Articles | Volume 15, issue 3
https://doi.org/10.5194/cp-15-927-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-927-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison
Albert Català
CORRESPONDING AUTHOR
Grup de Recerca Consolidat en Geociències Marines, Departament
de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona (UB),
Barcelona, Spain
Isabel Cacho
Grup de Recerca Consolidat en Geociències Marines, Departament
de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona (UB),
Barcelona, Spain
Jaime Frigola
Grup de Recerca Consolidat en Geociències Marines, Departament
de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona (UB),
Barcelona, Spain
Leopoldo D. Pena
Grup de Recerca Consolidat en Geociències Marines, Departament
de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona (UB),
Barcelona, Spain
Fabrizio Lirer
Istituto di Scienze Marine
(ISMAR)-CNR, Sede di Napoli, Naples, Italy
Related authors
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Preprint under review for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
O. Margalef, I. Cacho, S. Pla-Rabes, N. Cañellas-Boltà, J. J. Pueyo, A. Sáez, L. D. Pena, B. L. Valero-Garcés, V. Rull, and S. Giralt
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1407-2015, https://doi.org/10.5194/cpd-11-1407-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
The Rano Aroi peat record (Easter Island, 27ºS) is characterized by six major events of enhanced precipitation between 38 and 65 kyr BP coinciding with Heinrich and Dansgaard-Oeschger (DO) Stadials. These events draw a coherent regional picture involving atmospheric and oceanic reorganization. The singular location of Easter Island, filling a gap in an area where marine records are not available, contributes to understand the mechanisms behind these global rapid climatic excursions.
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Holocene
Response of biological productivity to North Atlantic marine front migration during the Holocene
Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene
Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years
Reconstruction of Holocene oceanographic conditions in eastern Baffin Bay
Multiproxy evidence of the Neoglacial expansion of Atlantic Water to eastern Svalbard
Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?
Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event
The 4.2 ka event, ENSO, and coral reef development
Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea
Neoglacial climate anomalies and the Harappan metamorphosis
Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation
Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea
Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records
Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa
Holocene evolution of the North Atlantic subsurface transport
Changes in Holocene meridional circulation and poleward Atlantic flow: the Bay of Biscay as a nodal point
Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals
Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach
Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic
Late Weichselian and Holocene palaeoceanography of Storfjordrenna, southern Svalbard
Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions
The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event
Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea
Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr
Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records
Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Joanna Pawłowska, Magdalena Łącka, Małgorzata Kucharska, Jan Pawlowski, and Marek Zajączkowski
Clim. Past, 16, 487–501, https://doi.org/10.5194/cp-16-487-2020, https://doi.org/10.5194/cp-16-487-2020, 2020
Short summary
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Raymond S. Bradley and Jostein Bakke
Clim. Past, 15, 1665–1676, https://doi.org/10.5194/cp-15-1665-2019, https://doi.org/10.5194/cp-15-1665-2019, 2019
Short summary
Short summary
We review paleoceanographic and paleoclimatic records from the northern North Atlantic to assess the nature of climatic conditions at 4.2 ka BP. There was a general decline in temperatures after ~ 5 ka BP, which led to the onset of neoglaciation. Although a few records do show a distinct anomaly around 4.2 ka BP (associated with a glacial advance), this is not widespread and we interpret it as a local manifestation of the overall climatic deterioration that characterized the late Holocene.
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Lauren T. Toth and Richard B. Aronson
Clim. Past, 15, 105–119, https://doi.org/10.5194/cp-15-105-2019, https://doi.org/10.5194/cp-15-105-2019, 2019
Short summary
Short summary
We explore the hypothesis that a shift in global climate 4200 years ago (the 4.2 ka event) was related to the El Niño–Southern Oscillation (ENSO). We summarize records of coral reef development in the tropical eastern Pacific, where intensification of ENSO stalled reef growth for 2500 years starting around 4.2 ka. Because corals are highly sensitive to climatic changes, like ENSO, we suggest that records from coral reefs may provide important clues about the role of ENSO in the 4.2 ka event.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Masanobu Yamamoto, Seung-Il Nam, Leonid Polyak, Daisuke Kobayashi, Kenta Suzuki, Tomohisa Irino, and Koji Shimada
Clim. Past, 13, 1111–1127, https://doi.org/10.5194/cp-13-1111-2017, https://doi.org/10.5194/cp-13-1111-2017, 2017
Short summary
Short summary
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the Beaufort Gyre (BG) strength during the Holocene, consistent with a decrease in summer insolation. Multi-centennial variability in BG circulation is consistent with fluctuations in solar irradiance. The Bering Strait inflow shows intensification during the middle Holocene, associated with sea-ice retreat and an increase in marine production in the Chukchi Sea, which is attributed to a weaker Aleutian Low.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Quentin Dubois-Dauphin, Paolo Montagna, Giuseppe Siani, Eric Douville, Claudia Wienberg, Dierk Hebbeln, Zhifei Liu, Nejib Kallel, Arnaud Dapoigny, Marie Revel, Edwige Pons-Branchu, Marco Taviani, and Christophe Colin
Clim. Past, 13, 17–37, https://doi.org/10.5194/cp-13-17-2017, https://doi.org/10.5194/cp-13-17-2017, 2017
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
C. Consolaro, T. L. Rasmussen, G. Panieri, J. Mienert, S. Bünz, and K. Sztybor
Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, https://doi.org/10.5194/cp-11-669-2015, 2015
Short summary
Short summary
A sediment core collected from a pockmark field on the Vestnesa Ridge (~80N) in the Fram Strait is presented. Our results show an undisturbed sedimentary record for the last 14 ka BP and negative carbon isotope excursions (CIEs) during the Bølling-Allerød interstadials and during the early Holocene. Both CIEs relate to periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere, suggesting an apparent correlation with warm climatic events.
M. Łącka, M. Zajączkowski, M. Forwick, and W. Szczuciński
Clim. Past, 11, 587–603, https://doi.org/10.5194/cp-11-587-2015, https://doi.org/10.5194/cp-11-587-2015, 2015
Short summary
Short summary
Storfjordrenna was deglaciated about 13,950 cal yr BP. During the transition from the sub-glacial to glaciomarine setting, Arctic Waters dominated its hydrography. However, the waters were not uniformly cold and experienced several warmer spells. Atlantic Water began to flow onto the shelves off Svalbard and into Storfjorden during the early Holocene, leading to progressive warming and significant glacial melting. A surface-water cooling and freshening occurred in late Holocene.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
A. D. Tegzes, E. Jansen, and R. J. Telford
Clim. Past, 10, 1887–1904, https://doi.org/10.5194/cp-10-1887-2014, https://doi.org/10.5194/cp-10-1887-2014, 2014
D. E. Groot, S. Aagaard-Sørensen, and K. Husum
Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, https://doi.org/10.5194/cp-10-51-2014, 2014
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne
Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, https://doi.org/10.5194/cp-9-499-2013, 2013
Cited articles
Andrews, J. T., Hardadottir, J., Stoner, J. S., Mann, M. E.,
Kristjansdottir, G. B., and Koc, N.: Decadal to millennial-scale
periodicities in North Iceland shelf sediments over the last 12 000 cal yr:
long-term North Atlantic oceanographic variability and solar forcing, Earth Planet. Sc. Lett., 210, 453–465, https://doi.org/10.1016/S0012-821X(03)00139-0, 2003.
Ausin, B., Flores, J. A., Sierro, F. J., Cacho, I., Hernández-Almeida,
I., Martrat, B., and Grimalt, J. O.: Atmospheric patterns driving Holocene
productivity in the Alboran Sea (Western Mediterranean): A multiproxy
approach, Holocene, 25, 583–595, https://doi.org/10.1177/0959683614565952, 2015.
Bárcena, M. A., Flores, J. A., Sierro, F. J., Pérez-Folgado, M.,
Fabres, J., Calafat, A., and Canals, M.: Planktonic response to main
oceanographic changes in the Alboran Sea (Western Mediterranean) as
documented in sediment traps and surface sediments, Mar. Micropaleontol.,
53, 423–445, https://doi.org/10.1016/j.marmicro.2004.09.009, 2004.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures
used for foraminiferal Mg∕Ca paleothermometry, Geochem. Geophy. Geosy., 4, 1–20, https://doi.org/10.1029/2003GC000559, 2003.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S.,
Gajewski, K., Guiot, J., Henderson, A., Peyron, O., Prentice, I. C.,
Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R. S., Viau,
A. E., Williams, J., and Wu, H.: Pollen-based continental climate
reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37,
775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011.
Béthoux, J. P.: Mean water fluxes across sections in the Mediterranean
Sea, evaluated in the basis of water and salt budgets and of observed
salinities, Oceanol. Acta, 3, 79–88, 1980.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., DeMenocal, P.,
Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A Pervasive
Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates,
Science, 278, 1257–1266, https://doi.org/10.1126/science.278.5341.1257,
1997.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar
Influenceon North Atlantic Climate During the Holocene, Science,
294, 2130–2136, https://doi.org/10.1126/science.1065680, 2001.
Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A., and Funk, A.:
Decadal variability of subpolar gyre transport and its reverberation in the
North Atlantic overturning, Geophys. Res. Lett., 33, 1–5,
https://doi.org/10.1029/2006GL026906, 2006.
Boyer, T. and Mishonov, A.: 14 pp., World Ocean Atlas 2013 Product
Documentation, 2013.
Bray, N. A., Ochoa, J., and Kinder, T. H.: The role of the interface exchange
through the Strait of Gibraltar, J. Geophys. Res., 100, 10755–10176,
https://doi.org/10.1029/95JC00381, 1995.
Cacho, I., Grimalt, J. O., Pelejero, C., Canals, M., Sierro, F. J., Flores,
J. A., and Shackleton, N.: Dansgaard-Oeschger and Heinrich event imprints in
Alboran Sea paleotemperatures, Paleoceanography, 14, 698–705,
https://doi.org/10.1029/1999PA900044, 1999.
Cacho, I., Grimalt, J. O., Canals, M., Sbaffi, L., Shackleton, N. J.,
Schönfeld, J., and Zahn, R.: Variability of the western Mediterranean Sea
surface temperature during the last 25,000 years and its connection with the
Northern Hemisphere climatic changes, Paleoceanography, 16, 40–52,
https://doi.org/10.1029/2000PA000502, 2001.
Cacho, I., Grimalt, J. O., and Canals, M.: Response of the Western
Mediterranean Sea to rapid climatic variability during the last 50,000
years: A molecular biomarker approach, J. Mar. Syst., 33–34, 253–272,
https://doi.org/10.1016/S0924-7963(02)00061-1, 2002.
Català, A., Cacho, I., Frigola, J., Peña, L. D., Lirer, F.: Deglacial and Holocene sea surface temperature (SST) and δ18O reconstruction from the western Mediterranean Sea, PANGAEA, https://doi.org/10.1594/PANGAEA.901667, 2019a.
Català, A., Cacho, I., Frigola, J., Peña, L. D., Lirer, F.: Stable Isotopes (δ18O) analysis of G. bulloides from sediment core HER-GC-ALB2 (ALB-2), PANGAEA, https://doi.org/10.1594/PANGAEA.901663, 2019b.
Català, A., Cacho, I., Frigola, J., Peña, L. D., Lirer, F.: Sea surface temperature (SST) and Mg/Ca analysis of G. bulloides from sediment core HER-GC-ALB2 (ALB-2), PANGAEA, https://doi.org/10.1594/PANGAEA.901666, 2019c.
Català, A., Cacho, I., Frigola, J., Peña, L. D., Lirer, F.: Age-model update from sediment core MD99-2343, PANGAEA, https://doi.org/10.1594/PANGAEA.901685, 2019d.
Català, A., Cacho, I., Frigola, J., Peña, L. D., Lirer, F.: Sea surface temperature (SST) and Mg/Ca analysis of G. bulloides from sediment core MD99-2343, PANGAEA, https://doi.org/10.1594/PANGAEA.901678, 2019d.
Català, A., Cacho, I., Frigola, J., Peña, L. D., Lirer, F.: Sea surface temperature (SST) and Mg/Ca analysis of G. bulloides from sediment core MD95-2043, PANGAEA, https://doi.org/10.1594/PANGAEA.901746, 2019e.
Chabaud, L., Sánchez Goñi, M. F., Desprat, S., and Rossignol, L.:
Land–sea climatic variability in the eastern North Atlantic subtropical
region over the last 14,200 years: Atmospheric and oceanic processes at
different timescales, Holocene, 24, 787–797,
https://doi.org/10.1177/0959683614530439, 2014.
Cisneros, M., Cacho, I., Frigola, J., Canals, M., Masqué, P., Martrat, B., Casado, M., Grimalt, J. O., Pena, L. D.,
Margaritelli, G., and Lirer, F.: Sea surface temperature variability in the central-western Mediterranean Sea during the
last 2700 years: a multi-proxy and multi-record approach, Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, 2016.
Cléroux, C., Debret, M., Cortijo, E., Duplessy, J.-C., Dewilde, F.,
Reijmer, J., and Massei, N.: High-resolution sea surface reconstructions off
Cape Hatteras over the last 10 ka, Paleoceanography, 27, 1–14,
https://doi.org/10.1029/2011PA002184, 2012.
Colin, C., Frank, N., Copard, K., and Douville, E.: Neodymium isotopic
composition of deep-sea corals from the NE Atlantic: implications for past
hydrological changes during the Holocene, Quaternary Sci. Rev., 29,
2509–2517, https://doi.org/10.1016/j.quascirev.2010.05.012, 2010.
Combourieu Nebout, N., Turon, J., Zahn, R., Capotondi, L., Londeix, L.,
and Pahnke, K.: Enhanced aridity and atmospheric high-pressure stability
over the western Mediterranean during the North Atlantic cold events of the
past 50 k.y., Geology, 30, 863–866, 2002.
Combourieu Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., and Marret, F.: Rapid climatic
variability in the west Mediterranean during the last 25 000 years from high resolution pollen data, Clim. Past, 5,
503–521, https://doi.org/10.5194/cp-5-503-2009, 2009.
Coplen, T. B.: New guidelines for reporting stable hydrogen, carbon, and
oxygen isotope-ratio data, Geochim. Cosmochim. Ac., 60, 3359–3360,
https://doi.org/10.1016/0016-7037(96)00263-3, 1996.
Craig, H.: The measurement of oxygen isotope paleotemperatures, in: Stable
Isotopes in Oceanographic Studies and Paleotemperatures, edited by:
Tongiorgi, E., Consiglio Nazionale delle Ricerche, Laboratorio di Geologia
Nucleare, Pisa, 1–24, 1965.
Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J. F., Massei, N., Sebag, D., Petit, J.-R.,
Copard, Y., and Trentesaux, A.: The origin of the 1500-year climate cycles in Holocene North-Atlantic records,
Clim. Past, 3, 569–575, https://doi.org/10.5194/cp-3-569-2007, 2007.
Debret, M., Sebag, D., Crosta, X., Massei, N., Petit, J.-R., Chapron, E., and
Bout-Roumazeilles, V.: Evidence from wavelet analysis for a mid-Holocene
transition in global climate forcing, Quaternary Sci. Rev., 28,
2675–2688, https://doi.org/10.1016/j.quascirev.2009.06.005, 2009.
Desprat, S., Combourieu-Nebout, N., Essallami, L., Sicre, M. A., Dormoy, I., Peyron, O., Siani, G., Bout Roumazeilles, V.,
and Turon, J. L.: Deglacial and Holocene vegetation and climatic changes in the southern Central Mediterranean from a direct
land-sea correlation, Clim. Past, 9, 767–787, https://doi.org/10.5194/cp-9-767-2013, 2013.
Elderfield, H. and Ganssen, G.: Past temperature and delta18O of surface
ocean waters inferred from foraminiferal Mg∕Ca ratios, Nature, 405,
442–445, https://doi.org/10.1038/35013033, 2000.
Fabres, J., Calafat, A., Sanchez-Vidal, A., Canals, M., and Heussner, S.:
Composition and spatio-temporal variability of particle fluxes in the
Western Alboran Gyre, Mediterranean Sea, J. Marine Syst., 33–34,
431–456, doi.org/10.1016/S0924-7963(02)00070-2, 2002.
Ferguson, J. E., Henderson, G. M., Kucera, M., and Rickaby, R. E. M.:
Systematic change of foraminiferal Mg/ Ca ratios across a strong salinity
gradient, Earth Planet. Sc. Lett., 265, 153–166,
https://doi.org/10.1016/j.epsl.2007.10.011, 2008.
Fiúza, A. F. G.: Hidrologia e dinamica das aguas costeiras de Portugal,
PhD Thesis, Universidade de Lisboa, 1984.
Fletcher, W. J., Debret, M., and Sanchez-Goñi, M.-F.: Mid-Holocene
emergence of a low-frequency millennial oscillation in western Mediterranean
climate: Implications for past dynamics of the North Atlantic atmospheric
westerlies, Holocene, 0, 1–14, https://doi.org/10.1177/0959683612460783, 2012.
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F. J., Flores, J.
A., Grimalt, J. O., Hodell, D. A., and Curtis, J. H.: Holocene climate
variability in the western Mediterranean region from a deepwater sediment
record, Paleoceanography, 22, 2209, https://doi.org/10.1029/2006PA001307, 2007.
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F. J., Flores, J. A.,
and Grimalt, J. O.: Evidence of abrupt changes in Western Mediterranean Deep
Water circulation during the last 50 kyr: A high-resolution marine record
from the Balearic Sea, Quatern. Int., 181, 88–104,
https://doi.org/10.1016/j.quaint.2007.06.016, 2008.
Gao, Y.-Q. and Yu, L.: Subpolar Gyre Index and the North Atlantic Meridional
Overturning Circulation in a Coupled Climate Model, Atmos. Ocean. Sci.
Lett., 1, 29–32, 2008.
Giraudeau, J., Grelaud, M., Solignac, S., Andrews, J. T., Moros, M., and
Jansen, E.: Millennial-scale variability in Atlantic water advection to the
Nordic Seas derived from Holocene coccolith concentration records, Quaternary
Sci. Rev., 29, 1276–1287, https://doi.org/10.1016/j.quascirev.2010.02.014, 2010.
Hemleben, C., Spindler, M., and Roger Anderson, O.: Modern Planktonic Foraminifera, Spinger, https://doi.org/10.1007/978-1-4612-3544-6, 1989.
Hernández-Almeida, I., Bárcena, M. A., Flores, J. A., Sierro, F. J.,
Sanchez-Vidal, A., and Calafat, A.: Microplankton response to environmental
conditions in the Alboran Sea (Western Mediterranean): One year sediment
trap record, Mar. Micropaleontol., 78, 14–24,
https://doi.org/10.1016/j.marmicro.2010.09.005, 2011.
Hönisch, B., Allen, K. A., Lea, D. W., Spero, H. J., Eggins, S. M.,
Arbuszewski, J., DeMenocal, P., Rosenthal, Y., Russell, A. D., and
Elderfield, H.: The influence of salinity on Mg/ Ca in plank- tic
foraminifers – evidence from cultures, core-top sediments and complementary
δ18O, Geochim. Cosmochim. Ac., 121, 196–213, 2013.
Hoogakker, B. A. A., Klinkhammer, G. P., Elderfield, H., Rohling, E. J., and
Hayward, C.: Mg/Ca paleothermometry in high salinity environments, Earth
Planet. Sc. Lett., 284, 583–589, https://doi.org/10.1016/j.epsl.2009.05.027, 2009.
Jalali, B., Sicre, M.-A., Bassetti, M.-A., and Kallel, N.: Holocene climate variability in the North-Western Mediterranean Sea
(Gulf of Lions), Clim. Past, 12, 91–101, https://doi.org/10.5194/cp-12-91-2016, 2016.
Jalali, B., Sicre, M.-A., Azuara, J., Pellichero, V., and Combourieu-Nebout, N.: Influence of the North Atlantic subpolar gyre
circulation on the 4.2 ka BP event, Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, 2019.
Jiménez-Amat, P. and Zahn, R.: Offset timing of climate oscillations
during the last two glacial-interglacial transitions connected with
large-scale freshwater perturbation, Paleoceanography, 30, 768–788,
https://doi.org/10.1002/2014PA002710, 2015.
Kemle-von Mücke, S. and Hemleben, C.: Foraminifera, in:
South Atlantic Zooplankton, edited by: Boltovskoy, D., Backhuys Publishers, Leiden, the
Netherlands, 1999.
Kim, J.-H., Rimbu, N., Lorenz, S. J., Lohmann, G., Nam, S., Schouten, S.,
Ru, C., and Schneider, R. R.: North Pacific and North Atlantic sea-surface
temperature variability during the Holocene, Quaternary Sci. Rev., 23,
2141–2154, https://doi.org/10.1016/j.quascirev.2004.08.010, 2004.
Kucera, M. and Darling, K. F.: Cryptic species of planktonic foraminifera:
their effect on palaeoceanographic reconstructions, Philos. T. Roy. Soc. A, 360, 695–718,
https://doi.org/10.1098/rsta.2001.0962, 2002.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M.,
Chen, M. Te, Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins,
S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from
assemblages of planktonic foraminifera: multi-technique approach based on
geographically constrained calibration data sets and its application to
glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24,
951–998, https://doi.org/10.1016/j.quascirev.2004.07.014, 2005.
Lacombe, H., Gascard, J. C, Cornella, J., and Béthoux, J. P.: Response
ofthe Mediterranean to the water and energy fluxes across its surface, on
seasonal and interannual scales, Oceanol. Acta, 4, 247–255, 1981.
Laepple, T. and Huybers, P.: Reconciling discrepancies between Uk37 and
Mg∕Ca reconstructions of Holocene marine temperature variability, Earth Planet. Sc. Lett., 375, 418–429, 2013.
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V.,
Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., and
Xoplaki, E.: The Mediterranean climate: An overview of the main
characteristics and issues, Dev. Earth Environ. Sci., 4, 1–26,
https://doi.org/10.1016/S1571-9197(06)80003-0, 2006.
Lorenz, S. J. and Lohmann, G.: Acceleration technique for Milankovitch type
forcing in a coupled atmosphere-ocean circulation model: method and
application for the Holocene, Clim. Dynam., 23, 727–743,
https://doi.org/10.1007/s00382-004-0469-y, 2004.
Marchal, O., Cacho, I., Stockera, T. F., Grimalt, J. O., Calvo, E., Martrat,
B., Shackleton, N., Vautravers, M., Cortijo, E., Kreveld, S. van, Andersson,
C., Koç, N., Chapman, M., Sbaffi, L., Duplessy, J.-C., Sarnthein, M.,
Turon, J.-L., Duprat, J., and Jansen, E.: Apparent long-termcooling of the
sea surface in the northeast Atlantic and Mediterranean during the Holocene,
Quaternary Sci. Rev., 21, 455–483, https://doi.org/10.1016/S0277-3791(01)00105-6, 2002.
Marchitto, T. M. and DeMenocal, P. B.: Late Holocene variability of upper
North Atlantic Deep Water temperature and salinity, Geochem. Geophy. Geosy., 4, 1100, https://doi.org/10.1029/2003GC000598, 2003.
Martrat, B., Grimalt, J. O., Lopez-Martínez, C., Cacho, I., Sierro, F.
J., Flores, J. A., Zhang, R., Canals, M., Curtis, J. H., and Hodell, D. A.:
Abrupt Temperature changes in the Western Mediterranean oer the past 250,000
years, Science, 306, 1762–1765, https://doi.org/10.1126/science.1101706,
2004.
Martrat, B., Jimenezamat, P., Zahn, R., and Grimalt, J. O.: Similarities and
dissimilarities between the last two deglaciations and interglaciations in
the North Atlantic region, Quaternary Sci. Rev., 99, 122–134,
https://doi.org/10.1016/j.quascirev.2014.06.016, 2014.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Mar. Syst., 20,
423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Millot, C.: Progress in Oceanography Another description of the
Mediterranean Sea outflow, Prog. Oceanogr., 82, 101–124,
https://doi.org/10.1016/j.pocean.2009.04.016, 2009.
Moreno, A., Cacho, I., Canals, M., Prins, M. A., Sánchez-Goñi,
M.-F., Grimalt, J. O., and Weltje, G. J.: Saharan Dust Transport and
High-Latitude Glacial Climatic Variability: The Alboran Sea Record,
Quaternary
Res., 58, 318–328, https://doi.org/10.1006/qres.2002.2383, 2002.
Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A.,
McManus, J., and Jansen, E.: Sea surface temperatures and ice rafting in the
Holocene North Atlantic: climate influences on northern Europe and
Greenland, Quaternary Sci. Rev., 23, 2113–2126,
https://doi.org/10.1016/j.quascirev.2004.08.003, 2004.
Nieto-Moreno, V., Martínez-Ruiz, F., Giralt, S., Jiménez-Espejo, F., Gallego-Torres, D., Rodrigo-Gámiz, M., García-Orellana, J.,
Ortega-Huertas, M., and de Lange, G. J.: Tracking climate variability in the western Mediterranean during the Late Holocene:
a multiproxy approach, Clim. Past, 7, 1395–1414, https://doi.org/10.5194/cp-7-1395-2011, 2011.
Pena, L. D., Calvo, E., Cacho, I., Eggins, S., and Pelejero, C.:
Identification and removal of Mn-Mg-rich contaminant phases on foraminiferal
tests: Implications for Mg∕Ca past temperature reconstructions,
Geochem. Geophy. Geosy., 6, Q09P02, https://doi.org/10.1029/2005GC000930, 2005.
Pierre, C.: The oxygen and carbon isotope distribution in the Mediterranean
water masses, Mar. Geol., 153, 41–55, 1999.
Prahl, F., Herbert, T., Brassell, S. C., Ohkouchi, N., Pagani, M., Repeta,
D., Rosell-Melé, A., and Sikes, E.: Status of alkenone paleothermometer
calibration: Report from Working Group 3, Geochem. Geophy. Geosy.,
1, 2000GC000058, https://doi.org/10.1029/2000GC000058, 2000.
Rao, K. K., Paulinose, V. T., Jayalakshmy, K. V., Panikkar, B. M., and
Krishnan Kutty, M.: Distribution of Living Planktonic Foraminifera in the
Coastal Upwelling Region of Kenya, Africa, Indian J. Mar. Sediments, 17,
121–127, 1988.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk,
C., Caitlin, R., Hai, E. B., Edwards, R Lawrence Friedrich, M., Grootes, P.
M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.
J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
Intcal13 and marine13 radiocarbon age calibration curves 0–50 000 Years cal
BP, Radiocarbon, 55, 1869–1887,
https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Repschläger, J., Garbe-Schönberg, D., Weinelt, M., and Schneider, R.: Holocene evolution of the North Atlantic subsurface
transport, Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, 2017.
Rigual-Hernández, A. S., Sierro, F. J., Bárcena, M. A., Flores, J.
A., and Heussner, S.: Seasonal and interannual changes of planktic
foraminiferal fluxes in the Gulf of Lions (NW Mediterranean) and their
implications for paleoceanographic studies: two 12-year sediment trap
records, Deep-Sea Res. Pt. I, 66, 26–40, https://doi.org/10.1016/j.dsr.2012.03.011,
2012.
Rimbu, N., Lohmann, G., Lorenz, S. J., Kim, J. H., and Schneider, R. R.:
Holocene climate variability as derived from alkenone sea surface
temperature and coupled ocean-atmosphere model experiments, Clim. Dynam., 23,
215–227, https://doi.org/10.1007/s00382-004-0435-8, 2004.
Roberts, N., Moreno, A., Valero-Garcés, B. L., Corella, J. P., Jones,
M., Allcock, S., Woodbridge, J., Morellón, M., Luterbacher, J., Xoplaki,
E., and Türkeş, M.: Palaeolimnological evidence for an east–west
climate see-saw in the Mediterranean since AD 900, Global Planet. Change,
84–85, 23–34, https://doi.org/10.1016/j.gloplacha.2011.11.002, 2012.
Rodrigo-Gámiz, M., Martínez-Ruiz, F., Jiménez-Espejo, F. J.,
Gallego-Torres, D., Nieto-Moreno, V., Romero, O., and Ariztegui, D.: Impact
of climate variability in the western Mediterranean during the last 20,000
years: oceanic and atmospheric responses, Quaternary Sci. Rev., 30,
2018–2034, https://doi.org/10.1016/j.quascirev.2011.05.011, 2011.
Rodrigo-Gámiz, M., Martínez-Ruíz, F., Rampen, S. W., Schouten,
S., and Sinninghe Damsté, J. S.: Sea surface temperature variations in
the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy
(UK′37 and LDI) approach, Paleoceanography, 29, 87–98,
https://doi.org/10.1002/2013PA002466, 2014.
Rogerson, M., Cacho, I., Jimenez-Espejo, J., Reguera, M. I., Sierro, F. J.,
Martinez-Ruiz, F., Frigola, J., and Canals, M.: A dynamic explanation for the
origin of the western Mediterranean organic-rich layers, Geochem. Geophy. Geosy., 9, Q07U01, https://doi.org/10.1029/2007GC001936, 2008.
Rosenthal, Y., Perron-Cashman, S., Lear, C. H., Bard, E., Barker, S.,
Billups, K., Bryan, M., Delaney, M., deMenocal, P. B., Dwyer, G. S.,
Elderfield, H., German, C. R., Greaves, M., Lea, D. W., Marchitto Jr, T. M.,
Pak, D. K., Paradis, G. L., Russell, A. D., Schneider, R. R., Scheiderich,
K., Stott, L., Tachikawa, K., Tappa, E., Thunell, R., Wara, M., Weldeab, S.,
and Wilson, P. A.: Interlaboratory comparison study of Mg∕Ca and Sr/Ca
measurements in planktonic foraminifera for paleoceanographic research,
Geochem. Geophy. Geosy., 5, Q04D09, https://doi.org/10.1029/2003GC000650, 2004
Sabatier, P., Dezileau, L., Colin, C., Briqueu, L., Bouchette, F., Martinez,
P., Siani, G., Raynal, O., and Von Grafenstein, U.: 7000 years of paleostorm
activity in the NW Mediterranean Sea in response to Holocene climate events,
Quaternary Res., 77, 1–11, https://doi.org/10.1016/j.yqres.2011.09.002, 2012.
Schiebel, C. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean,
Springer, https://doi.org/10.1007/978-3-662-50297-6, 2017.
Shackleton, N.: Attainment of isotopic equilibrium between ocean water and
the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean
during the last glacial, CNRS, Colloq. Int., 219, 203–209, 1974
Sicre, M.-A., Ternois, Y., Miquel, J.-C., and Marty, J.-C.: Alkenones in the
Northwestern Mediterranean sea: interannual variability and vertical
transfer, Geiohysical Res. Lett., 26, 1735–1738,
https://doi.org/10.1029/1999GL900353, 1999.
Sierro, F. J., Hodell, D. A., Curtis, J. H., Flores, J. A., Reguera, I.,
Colmenero-Hidalgo, E., Bárcena, M. A., Grimalt, J. O., Cacho, I.,
Frigola, J., and Canals, M.: Impact of iceberg melting on Mediterranean
thermohaline circulation during Heinrich events, Paleoceanography, 20,
1–13, https://doi.org/10.1029/2004PA001051, 2005.
Ternois, Y., Sicre, M.-A., Boireau, A., Contes, M. H., and Eglinton, G.:
Evaluation of long-chain alkenones as paleo-temperature indicators in the
Mediterranean Sea, Deep. Res. Pt. I, 44, 271–286,
https://doi.org/10.1016/S0967-0637(97)89915-3, 1997.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Holocene
oscillations in temperature and salinity of the surface subpolar North
Atlantic, Nature, 457, 711–714, https://doi.org/10.1038/nature07717, 2009.
Tinner, W., van Leeuwen, J. F. N., Colombaroli, D., Vescovi, E., van der
Knaap, W. O., Henne, P. D., Pasta, S., D'Angelo, S., and La Mantia, T.:
Holocene environmental and climatic changes at Gorgo Basso, a coastal lake
in southern Sicily, Italy, Quaternary Sci. Rev., 28, 1498–1510,
https://doi.org/10.1016/j.quascirev.2009.02.001, 2009.
Tintore, J., La Violette, P. E., Blade, I., and Cruzado, A.: A study of an
intense density front in eastern Alboran Sea: the Almeria-Oran Front, J.
Phys. Oceanogr., 18, 1384–1397,
https://doi.org/10.1175/1520-0485(1988)018<1384:ASOAID>2.0.CO;2, 1988.
Toucanne, S., Jouet, G., Ducassou, E., Bassetti, M., Dennielou, B., Morelle,
C., Minto, A., Lahmi, M., Touyet, N., Charlier, K., Lericolais, G., and
Mulder, T.: A 130,000-year record of Levantine Intermediate Water flow
variability in the Corsica Trough, western Mediterranean Sea, Quaternary Sci.
Rev., 33, 55–73, https://doi.org/10.1016/j.quascirev.2011.11.020, 2012.
Trigo, R. M., Osborn, T. J., and Corte-Real, J. M.: The North Atlantic
Oscillation influence on Europe: climate impacts and associated physical
mechanisms, Clim. Res., 20, 9–17, https://doi.org/10.3354/cr020009, 2002.
Tzedakis, P. C.: Seven ambiguities in the Mediterranean palaeoenvironmental
narrative, Quaternary Sci. Rev., 26, 2042–2066,
https://doi.org/10.1016/j.quascirev.2007.03.014, 2007.
van Raden, U. J., Groeneveld, J., Raitzsch, M., and Kucera, M.: Mg/Ca in
the planktonic foraminifera Globorotalia inflata and Globigerinoides
bulloides from Western Mediterranean plankton tow and core top samples, Mar.
Micropaleontol., 78, 101–112, https://doi.org/10.1016/j.marmicro.2010.11.002, 2011.
Versteegh, G. J. M., de Leeuw, J. W., Taricco, C., and Romero, A.:
Temperature and productivity influences on U37 K0 and their possible
relation to solar forcing of the Mediterranean winter, Geochem. Geophy. Geosy., 8, 1–14, https://doi.org/10.1029/2006GC001543, 2007.
Volkman, J. K., Eglinton, G., Corner, E. D. S., and Sargent, J. R.: Novel
unsaturated straight-chain C37-C39 methyl and ethyl ketones in
marine sediment and a coccolithophore Emiliania huxleyi, Phys.
Chem. Earth, 12, 219–227, doi.org/10.1016/0079-1946(79)90106-X,
1980.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O.,
Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene
climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828,
https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Zielhofer, C., Fletcher, W. J., Mischke, S., De Batist, M., Campbell, J. F.
E., Joannin, S., Tjallingii, R., El Hamouti, N., Junginger, A., Stele, A.,
Bussmann, J., Schneider, B., Lauer, T., Spitzer, K., Strupler, M., Brachert,
T., and Mikdad, A.: Atlantic forcing of Western Mediterranean winter rain
minima during the last 12,000 years Christoph, Quaternary Sci. Rev., 157, 29–51,
https://doi.org/10.1016/j.quascirev.2016.11.037, 2017.
Short summary
We present a new high-resolution sea surface temperature (SST) reconstruction for the Holocene (last 11 700 years) in the westernmost Mediterranean Sea. We identify three sub-periods: the Early Holocene with warmest SST; the Middle Holocene with a cooling trend ending at 4200 years, which is identified as a double peak cooling event that marks the transition between the Middle and Late Holocene; and the Late Holocene with very different behaviour in both long- and short-term SST variability.
We present a new high-resolution sea surface temperature (SST) reconstruction for the Holocene...