Articles | Volume 15, issue 2
https://doi.org/10.5194/cp-15-735-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-735-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A modified seasonal cycle during MIS31 super-interglacial favors stronger interannual ENSO and monsoon variability
Flavio Justino
CORRESPONDING AUTHOR
Department of Agricultural Engineering, Universidade Federal de Vicosa, PH Rolfs, Vicosa, Brazil
Fred Kucharski
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
Douglas Lindemann
Faculdade de Meteorologia, Universidade Federal de Pelotas, Pelotas, Brasil
Aaron Wilson
Polar Meteorology Group, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
Frode Stordal
University of Oslo, Department of Geosciences, Forskningsparken Gaustadalleen, Oslo, Norway
Related authors
Rasmus E. Benestad, Bob van Oort, Flavio Justino, Frode Stordal, Kajsa M. Parding, Abdelkader Mezghani, Helene B. Erlandsen, Jana Sillmann, and Milton E. Pereira-Flores
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, https://doi.org/10.5194/ascmo-4-37-2018, https://doi.org/10.5194/ascmo-4-37-2018, 2018
Short summary
Short summary
A new study indicates that heatwaves in India will become more frequent and last longer with global warming. Its results were derived from a large number of global climate models, and the calculations differed from previous studies in the way they included advanced statistical theory. The projected changes in the Indian heatwaves will have a negative consequence for wheat crops in India.
Flavio Justino, Douglas Lindemann, Fred Kucharski, Aaron Wilson, David Bromwich, and Frode Stordal
Clim. Past, 13, 1081–1095, https://doi.org/10.5194/cp-13-1081-2017, https://doi.org/10.5194/cp-13-1081-2017, 2017
Short summary
Short summary
These modeling results have enormous implications for paleoreconstructions of the MIS31 climate that assume overall ice-free conditions in the vicinity of the Antarctic continent. Since these reconstructions may depict dominant signals in a particular time interval and locale, they cannot be assumed to geographically represent large-scale domains, and their ability to reproduce long-term environmental conditions should be considered with care.
A. D. Ávila, Y. E. Carvajal, and F. Justino
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-4095-2015, https://doi.org/10.5194/nhessd-3-4095-2015, 2015
Preprint withdrawn
Short summary
Short summary
Tropical regions, such as the South America Andes and mountainous countries, are highly susceptible to floods and flash floods due to environmental and socio-economic characteristics. In this study, critical thresholds of daily accumulated rainfall for the prediction of flash floods in the Cali River basin are proposed. These findings can shed some light on hydrologic behavior, and provide decision-making criteria for water resource planners to aid in the prevention and mitigation strategies.
Franco Molteni, Fred Kucharski, and Riccardo Farneti
Weather Clim. Dynam., 5, 293–322, https://doi.org/10.5194/wcd-5-293-2024, https://doi.org/10.5194/wcd-5-293-2024, 2024
Short summary
Short summary
We describe some new features of an intermediate-complexity coupled model, including a three-layer thermodynamic ocean model suitable to explore the extratropical response to tropical ocean variability. We present results on the model climatology and show that important features of interdecadal and interannual variability are realistically simulated in a
pacemakercoupled ensemble of 70-year runs, where portions of the tropical Indo-Pacific are constrained to follow the observed variability.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Stefanie Falk, Ane V. Vollsnes, Aud B. Eriksen, Lisa Emberson, Connie O'Neill, Frode Stordal, and Terje Koren Berntsen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-260, https://doi.org/10.5194/bg-2021-260, 2021
Revised manuscript not accepted
Short summary
Short summary
Subarctic vegetation is threatened by climate change and ozone. We assess essential climate variables in 2018/19. 2018 was warmer and brighter than usual in Spring with forest fires and elevated ozone in summer. Visible damage was observed on plant species in 2018. We find that generic parameterizations used in modeling ozone dose do not suffice. We propose a method to acclimate these parameterizations and find an ozone-induced biomass loss of 2.5 to 17.4 % (up to 6 % larger than default).
Stefanie Falk, Ane V. Vollsnes, Aud B. Eriksen, Frode Stordal, and Terje Koren Berntsen
Atmos. Chem. Phys., 21, 15647–15661, https://doi.org/10.5194/acp-21-15647-2021, https://doi.org/10.5194/acp-21-15647-2021, 2021
Short summary
Short summary
We evaluate regional and global models for ozone modeling and damage risk mapping of vegetation over subarctic Europe. Our analysis suggests that low-resolution global models do not reproduce the observed ozone seasonal cycle at ground level, underestimating ozone by 30–50 %. High-resolution regional models capture the seasonal cycle well, still underestimating ozone by up to 20 %. Our proposed gap-filling method for site observations shows a 76 % accuracy compared to the regional model (80 %).
Luis Felipe F. Mendonça, Antônio F. H. Fetter-Filho, Mauro M. Andrade, Fabricio S. C. Oliveira, Douglas S. Lindemann, Rose Ane P. Freitas, and Carlos. A. D. Lentini
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-11, https://doi.org/10.5194/os-2021-11, 2021
Preprint withdrawn
Short summary
Short summary
This study used the coupled ocean-atmosphere regional model (COAWST) to evaluate the effect of the passage of a frontal system associated with an extra-tropical cyclone. The ocean and atmosphere models (ROMS and WRF) was configured with two nested grids, in order to solve the dynamic processes, at different scales, that comprise the energy transfer from the atmospheric system to the ocean.
Peter Horvath, Hui Tang, Rune Halvorsen, Frode Stordal, Lena Merete Tallaksen, Terje Koren Berntsen, and Anders Bryn
Biogeosciences, 18, 95–112, https://doi.org/10.5194/bg-18-95-2021, https://doi.org/10.5194/bg-18-95-2021, 2021
Short summary
Short summary
We evaluated the performance of three methods for representing vegetation cover. Remote sensing provided the best match to a reference dataset, closely followed by distribution modelling (DM), whereas the dynamic global vegetation model (DGVM) in CLM4.5BGCDV deviated strongly from the reference. Sensitivity tests show that use of threshold values for predictors identified by DM may improve DGVM performance. The results highlight the potential of using DM in the development of DGVMs.
Rasmus E. Benestad, Bob van Oort, Flavio Justino, Frode Stordal, Kajsa M. Parding, Abdelkader Mezghani, Helene B. Erlandsen, Jana Sillmann, and Milton E. Pereira-Flores
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, https://doi.org/10.5194/ascmo-4-37-2018, https://doi.org/10.5194/ascmo-4-37-2018, 2018
Short summary
Short summary
A new study indicates that heatwaves in India will become more frequent and last longer with global warming. Its results were derived from a large number of global climate models, and the calculations differed from previous studies in the way they included advanced statistical theory. The projected changes in the Indian heatwaves will have a negative consequence for wheat crops in India.
Johanne H. Rydsaa, Frode Stordal, Anders Bryn, and Lena M. Tallaksen
Biogeosciences, 14, 4209–4227, https://doi.org/10.5194/bg-14-4209-2017, https://doi.org/10.5194/bg-14-4209-2017, 2017
Short summary
Short summary
We investigate the atmospheric sensitivity to an expansion in shrub and tree cover in the northern Fennoscandia region. We applied a regional weather and climate model in evaluating biophysical effects of increased shrub cover at a fine resolution. We find that shrub cover increase causes a warming that is sensitive to the shrub and tree heights. Cooling effects include increased snow cover, cloud cover, and precipitation. We show that the net warming will likely increase in the future.
Flavio Justino, Douglas Lindemann, Fred Kucharski, Aaron Wilson, David Bromwich, and Frode Stordal
Clim. Past, 13, 1081–1095, https://doi.org/10.5194/cp-13-1081-2017, https://doi.org/10.5194/cp-13-1081-2017, 2017
Short summary
Short summary
These modeling results have enormous implications for paleoreconstructions of the MIS31 climate that assume overall ice-free conditions in the vicinity of the Antarctic continent. Since these reconstructions may depict dominant signals in a particular time interval and locale, they cannot be assumed to geographically represent large-scale domains, and their ability to reproduce long-term environmental conditions should be considered with care.
Christine Smith-Johnsen, Yvan Orsolini, Frode Stordal, Varavut Limpasuvan, and Kristell Pérot
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-758, https://doi.org/10.5194/acp-2016-758, 2016
Preprint withdrawn
Short summary
Short summary
Mesospheric ozone enhancements during sudden stratospheric warmings in the northern hemisphere have been reported in the literature. In the southern hemisphere, only one warming event has occurred, and this paper is the first to explain the mesospheric ozone enhancement during this event in 2002, using both a whole atmosphere chemistry climate model and satellite observations from GOMOS.
A. D. Ávila, Y. E. Carvajal, and F. Justino
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-4095-2015, https://doi.org/10.5194/nhessd-3-4095-2015, 2015
Preprint withdrawn
Short summary
Short summary
Tropical regions, such as the South America Andes and mountainous countries, are highly susceptible to floods and flash floods due to environmental and socio-economic characteristics. In this study, critical thresholds of daily accumulated rainfall for the prediction of flash floods in the Cali River basin are proposed. These findings can shed some light on hydrologic behavior, and provide decision-making criteria for water resource planners to aid in the prevention and mitigation strategies.
J. H. Rydsaa, F. Stordal, and L. M. Tallaksen
Biogeosciences, 12, 3071–3087, https://doi.org/10.5194/bg-12-3071-2015, https://doi.org/10.5194/bg-12-3071-2015, 2015
Short summary
Short summary
MODIS land surface data with WRF V3.5.1 and Noah LSM is used to investigate the sensitivity of the atmosphere to changes in structural vegetation in the boreal ecosystem. Results show that high north evergreen forest expansion leads to larger latent heat fluxes, while increased summer precipitation and reduced wind speed lead to lower sensible heat flux. Replacement of evergreen forest with mixed forest have largely opposite effects, moderating the regional effects on the atmosphere.
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
A. Hilboll, A. Richter, A. Rozanov, Ø. Hodnebrog, A. Heckel, S. Solberg, F. Stordal, and J. P. Burrows
Atmos. Meas. Tech., 6, 565–584, https://doi.org/10.5194/amt-6-565-2013, https://doi.org/10.5194/amt-6-565-2013, 2013
Ø. Hodnebrog, T. K. Berntsen, O. Dessens, M. Gauss, V. Grewe, I. S. A. Isaksen, B. Koffi, G. Myhre, D. Olivié, M. J. Prather, F. Stordal, S. Szopa, Q. Tang, P. van Velthoven, and J. E. Williams
Atmos. Chem. Phys., 12, 12211–12225, https://doi.org/10.5194/acp-12-12211-2012, https://doi.org/10.5194/acp-12-12211-2012, 2012
Related subject area
Subject: Atmospheric Dynamics | Archive: Modelling only | Timescale: Pleistocene
Dynamic boreal summer atmospheric circulation response as negative feedback to Greenland melt during the MIS-11 interglacial
PMIP4/CMIP6 last interglacial simulations using three different versions of MIROC: importance of vegetation
How might the North American ice sheet influence the northwestern Eurasian climate?
Brian R. Crow, Matthias Prange, and Michael Schulz
Clim. Past, 18, 775–792, https://doi.org/10.5194/cp-18-775-2022, https://doi.org/10.5194/cp-18-775-2022, 2022
Short summary
Short summary
To better understand the climate conditions which lead to extensive melting of the Greenland ice sheet, we used climate models to reconstruct the climate conditions of the warmest period of the last 800 000 years, which was centered around 410 000 years ago. Surprisingly, we found that atmospheric circulation changes may have acted to reduce the melt of the ice sheet rather than enhance it, despite the extensive warmth of the time.
Ryouta O'ishi, Wing-Le Chan, Ayako Abe-Ouchi, Sam Sherriff-Tadano, Rumi Ohgaito, and Masakazu Yoshimori
Clim. Past, 17, 21–36, https://doi.org/10.5194/cp-17-21-2021, https://doi.org/10.5194/cp-17-21-2021, 2021
Short summary
Short summary
The last interglacial is known as the warmest period in the recent glacial–interglacial cycle. We carry out a last interglacial experiment using three versions of general circulation models to reproduce the warm climate indicated by geological evidence. Our result clearly shows that vegetation change in the last interglacial is a necessary factor to predict a strong warming in northern high latitudes, which is indicated by geological evidence.
P. Beghin, S. Charbit, C. Dumas, M. Kageyama, and C. Ritz
Clim. Past, 11, 1467–1490, https://doi.org/10.5194/cp-11-1467-2015, https://doi.org/10.5194/cp-11-1467-2015, 2015
Short summary
Short summary
The present study investigates the potential impact of the North American ice sheet on the surface mass balance of the Eurasian ice sheet through changes in the past glacial atmospheric circulation. Using an atmospheric circulation model and an ice-sheet model, we show that the albedo of the American ice sheet favors the growth of the Eurasian ice sheet, whereas the topography of the American ice sheet leads to more ablation over North Eurasia, and therefore to a smaller Eurasian ice sheet.
Cited articles
An, S., Jin, F., and Kang, I.: The Role of Zonal Advection Feedback in Phase
Transition and Growth of ENSO in the Zebiak-Cane Model, J. Meteorol. Soc.
Jpn., 77, 1151–1160, https://doi.org/10.2151/jmsj1965.77.6_1151 1999. a
An, S., Timmermann, A., Bejarano, L., Jin, F. F., Justino, F., Liu, Z., and
Tudhope, A. W.: Modeling Evidence For Enhanced El Nino-Southern Oscillation
Amplitude During The Last Glacial Maximum, Paleoceanography, 19, PA3008,
https://doi.org/10.1029/2004PA001102, 2004. a, b
An, S.-I. and Jin, F.-F.: An Eigen Analysis of the Interdecadal Changes in
the
Structure and Frequency of ENSO Mode, Geophys. Res. Lett., 27, 2573–2576,
2000. a
An, Z.: The history and variability of the East Asian paleomonsoon climate,
Quaternary Sci. Rev., 19, 171–187,
https://doi.org/10.1016/S0277-3791(99)00060-8,
2000. a
Bjerknes, J.: Atlantic air-sea interaction, Adv. Geophys., 10, 1–82,
1964. a
Bush, A.: Simulating climates of the Last Glacial Maximum and of the
mod-Holocene: Wind changes, atmosphere-ocean interactions, and the tropical
thermocline, in: AGU Monograph series (Oceans and Rapid Past and Future
Climate Chnages: North-South Connections), edited by: Seidov, D.,
Haupt, B. J., and Maslin, M., https://doi.org/10.1029/GM126p0135, 2013. a
Cai, W., Borlace, S., Lengaigne, M.,d van Rensch, P., Collins, M., Vecchi,
G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H.,
Wang, G., Guilyardi, E., and Jin, F.-F.: Increasing
frequency of extreme El Niño events due to greenhouse warming, Nat.
Clim. Change, 4, 111–116, https://doi.org/10.1038/nclimate2100, 2014. a
Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins,
M., Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne, M., McPhaden, M. J.,
Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., and Wu, L.: ENSO and
greenhouse
warming, Nat. Clim. Change, 5, 849, https://doi.org/10.1038/nclimate2743, 2015. a
Chang, P., Wang, B., Li, T., and Ji, L.: Interactions between the seasonal
cycle and the Southern Oscillation – Frequency entrainment and chaos in a
coupled ocean-atmosphere model, Geophys. Res. Lett., 21, 2817–2820,
https://doi.org/10.1029/94GL02759,
1994. a
Coletti, A. J., DeConto, R. M., Brigham-Grette, J., and Melles, M.: A GCM
comparison of Pleistocene super-interglacial periods in relation to Lake
El'gygytgyn, NE Arctic Russia, Clim. Past, 11, 979–989,
https://doi.org/10.5194/cp-11-979-2015, 2015. a
Cook, K. and Held, I.: Stationary Waves of the Ice Age Climate, J. Climate,
1,
807–819, https://doi.org/10.1175/1520-0442(1988)001<0807:SWOTIA>2.0.CO;2,
1988. a
Crundwell, M., Scott, G., Naish, T., and Carter, L.: Glacial–interglacial
ocean climate variability from planktonic foraminifera during the
Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site
1123, Palaeogeogr. Palaeocl., 260, 202–229,
2008. a
Dai, N. and Arkin, P. A.: Twentieth century ENSO-related precipitation mean
states in twentieth century reanalysis, reconstructed precipitation and CMIP5
models, Clim. Dynam., 48, 3061–3083, 2017. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P., and
Bechtold, P.: The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, 2011. a
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface
Temperature Variability: Patterns and Mechanisms, Annu. Rev. Mar.
Sci., 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010. a
Dolan, A. M., Hunter, S. J., Hill, D. J., Haywood, A. M., Koenig, S. J.,
Otto-Bliesner, B. L., Abe-Ouchi, A., Bragg, F., Chan, W.-L., Chandler, M. A.,
Contoux, C., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Ramstein, G.,
Rosenbloom, N. A., Sohl, L., Stepanek, C., Ueda, H., Yan, Q., and Zhang, Z.:
Using results from the PlioMIP ensemble to investigate the Greenland Ice
Sheet during the mid-Pliocene Warm Period, Clim. Past, 11, 403–424,
https://doi.org/10.5194/cp-11-403-2015, 2015. a
Dyez, K. A. and Ravelo, A. C.: Dynamical changes in the tropical Pacific warm
pool and zonal SST gradient during the Pleistocene, Geophys. Res.
Lett., 41, 7626–7633, https://doi.org/10.1002/2014GL061639, 2014. a, b
Eisenman, I., Yu, L., and Tziperman, E.: Westerly wind bursts: ENSO's tail
rather than the dog?, J. Climate, 18, 5224–5238,
https://doi.org/10.1175/JCLI3588.1, 2005. a
Erb, M., Broccoli, A., Graham, N., Clement, A., Wittenberg, A., and Vecchi,
G.:
Response of the equatorial pacific seasonal cycle to orbital forcing,
J. Climate, 28, 9258–9276, https://doi.org/10.1175/JCLI-D-15-0242.1, 2015. a, b, c
Farneti, R., Molteni, F., and Kucharski, F.: Pacific interdecadal
variability driven by tropical-extratropical interactions, Clim. Dynam.,
42, 3337–3355, https://doi.org/10.1007/s00382-013-1906-6, 2014. a, b
He, C., Lin, A., Gu, D., Li, C., Zheng, B., Wu, B., and Zhou, T.: Using eddy
geopotential height to measure the western North Pacific subtropical high in
a warming climate, Theor. Appl. Climatol., 131, 681–691,
https://doi.org/10.1007/s00704-016-2001-9, 2018. a
Honisch, B., Hemming, N. G., Archer, D., Siddall, M., and McManus, J. F.:
Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene
Transition, Science, 324, 1551–1554, https://doi.org/10.1126/science.1171477,
2009. a
Hsu, P.-C., Li, T., Luo, J.-J., Murakami, H., Kitoh, A., and Zhao, M.:
Increase
of global monsoon area and precipitation under global warming: A robust
signal?, Geophys. Res. Lett., 39, 6701–6707, https://doi.org/10.1029/2012GL051037, 2012. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 1535 pp., 2013. a
Ji, X., Neelin, J. D., and Mechoso, C. R.: El Nino-Southern Oscillation Sea
Level Pressure Anomalies in the Western Pacific: Why Are They There?,
J. Climate, 28, 8860–8872, https://doi.org/10.1175/JCLI-D-14-00716.1, 2015. a
Jost, A., Lunt, D., Kageyama, M., Abe-Ouchi, A., Peyron, O., Valdes, P., and
Ramstein, G.: High-resolution simulations of the Last Glacial Maximum
climate over Europe: a solution to discrepancies with continental
palaeoclimatic reconstructions?, Clim. Dynam., 24, 557–590, 2005. a
Justino, F., Setzer, A., Bracegirdle, T. J., Mendes, D., Grimm, A., Dechiche,
G., and Schaefer, C. E. G. R.: Harmonic analysis of climatological
temperature over Antarctica: present day and greenhouse warming
perspectives, Int. J. Climatol., 31, 514–530, https://doi.org/10.1002/joc.2090,
2010. a
Justino, F., Stordal, F., Vizy, E. K., Cook, K. H., and Pereira, M. P. S.:
Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in
Coupled Climate-Vegetation Regional Model, Climate, 4, 3,
https://doi.org/10.3390/cli4010003, 2016. a
Karami, M., Herold, N., Berger, A., Yin, Q., and Muri, H.: State of the
tropical Pacific Ocean and its enhanced impact on precipitation over East
Asia during Marine Isotopic Stage 13, Clim. Dynam., 44, 807–825, 2015. a
Karamperidou, C., Di Nezio, P. N., Timmermann, A., Jin, F.-F., and Cobb,
K. M.:
The response of ENSO flavors to mid-Holocene climate: Implications for proxy
interpretation, Paleoceanography, 30, 527–547, https://doi.org/10.1002/2014PA002742,
2015. a, b
Kucharski, F., Molteni, F., and Bracco, A.: Decadal interactions between the
western tropical Pacific and the North Atlantic Oscillation, Clim. Dynam., 26,
79–91, 2006. a
Kucharski, F., Ikram, F., Molteni, F., Farneti, R., Kang, I.-S., No, H.-H.,
King, M. P., Giuliani, G., and Mogensen, K.: Atlantic forcing of Pacific
decadal variability, Clim. Dynam., 46, 2337–2351,
https://doi.org/10.1007/s00382-015-2705-z, 2016. a
Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E., and Haywood,
A. M.: High-amplitude variations in North Atlantic sea surface temperature
during the early Pliocene warm period, Paleoceanography, 24, pA2218,
https://doi.org/10.1029/2008PA001669, 2009. a
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E.: Modes of eastern
equatorial Pacific thermocline variability: Implications for ENSO dynamics
over the last glacial period, Paleoceanography, 24, PA3202,
https://doi.org/10.1029/2008PA001701, 2009. a
Levitus, S., Antonov, J. I., Boyer, T. P., and Stephens, C.: Warming of the
World Ocean, Science, 287, 2225–2229, https://doi.org/10.1126/science.287.5461.2225,
2000. a
Li, L., Li, Q., Tian, J., Wang, P., Wang, H., and Liu, Z.: A 4-Ma record of
thermal evolution in the tropical western Pacific and its implications on
climate change, Earth Planet. Sc. Lett., 309, 10–20,
https://doi.org/10.1016/j.epsl.2011.04.016, 2011. a, b, c
Li, T. and Philander, S.: On the seasonal cycle of the equatorial Atlantic
Ocean, J. Climate, 10, 813–817, 1997. a
Li, T. and Philander, S. G. H.: On the Annual Cycle of the Equatorial
Eastern
Pacific, J. Climate, 9, 2986–2998, 1996. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, pA1003,
https://doi.org/10.1029/2004PA001071, 2005. a
Liu, Z.: A simple model study of the forced response of ENSO to an external
periodic forcing, J. Climate, 15, 1088–1098,
https://doi.org/10.1175/1520-0442(2002)015<1088:ASMSOE>2.0.CO;2, 2002a. a, b
Liu, Z.: A Simple Model Study of ENSO Suppression by External Periodic
Forcing, J. Climate, 15, 1088–1098,
https://doi.org/10.1175/1520-0442(2002)015<1088:ASMSOE>2.0.CO;2, 2002b. a
Madec, G.: NEMO: the OPA ocean engine, Note du Pole de Modelisation, Note du
Pôle de modélisation de l'Institut Pierre-Simon Laplace
No. 27,
1–110, https://doi.org/10.1029/137GM07, 2008. a
Mantsis, D. F., Clement, A. C., Kirtman, B., Broccoli, A. J., and Erb, M. P.:
Precessional Cycles and Their Influence on the North Pacific and North
Atlantic Summer Anticyclones, J. Climate, 26, 4596–4611,
https://doi.org/10.1175/JCLI-D-12-00343.1, 2013. a
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A
Pacific interdecadal climate oscillation with impacts on salmon production,
B. Am. Meteorol. Soc., 78, 1069–1079, 1997. a
Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde,
R.,
and Haug, G. H.: Subpolar link to the emergence of the modern equatorial
Pacific cold tongue, Science, 328, 1550–1553, https://doi.org/10.1126/science.1184480,
2010. a
McClymont, E. L., Rosell-Melé, A., Giraudeau, J., Pierre, C., and Lloyd,
J. M.: Alkenone and coccolith records of the mid-Pleistocene in the
south-east Atlantic: implications for the index and South African climate,
Quaternary Sci. Rev., 24, 1559–1572,
https://doi.org/10.1016/j.quascirev.2004.06.024, 2005. a
Medina-Elizalde, M., Lea, D. W., and Fantle, M. S.: Implications of seawater
Mg∕Ca variability for Plio-Pleistocene tropical climate reconstruction, Earth
Planet. Sc. Lett., 269, 585–595,
https://doi.org/10.1016/j.epsl.2008.03.014, 2008. a, b
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V.,
DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L.,
Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosen, P., Tarasov, P., Vogel,
H., and Wagner, B.: 2.8 Million Years of Arctic Climate Change from Lake
El-gygytgyn, NE Russia, Science, 337, 315–320,
https://doi.org/10.1126/science.1222135,
2012. a, b, c
Naafs, B. D. A., Hefter, J., Gruetzner, J., and Stein, R.: Warming of surface
waters in the mid-latitude North Atlantic during Heinrich events,
Paleoceanography, 28, 153–163, https://doi.org/10.1029/2012PA002354, 2013. a, b
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F.,
Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R.,
Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P.,
Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N.,
Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood,
D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., Lufer, A.,
Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin,
R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman,
C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M.,
Vogel, S., Wilch, T., and Williams, T.: Obliquity-paced Pliocene West
Antarctic ice sheet oscillations, Nature, 458, 322–328, 2009. a
Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M.
P., Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C.,
Powers, H. H., Ryczek, M., Stone, G., and Wille, J.
D.: January 2016 extensive summer melt in West Antarctica favoured by
strong El Niño, Nature Commun., 8, 15799, https://doi.org/10.1038/ncomms15799, 2017. a
Oliveira, D., Goñi, M. F. S., Naughton, F., Polanco-Martínez, J.,
Jimenez-Espejo, F. J., Grimalt, J. O., Martrat, B., Voelker, A. H., Trigo,
R., Hodell, D., Abrantes, F., and Desprat, S.: Unexpected weak seasonal
climate in the western Mediterranean region during MIS 31, a high-insolation
forced interglacial, Quaternary Sci. Rev., 161, 1–17,
https://doi.org/10.1016/j.quascirev.2017.02.013,
2017. a
Parent, L., Ferry, N., Barnier, B., Garric, G., Bricaud, C., Testut, C. E.,
Le Galloudec, O., Lellouche, J. M., Greiner, E., Drevillon, M., and Rémy,
E.: GLOBAL eddy-permitting ocean reanalyses and simulations of the period
1992 to present, Proc. 20 Years Prog. Radar Altimetry, 1–31, 2013. a
Peltier, W. and Solheim, L.: The climate of the Earth at Last Glacial
Maximum:
statistical equilibrium state and a mode of internal variability, Quaternary
Sci. Rev., 23, 335–357, 2004. a
Pollard, D. and DeConto, R.: Modelling West Antarctic ice sheet growth and
collapse through the past five million years, Nature, 458, 329–332,
https://doi.org/10.1038/nature07809, 2009. a, b
Russon, T., Elliot, M., Sadekov, A., Cabioch, G., Corrège, T., and
De Deckker, P.: The mid-Pleistocene transition in the subtropical southwest
Pacific, Paleoceanography, 26, pA1211, https://doi.org/10.1029/2010PA002019,
2011. a, b
Scherer, R. P., Bohaty, S. M., Dunbar, R. B., Esper, O., Flores, J.-A.,
Gersonde, R., Harwood, D. M., Roberts, A. P., and Taviani, M.: Antarctic
records of precession-paced insolation-driven warming during early
Pleistocene Marine Isotope Stage 31, Geophys. Res. Lett., 35, L03505,
https://doi.org/10.1029/2007GL032254, 2008. a, b
Steig, E. J., Ding, Q., White, J. W., Küttel, M., Rupper, S. B., Neumann,
T. A., Neff, P. D., Gallant, A. J., Mayewski, P. A., Taylor, K. C. and
Hoffmann, G.:
Recent climate and ice-sheet changes in West Antarctica compared with the
past 2,000 years, Nat. Geosci., 6, 372–375, https://doi.org/10.1038/ngeo1778,
2013. a
Sun, Y., An, Z., Clemens, S. C., Bloemendal, J., and Vandenberghe, J.: Seven
million years of wind and precipitation variability on the Chinese Loess
Plateau, Earth Planet. Sc. Lett., 297, 525–535,
https://doi.org/10.1016/j.epsl.2010.07.004,
2010. a, b
Thompson, D. W. J. and Wallace, J. M.: Regional Climate Impacts of the
Northern Hemisphere Annular Mode, Science, 293, 85–89, 2001. a
Thomson, D. J.: Spectrum estimation and harmonic analysis, Proc. IEEE, 70,
1055–1094, 1982. a
Timmermann, A. and Jin, F.-F.: A Nonlinear Mechanism for Decadal El Niño
Amplitude Changes, Geophys. Res. Lett., 29, 3-1–3-4,
https://doi.org/10.1029/2001GL013369, 2002. a
Timmermann, A., Justino, F., Jin, F.-F., and Goosse, H.: Surface temperature
control in the North and tropical Pacific during the last glacial maximum,
Clim. Dynam., 23, 353–370, 2004. a
Timmermann, A., Lorenz, S., An, S., Clement, A., and Xie, S.: The effect of
orbital forcing on the mean climate and variability of the tropical Pacific,
J. Climate, 20, 4147–4159, https://doi.org/10.1175/JCLI4240.1, 2007. a
Toniazzo, T.: Properties of El Nino–Southern Oscillation in different
equilibrium climates with HadCM3, J. Climate, 19, 4854–4876,
https://doi.org/10.1175/JCLI3853.1, 2006. a
Tudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R., Chappell, J.,
Ellam, R. M., Lea, D. W., Lough, J. M., and Shimmield, G. B.: Variability in
the El Niño-Southern Oscillation through a glacial-interglacial cycle,
Science, 291, 1511–1517, 2001. a
Valcke, S.: The OASIS3 coupler: a European climate modelling community
software, Geosci. Model Dev., 6, 373–388,
https://doi.org/10.5194/gmd-6-373-2013, 2013. a
Voelker, A. H., Salgueiro, E., Rodrigues, T., Jimenez-Espejo, F. J., Bahr,
A.,
Alberto, A., Loureiro, I., Padilha, M., Rebotim, A., and Rohl, U.:
Mediterranean Outflow and surface water variability off southern Portugal
during the early Pleistocene: A snapshot at Marine Isotope Stages 29 to 34
(1020–1135 ka), Global Planet. Change, 133, 223–237,
https://doi.org/10.1016/j.gloplacha.2015.08.015, 2015. a
Wen, C., Kumar, A., Xue, Y., and McPhaden, M.: Changes in tropical Pacific
thermocline depth and their relationship to ENSO after 1999, J.
Climate, 27, 7230–7249, 2014. a
Wilson, A. B., Bromwich, D. H., and Hines, K. M.: Simulating the mutual
forcing of anomalous high-southern latitude atmospheric circulation by El
Niño flavors and the Southern Annular Mode, J. Climate, 29, 2291–2309,
https://doi.org/10.1175/JCLI-D-15-0361.1,
2016. a, b, c
Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Eric Freeman, J.,
Berry,
D. I., Brohan, P., Kent, E. C., Reynolds, R. W., Smith, S. R., and Wilkinson,
C.: ICOADS Release 2.5: extensions and enhancements to the surface marine
meteorological archive, Int. J. Climatol., 31, 951–967,
https://doi.org/10.1002/joc.2103, 2011. a
Yim, S.-Y., Wang, B., Liu, J., and Wu, Z.: A comparison of regional monsoon
variability using monsoon indices, Clim. Dynam., 43, 1423–1437, 2014. a
Yin, Q. and Berger, A.: Individual contribution of insolation and CO2
to the
interglacial climates of the past 800,000 years, Clim. Dynam., 38,
709–724, https://doi.org/10.1007/s00382-011-1013-5, 2012.
a, b
Yin, Q. Z., Singh, U. K., Berger, A., Guo, Z. T., and Crucifix, M.: Relative
impact of insolation and the Indo-Pacific warm pool surface temperature on
the East Asia summer monsoon during the MIS-13 interglacial, Clim. Past, 10,
1645–1657, https://doi.org/10.5194/cp-10-1645-2014, 2014. a
Zebiak, S. E. and Cane, M. A.: A model El Niño-Southern Oscillation, Mon.
Weather Rev., 115, 2262–2278, 1987. a
Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas,
R., Nusbaumer, J., Wong, T., Jahn, A., and Tabor, C.: Reduced ENSO
variability at the LGM revealed by an isotope-enabled Earth system model,
Geophys. Res. Lett., 44, 6984–6992, https://doi.org/10.1002/2017GL073406, 2017. a
Short summary
This study evaluates the impact of enhanced seasonality characteristic of the Marine Isotope Stage 31 (MIS31) on the El Niño–Southern Oscillation (ENSO). Based upon coupled climate simulations driven by present-day (CTR) and MIS31 boundary conditions, we demonstrate that MIS31 does show a strong power spectrum at interannual timescales but the absence of decadal periodicity. The implementation of the MIS31 conditions results in a distinct global monsoon system and its link to the ENSO.
This study evaluates the impact of enhanced seasonality characteristic of the Marine Isotope...