disko Bugt, west Greenland, Quaternary Sci. Rev., 24, 1741–1755, https://doi.org/10.1016/j.quascirev.2004.07.024, 2005.
Lloyd, J. M., Kuijpers, A., Long, A., Moros, M., and Park, L. A.: Foraminiferal reconstruction of mid-to late-Holocene ocean circulation and climate variability in Disko Bugt, West Greenland, Holocene, 17, 1079–1091, https://doi.org/10.1177/0959683607082548, 2007.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 73, 40 pp.,
https://doi.org/10.7289/V5F769GT, 2013.
Lochte, A. A., Repschläger, J., Seidenkrantz, M. S., Kienast, M., Blanz, T., and Schneider, R. R.: Holocene water mass changes in the Labrador Current, Holocene, 4, 676–690, https://doi.org/10.1177/0959683618824752, 2019a.
Lochte, A. A., Schneider, R. R., Repschläger, J.,
Kienast, M., Blanz, T., Garbe-Schönberg, D., and Andersen, N.: Age model, alkenones and stable
isotopes of sediment core MSM45-31-1 (MSM45_431-1), PANGAEA, https://doi.org/10.1594/PANGAEA.904693, 2019b.
Marchitto, T. M. and deMenocal, P. B.: Late Holocene variability of upper North Atlantic Deep Water temperature and salinity, Geochem. Geophy. Geosy., 4, 12, https://doi.org/10.1029/2003GC000598, 2003.
Marlowe, I. T., Green, J. C., Neal, A. C., Brassell, S. C., Eglinton, G., and Course, P. A.: Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance, Brit. Phycolog. J., 19, 203–216, https://doi.org/10.1080/00071618400650221, 1984.
Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory, and models, Rev. Geophys., 37, 1–64, https://doi.org/10.1029/98RG02739, 1999.
Martin, P. A. and Lea, D. W.: A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg∕Ca, Geochem. Geophy. Geosy., 3, 8401, https://doi.org/10.1029/2001GC000280, 2002.
McNeely, R., Dyke, A. S., and Southon, J. R.: Canadian marine reservoir ages: preliminary data assessment, Geol. Survey of Canada, 2006.
Moffa-Sánchez, P. and Hall, I. R.: North Atlantic variability and its links to European climate over the last 3000 years, Nat. Commun., 8, 1726, https://doi.org/10.1038/s41467-017-01884-8, 2017.
Moffa-Sánchez, P., Hall, I. R., Barker, S., Thornalley, D. J., and Yashayaev, I.: Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age, Paleoceanography, 29, 160–175, https://doi.org/10.1002/2013PA002523, 2014.
Moffa-Sánchez, P., Moreno-Chamarro, E., Reynolds, D. J., Ortega, P., Cunningham, L., Swingedouw, D., Amrhein, D. E., Halfar, J., Jonkers, L., Jungclaus, J. H., Perner, K., Wanamaker, A., and Yeager, S.: Variability in the northern North Atlantic and Arctic oceans across the last two millennia: A review, Paleoceanogr. Paleocl., 34, 1399–1436, https://doi.org/10.1029/2018PA003508, 2019.
Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus, J., and Jansen, E.: Sea surface temperatures and ice rafting in the Holocene North Atlantic: climate influences on northern Europe and Greenland, Quaternary Sci. Rev., 23, 2113–2126, https://doi.org/10.1016/j.quascirev.2004.08.003, 2004.
Moros, M., Lloyd, J. M., Perner, K., Krawczyk, D., Blanz, T., Kuijpers, A., Jennings, A. E.,
Witkowski, A., Schneider, R., and Jansen, E.: Surface and sub-surface multi-proxy reconstruction of middle to late Holocene palaeoceanographic changes in Disko Bugt, West Greenland, Quaternary Sci. Rev., 132, 146–160, https://doi.org/10.1016/j.quascirev.2015.11.017, 2016.
Møller, H. S., Jensen, K. G., Kuijpers, A., Aagaard-Sørensen, S., Seidenkrantz, M.-S.,
Prins, M., Endler, R., and Mikkelsen, N.: Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record, Holocene, 16, 685–695, https://doi.org/10.1191/0959683606hl963rp, 2006.
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., and Jansen, E.: Holocene cooling culminates in sea ice oscillations in Fram Strait, Quaternary Sci. Rev., 47, 1–14, https://doi.org/10.1016/j.quascirev.2012.04.024, 2012.
Myers, P. G.: Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea water formation, Geophys. Res. Lett., 32, 6, https://doi.org/10.1029/2004GL022082, 2005.
Noren, A. J., Bierman, P. R., Steig, E. J., Lini, A., and Southon, J.: Millennial-scale storminess variability in the northeastern United States during the Holocene epoch, Nature, 419, 821–824, https://doi.org/10.1038/nature01132, 2002.
O'Brien, S. R., Mayewski, P. A., Meeker, L. D., Meese, D. A., Twickler, M. S., and Whitlow, S. I.: Complexity of Holocene climate as reconstructed from a Greenland ice core, Science, 270, 1962–1964, https://doi.org/10.1126/science.270.5244.1962, 1995.
Olsen, J., Anderson, N. J., and Knudsen, M. F.: Variability of the North Atlantic Oscillation over the past 5,200 years, Nat. Geosci., 5, 808–812, https://doi.org/10.1038/ngeo1589, 2012.
Ouellet-Bernier, M. M., de Vernal, A., Hillaire-Marcel, C., and Moros, M.: Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene, Holocene, 24, 1573–1583, https://doi.org/10.1177/0959683614544060, 2014.
Perner, K., Moros, M., Lloyd, J. M., Kuijpers, A., Telford, R. J., and Harff, J.: Centennial scale benthic foraminiferal record of late Holocene oceanographic variability in Disko Bugt, West Greenland, Quaternary Sci. Rev., 30, 2815–2826, https://doi.org/10.1016/j.quascirev.2011.06.018, 2011.
Perner, K., Moros, M., Lloyd, J. M., Jansen, E., and Stein, R.: Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water, Quaternary Sci. Rev., 129, 296–307, https://doi.org/10.1016/j.quascirev.2015.10.007, 2015.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment, Nature, 330, 367–369, https://doi.org/10.1038/330367a0, 1987.
Ran, L., Jiang, H., Knudsen, K. L., Eiríksson, J., and Gu, Z.: Diatom response to the Holocene climatic optimum on the North Icelandic shelf, Mar. Micropaleontol., 60, 226–241, https://doi.org/10.1016/j.marmicro.2006.05.002, 2006.
Rashid, H., Piper, D. J., Lazar, K. B., McDonald, K., and Saint-Ange, F.: The Holocene Labrador Current: Changing linkages to atmospheric and oceanographic forcing factors, Paleoceanography, 32, 498–510, https://doi.org/10.1002/2016PA003051, 2017.
Rasmussen, T. L. and Thomsen, E.: Stable isotope signals from brines in the Barents Sea: Implications for brine formation during the last glaciation, Geology, 37, 903–906, https://doi.org/10.1130/G25543A.1, 2009.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C.
E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H.,
Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F.,
Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R.,
Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rhein, M., Kieke, D., Hüttl-Kabus, S., Roessler, A., Mertens, C., Meissner, R., Klein, B.,
Böning, C. W., and Yashayaev, I.: Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic, Deep-Sea Res. Pt. II, 58, 1819–1832, https://doi.org/10.1016/j.dsr2.2010.10.061, 2011.
Richerol, T., Fréchette, B., Rochon, A., and Pienitz, R.: Holocene climate history of the Nunatsiavut (northern Labrador, Canada) established from pollen and dinoflagellate cyst assemblages covering the past 7000 years, Holocene, 26, 44–60, https://doi.org/10.1177/0959683615596823, 2016.
Rosell-Melé, A.: Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high latitude locations, Paleoceanography, 13, 694–703, https://doi.org/10.1029/98PA02355, 1998.
Rosell-Melé, A., Jansen, E., and Weinelt, M.: Appraisal of a molecular approach to infer variations in surface ocean freshwater inputs into the North Atlantic during the last glacial, Global Planet. Change, 34, 143–152, https://doi.org/10.1016/S0921-8181(02)00111-X, 2002.
Schmidt, S. and Send, U.: Origin and Composition of Seasonal Labrador Sea Freshwater, J. Phys. Oceanogr., 37, 1445–1454, https://doi.org/10.1175/JPO3065.1, 2007.
Schmitz, W. J. and McCartney, M. S.: On the north Atlantic circulation, Rev. Geophys., 31, 29–49, https://doi.org/10.1029/92RG02583, 1993.
Schneider, R., Blanz, T., Evers, F., Gasparatto, M.-C., Gross, F., Hüls, M., Keul, N., Kienast, M., Lehner, K., Lüders, S., Mellon, S., Merl, M., Reissig, S., Repschläger, J., Salvatteci, R., Schulten, I., Schwarz, J. -P., Schönke, M., Steen, E., Tietjens, A., and van Nieuwenhove, N.: MERIAN-Reports, Paleoclimate Understanding Labrador Sea (PULSE), Cruise No. MSM45, available at: https://www.pangaea.de/expeditions/cr.php/Merian (last access: 14 June 2020), 2016.
Schwab, V. F. and Sachs, J. P.: Hydrogen isotopes in individual alkenones from the Chesapeake Bay estuary, Geochim. Cosmochim. Ac., 75, 7552–7565, https://doi.org/10.1016/j.gca.2011.09.031, 2011.
Scott, D. B. and Collins, E. S.: Late mid-Holocene sea-level oscillation: a possible cause, Quaternary Sci. Rev., 15, 851–856, https://doi.org/10.1016/S0277-3791(96)00063-7, 1996.
Seidenkrantz, M. S.: Benthic foraminifera as palaeo sea-ice indicators in the subarctic realm–examples from the Labrador Sea–Baffin Bay region, Quaternary Sci. Rev., 79, 135–144, https://doi.org/10.1016/j.quascirev.2013.03.014, 2013.
Seidenkrantz, M. S., Aagaard-Sørensen, S., Sulsbrück, H., Kuijpers, A., Jensen, K. G., and Kunzendorf, H.: Hydrography and climate of the last 4400 years in a SW Greenland fjord: implications for Labrador Sea palaeoceanography, Holocene, 17, 387–401, https://doi.org/10.1177/0959683607075840, 2007.
Sha, L., Jiang, H., Seidenkrantz, M.-S., Li, D., Andresen, C. S., Knudsen, K. L., Liu, Y.,
and Zhao, M.: A record of Holocene sea-ice variability off West Greenland and its potential forcing factors, Palaeogeogr. Palaeocl., 475, 115–124, https://doi.org/10.1016/j.palaeo.2017.03.022, 2017.
Shackleton, N. J.: Attainment of isotopic equilibrium ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial, Cent. Natl. Rech. Sci. Colloq. Int., 219, 203–209, 1974.
Sheldon, C., Seidenkrantz, M.-S., Frandsen, P., Vinther Jacobsen, H., Van Nieuwenhove,
N., Solignac, S., Pearce, C., Graae Palitzsch, M., and Kuijpers, A.: Variable Influx of West Greenland
Current Water into the Labrador Current through the Last 8000 Years, Based on a Multiproxy
Study from Trinity Bay, NE Newfoundland, Arktos, 1, 1, https://doi.org/10.1007/s41063-015-0010-z, 201.
Sheldon, C. M., Seidenkrantz, M. S., Pearce, C., Kuijpers, A., Hansen, M. J., and Christensen, E. Z.: Holocene oceanographic changes in SW Labrador Sea, off Newfoundland, Holocene, 26, 274–289, https://doi.org/10.1177/0959683615608690, 2016.
Sicre, M. A., Bard, E., Ezat, U., and Rostek, F.: Alkenone distributions in the North Atlantic and Nordic sea surface waters, Geochem. Geophy. Geosy., 3, 2, https://doi.org/10.1029/2001GC000159, 2002.
Sicre, M.-A., Weckström, K., Seidenkrantz, M.-S., Kuijpers, A., Benetti, M., Masse, G.,
Ezat, U., Schmidt, S., Bouloubassi, I., Olsen, J., Khodri, M., and Mignot, J.: Labrador current variability over the last 2000 years, Earth Planet. Sc. Lett., 400, 26–32, https://doi.org/10.1016/j.epsl.2014.05.016, 2014.
Sikes, E. L. and Sicre, M. A.: Relationship of the tetra-unsaturated C37 alkenone to salinity and temperature: Implications for paleoproxy applications, Geochem. Geophy. Geosy., 3, 1–11, https://doi.org/10.1029/2002GC000345, 2002.
Skirbekk, K., Hald, M., Marchitto, T. M., Junttila, J., Klitgaard Kristensen, D., and Aagaard Sørensen, S.: Benthic foraminiferal growth seasons implied from Mg∕Ca-temperature correlations for three Arctic species, Geochem. Geophy. Geosy., 17, 4684–4704, https://doi.org/10.1002/2016GC006505, 2016.
Solignac, S., Seidenkrantz, M. S., Jessen, C., Kuijpers, A., Gunvald, A. K., and Olsen, J.: Late-Holocene sea-surface conditions offshore Newfoundland based on dinoflagellate cysts, Holocene, 21, 539–552, https://doi.org/10.1177/0959683610385720, 2011.
Straneo, F.: Heat and Freshwater Transport through the central Labrador Sea, J. Phys. Oceanogr., 36, 606–628, https://doi.org/10.1175/JPO2875.1, 2006.
Straneo, F. and Saucier, F.: The outflow from Hudson Strait and its contribution to the Labrador Current, Deep-Sea Res. Pt. I, 55, 926–946, https://doi.org/10.1016/j.dsr.2008.03.012, 2008.
Stuiver, M. and Reimer, P. J.: Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35, 215–230, https://doi.org/10.1017/S0033822200013904, 1993.
Stuiver, M., Reimer, P., and Reimer, R.: CALIB 7.1, available at: http://calib.org., last access: 27 August 2017.
Telesiński, M. M., Spielhagen, R. F., and Lind, E. M.: A high-resolution Lateglacial and Holocene palaeoceanographic record from the Greenland Sea, Boreas, 43, 273–285, https://doi.org/10.1111/bor.12045, 2014.
Theroux, S., D'Andrea, W. J., and Toney, J.: Phylogenetic diversity and evolutionary relatedness of alkenone-producing haptophyte algae in lakes: implications for continental paleotemperature reconstructions, Earth Planet. Sc. Lett., 300, 311–320, https://doi.org/10.1016/j.epsl.2010.10.009, 2010.
Thornalley, D. J. R., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C. M., Davis, R., Hall,
I. R., Moffa-Sanchez, P., Rose, N. L., Spooner, P. T., Yashayaev, I., and Keigwin, L. D.: Anomalously
weak Labrador Sea convection and Atlantic overturning during the past 150 years, Nature, 556,, 227–230, https://doi.org/10.1038/s41586-018-0007-4, 2018.
Toney, J. L., Huang, Y., and Fritz, S. C.: Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States, Geochim. Cosmochim. Ac., 74, 1563–1578, https://doi.org/10.1016/j.gca.2009.11.021, 2010.
Ullman, D. J., Carlson, A. E., Hostetler, S. W., Clark, P. U., Cuzzone, J., Milne, G. A.,
Winsor, K., and Caffee, M.: Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change, Quaternary Sci. Rev., 152, 49–59, https://doi.org/10.1016/j.quascirev.2016.09.014, 2016.
Vilks, G.: Postglacial basin sedimentation on Labrador Shelf, Geological Survey of Canada, Department of Energy, Mines and Resources, 78–28, 17 pp., 1980.
Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen, S. J., Fisher, D.
A., Koerner, R. M., Raynaud, D., Lipenkov, V., Andersen, K. K., Blunier, T., Rasmussen, S. O.,
Steffensen, J. P., and Svensson, A. M.: Holocene thinning of the Greenland ice sheet, Nature, 461, 385–388, https://doi.org/10.1038/nature08355, 2009.
Wang, H., Legg, S., and Hallberg, R.: The Effect of Arctic Freshwater Pathways on North Atlantic Convection and the Atlantic Meridional Overturning Circulation, J. Climate, 31, 5165–5188, https://doi.org/10.1175/JCLI-D-17-0629.1, 2018.
Weidick, A. and Bennike, O.: Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region, West Greenland: a review, Vol. 14, Copenhagen: Geol. Survey of Denmark and Greenland, 2007.
Weidick, A., Oerter, H., Reeh, N., Thomsen, H. H., and Thorning, L.: The recession of the Inland Ice margin during the Holocene climatic optimum in the Jakobshavn Isfjord area of West Greenland, Palaeogeogr. Palaeocl., 82, 389–399, https://doi.org/10.1016/S0031-0182(12)80010-1, 1990.
Williams, K., Short, S., Andrews, J., Jennings, A., Mode, W., and Syvitski, J.: The eastern Canadian Arctic at ca. 6 ka BP: a time of transition, Géogr. Phys. Quat., 49, 13–27, https://doi.org/10.7202/033026ar, 1995.
Yashayaev, I.: Hydrographic changes in the Labrador Sea, 1960–2005, Prog. Oceanogr., 73, 242–276, https://doi.org/10.1016/j.pocean.2007.04.015, 2007.
Yashayaev, I. and Loder, J. W.: Enhanced production of Labrador Sea water in 2008, Geophys. Res. Lett., 36, 1, https://doi.org/10.1029/2008GL036162, 2009.
Yashayaev, I. and Loder, J. W.: Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability, J. Geophys. Res.-Oceans, 121, 8095–8114, https://doi.org/10.1002/2016JC012046, 2016.
Zantopp, R., Fischer, J., Visbeck, M., and Karstensen, J.: From interannual to decadal: 17
years of boundary current transports at the exit of the Labrador Sea, J. Geophys.
Res.-Oceans, 122, 1724–1748, https://doi.org/10.1002/2016JC012271, 2017.
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
The Labrador Sea is important for the modern global thermohaline circulation system through the...