Articles | Volume 15, issue 3
https://doi.org/10.5194/cp-15-981-2019
https://doi.org/10.5194/cp-15-981-2019
Research article
 | Highlight paper
 | 
04 Jun 2019
Research article | Highlight paper |  | 04 Jun 2019

Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust

Akitomo Yamamoto, Ayako Abe-Ouchi, Rumi Ohgaito, Akinori Ito, and Akira Oka

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (05 May 2019) by Laurie Menviel
AR by Akitomo Yamamoto on behalf of the Authors (15 May 2019)  Author's response   Manuscript 
ED: Publish subject to technical corrections (17 May 2019) by Laurie Menviel
AR by Akitomo Yamamoto on behalf of the Authors (21 May 2019)  Author's response   Manuscript 
Download
Short summary
Proxy records of glacial oxygen change provide constraints on the contribution of the biological pump to glacial CO2 decrease. Here, we report our numerical simulation which successfully reproduces records of glacial oxygen changes and shows the significance of iron supply from glaciogenic dust. Our model simulations clarify that the enhanced efficiency of the biological pump is responsible for glacial CO2 decline of more than 30 ppm and approximately half of deep-ocean deoxygenation.