Articles | Volume 15, issue 2
https://doi.org/10.5194/cp-15-647-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-15-647-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The climate of Granada (southern Spain) during the first third of the 18th century (1706–1730) according to documentary sources
Fernando S. Rodrigo
CORRESPONDING AUTHOR
Department of Chemistry and Physics, University of Almería, 04120
Almería, Spain
Related authors
V. Millán and F. S. Rodrigo
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-3877-2014, https://doi.org/10.5194/cpd-10-3877-2014, 2014
Revised manuscript not accepted
V. Millán and F. S. Rodrigo
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-3877-2014, https://doi.org/10.5194/cpd-10-3877-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Historical Records | Timescale: Decadal-Seasonal
Weather and climate and their human impacts and responses during the Thirty Years' War in central Europe
A global inventory of quantitative documentary evidence related to climate since the 15th century
The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region
Analysis of early Japanese meteorological data and historical weather documents to reconstruct the winter climate between the 1840s and the early 1850s
Climate indices in historical climate reconstructions: a global state of the art
Could phenological records from Chinese poems of the Tang and Song dynasties (618–1279 CE) be reliable evidence of past climate changes?
Central Europe, 1531–1540 CE: The driest summer decade of the past five centuries?
“Everything is scorched by the burning sun”: missionary perspectives and experiences of 19th- and early 20th-century droughts in semi-arid central Namibia
Patterns in data of extreme droughts/floods and harvest grades derived from historical documents in eastern China during 801–1910
The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements
The climate in south-east Moravia, Czech Republic, 1803–1830, based on daily weather records kept by the Reverend Šimon Hausner
Extracting weather information from a plantation document
Variation of extreme drought and flood in North China revealed by document-based seasonal precipitation reconstruction for the past 300 years
300 years of hydrological records and societal responses to droughts and floods on the Pacific coast of Central America
Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years
Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands
Endless cold: a seasonal reconstruction of temperature and precipitation in the Burgundian Low Countries during the 15th century based on documentary evidence
Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption?
Documentary-derived chronologies of rainfall variability in Antigua, Lesser Antilles, 1770–1890
An underestimated record breaking event – why summer 1540 was likely warmer than 2003
Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps
Climate variability in Andalusia (southern Spain) during the period 1701–1850 based on documentary sources: evaluation and comparison with climate model simulations
Spring-summer temperatures reconstructed for northern Switzerland and southwestern Germany from winter rye harvest dates, 1454–1970
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Angela-Maria Burgdorf
Clim. Past, 18, 1407–1428, https://doi.org/10.5194/cp-18-1407-2022, https://doi.org/10.5194/cp-18-1407-2022, 2022
Short summary
Short summary
This comprehensive inventory of quantitative documentary evidence related to climate extending back to 1400 CE promotes the first ever global perspective on documentary climate records. It lays the foundation for incorporating documentary evidence from archives of societies into global-scale climate reconstructions, complementing (early) instrumental measurements and natural climate proxies. Documentary records are particularly relevant in seasons and regions poorly covered by natural proxies.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Junpei Hirano, Takehiko Mikami, and Masumi Zaiki
Clim. Past, 18, 327–339, https://doi.org/10.5194/cp-18-327-2022, https://doi.org/10.5194/cp-18-327-2022, 2022
Short summary
Short summary
The East Asian winter monsoon causes orographic snowfall over the windward side of the Japanese islands (facing the Sea of Japan and the northwesterly winter monsoon flow) and negative temperature anomalies around Japan. In this study, we reconstruct the outbreak of the winter monsoon around Japan for the winter from the 1840s to the early 1850s by using daily weather information recorded in old Japanese diaries and early daily instrumental temperature data.
David J. Nash, George C. D. Adamson, Linden Ashcroft, Martin Bauch, Chantal Camenisch, Dagomar Degroot, Joelle Gergis, Adrian Jusopović, Thomas Labbé, Kuan-Hui Elaine Lin, Sharon D. Nicholson, Qing Pei, María del Rosario Prieto, Ursula Rack, Facundo Rojas, and Sam White
Clim. Past, 17, 1273–1314, https://doi.org/10.5194/cp-17-1273-2021, https://doi.org/10.5194/cp-17-1273-2021, 2021
Short summary
Short summary
Qualitative evidence contained within historical sources provides an important record of climate variability for periods prior to the onset of systematic meteorological data collection. Before such evidence can be used for climate reconstructions, it needs to be converted to a quantitative format. A common approach is the generation of ordinal-scale climate indices. This review, written by members of the PAGES CRIAS working group, provides a global synthesis of the use of the index approach.
Yachen Liu, Xiuqi Fang, Junhu Dai, Huanjiong Wang, and Zexing Tao
Clim. Past, 17, 929–950, https://doi.org/10.5194/cp-17-929-2021, https://doi.org/10.5194/cp-17-929-2021, 2021
Short summary
Short summary
There are controversies about whether poetry can be used as one of the evidence sources for past climate changes. We tried to discuss the reliability and validity of phenological records from poems of the Tang and Song dynasties (618–1279 CE) by analyzing their certainties and uncertainties. A standardized processing method for phenological records from poems is introduced. We hope that this study can provide a reference for the extraction and application of phenological records from poems.
Rudolf Brázdil, Petr Dobrovolný, Martin Bauch, Chantal Camenisch, Andrea Kiss, Oldřich Kotyza, Piotr Oliński, and Ladislava Řezníčková
Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, https://doi.org/10.5194/cp-16-2125-2020, 2020
Short summary
Short summary
Previous studies related to historical droughts in the Czech Lands showed that the summers of 1531–1540 could represent the driest summer decade of the past 500 years. To confirm this hypothesis, documentary data from central Europe were collected and presented for individual summers and complemented by maps of precipitation and drought distribution to document corresponding weather patterns and their various impacts. The main droughts occurred in 1532, 1534–1536, 1538, and particularly in 1540.
Stefan Grab and Tizian Zumthurm
Clim. Past, 16, 679–697, https://doi.org/10.5194/cp-16-679-2020, https://doi.org/10.5194/cp-16-679-2020, 2020
Short summary
Short summary
Here we describe the unique nature of droughts over semi-arid central Namibia (southern Africa) between 1850 and 1920. We establish temporal shifts in the influence and impact that historical droughts had on society and the environment during this period. The paper demonstrates and argues that human experience and the associated reporting of drought events depend strongly on social, environmental, spatial, and societal developmental situations and perspectives.
Zhixin Hao, Maowei Wu, Jingyun Zheng, Jiewei Chen, Xuezhen Zhang, and Shiwei Luo
Clim. Past, 16, 101–116, https://doi.org/10.5194/cp-16-101-2020, https://doi.org/10.5194/cp-16-101-2020, 2020
Short summary
Short summary
Using reconstructed extreme drought/flood chronologies and grain harvest series derived from historical documents, it is found that the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated with lower reconstructed harvests during 801–1910. The association was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which indicates that a warm climate might weaken the impact of extreme drought on poor harvests.
Rudolf Brázdil, Gaston R. Demarée, Andrea Kiss, Petr Dobrovolný, Kateřina Chromá, Miroslav Trnka, Lukáš Dolák, Ladislava Řezníčková, Pavel Zahradníček, Danuta Limanowka, and Sylvie Jourdain
Clim. Past, 15, 1861–1884, https://doi.org/10.5194/cp-15-1861-2019, https://doi.org/10.5194/cp-15-1861-2019, 2019
Short summary
Short summary
The paper presents analysis of the 1842 drought in Europe (except the Mediterranean) based on documentary data and instrumental records. First the meteorological background of this drought is shown (seasonal distribution of precipitation, annual variation of temperature, precipitation and drought indices, synoptic reasons) and effects of drought on water management, agriculture, and in society are described in detail with particular attention to human responses.
Rudolf Brázdil, Hubert Valášek, Kateřina Chromá, Lukáš Dolák, Ladislava Řezníčková, Monika Bělínová, Adam Valík, and Pavel Zahradníček
Clim. Past, 15, 1205–1222, https://doi.org/10.5194/cp-15-1205-2019, https://doi.org/10.5194/cp-15-1205-2019, 2019
Short summary
Short summary
The paper analyses a weather diary of the Reverend Šimon Hausner from Buchlovice in south-east Moravia, Czech Republic, in the 1803–1831 period. From daily weather records, series of numbers of precipitation days, cloudiness, strong winds, fogs, and thunderstorms were created. These records were further used to interpret weighted temperature and precipitation indices. Records of Šimon Hausner represent an important contribution to the study of climate fluctuations on the central European scale.
Gregory Burris, Jane Washburn, Omar Lasheen, Sophia Dorribo, James B. Elsner, and Ronald E. Doel
Clim. Past, 15, 477–492, https://doi.org/10.5194/cp-15-477-2019, https://doi.org/10.5194/cp-15-477-2019, 2019
Short summary
Short summary
Historical documents are full of untapped data on past climate conditions. Our paper sets out a method for extracting this information into a database that is easily utilized by climate scientists. We apply this method to a document from Shirley Plantation covering the years 1816–1842. We then provide two case studies to demonstrate the validity and utility of the new method and database.
Jingyun Zheng, Yingzhuo Yu, Xuezhen Zhang, and Zhixin Hao
Clim. Past, 14, 1135–1145, https://doi.org/10.5194/cp-14-1135-2018, https://doi.org/10.5194/cp-14-1135-2018, 2018
Short summary
Short summary
We investigated the decadal variations of extreme droughts and floods in North China using a 17-site seasonal precipitation reconstruction from a unique historical archive. Then, the link of extreme droughts and floods with ENSO episodes and large volcanic eruptions was discussed. This study helps us understand whether the recent extreme events observed by instruments exceed the natural variability at a regional scale, which may be useful for adaptation to extremes and disasters in the future.
Alvaro Guevara-Murua, Caroline A. Williams, Erica J. Hendy, and Pablo Imbach
Clim. Past, 14, 175–191, https://doi.org/10.5194/cp-14-175-2018, https://doi.org/10.5194/cp-14-175-2018, 2018
Short summary
Short summary
This study reconstructs a new semi-quantitative rainfall index for the Pacific coast of Central America using documentary sources for the period 1640 to 1945. In addition, we explore the various mechanisms and processes that may explain inter-annual and inter-decadal rainfall variability over the Pacific coast of Central America.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Rudolf Brázdil, Ladislava Řezníčková, Hubert Valášek, Lukáš Dolák, and Oldřich Kotyza
Clim. Past, 12, 1361–1374, https://doi.org/10.5194/cp-12-1361-2016, https://doi.org/10.5194/cp-12-1361-2016, 2016
Short summary
Short summary
The paper deals with climatic and human impacts of the strong Tambora (Indonesia) volcanic eruption in April 1815 over the Czech Lands territory based on analysis of documentary data and instrumental records. While climatic effects were related particularly to summers 1815 and 1816 (1816 is known as "a Year Without Summer"), quite important were societal impacts represented after bad harvest by steep increase in prices and shortages of food.
C. Camenisch
Clim. Past, 11, 1049–1066, https://doi.org/10.5194/cp-11-1049-2015, https://doi.org/10.5194/cp-11-1049-2015, 2015
Short summary
Short summary
This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence. Approximately 3000 written records derived from about 100 different sources were examined and converted into seasonal seven-degree indices of temperature and precipitation.
A. Guevara-Murua, C. A. Williams, E. J. Hendy, A. C. Rust, and K. V. Cashman
Clim. Past, 10, 1707–1722, https://doi.org/10.5194/cp-10-1707-2014, https://doi.org/10.5194/cp-10-1707-2014, 2014
A. J. Berland, S. E. Metcalfe, and G. H. Endfield
Clim. Past, 9, 1331–1343, https://doi.org/10.5194/cp-9-1331-2013, https://doi.org/10.5194/cp-9-1331-2013, 2013
O. Wetter and C. Pfister
Clim. Past, 9, 41–56, https://doi.org/10.5194/cp-9-41-2013, https://doi.org/10.5194/cp-9-41-2013, 2013
H. Castebrunet, N. Eckert, and G. Giraud
Clim. Past, 8, 855–875, https://doi.org/10.5194/cp-8-855-2012, https://doi.org/10.5194/cp-8-855-2012, 2012
F. S. Rodrigo, J. J. Gómez-Navarro, and J. P. Montávez Gómez
Clim. Past, 8, 117–133, https://doi.org/10.5194/cp-8-117-2012, https://doi.org/10.5194/cp-8-117-2012, 2012
O. Wetter and C. Pfister
Clim. Past, 7, 1307–1326, https://doi.org/10.5194/cp-7-1307-2011, https://doi.org/10.5194/cp-7-1307-2011, 2011
Cited articles
ACAF: Archivo Capitular de Arcos de la Frontera, in: Libro Capitular y
Cabildo, Rogativa a Na Sa de las Nieves, Arcos de la Frontera, 1723.
AHVM: Archivo de la Hermandad de la Virgen de la Merced, Rogativas a la
Virgen de la Merced, Jerez de la Frontera, 1722.
Alberola Romá, A.: Los Cambios Climáticos. La Pequeña edad de
Hielo en España, Cátedra, Madrid, España, 341 pp. 2014.
Alcoforado, M. J., Vaquero, J. M., Trigo, R. M., and Taborda, J. P.: Early
Portuguese meteorological measurements (18th century), Clim. Past, 8,
353–371, https://doi.org/10.5194/cp-8-353-2012, 2012.
Anduaga Egaña, A.: Meteorología, Ideología y Sociedad en la
España comtemporánea, Consejo Superior de Investigaciones
Científicas, Madrid, España, 450 pp., 2012.
Barriendos, M., Ruiz-Bellet, J. L., Tuset, J., Mazón, J., Balasch, J. C.,
Pino, D., and Ayala, J. L.: The “Prediflood” database of historical floods
in Catalonia (NE Iberian Peninsula) AD 1035–2013, and its potential
applications in flood analysis, Hydrol. Earth Syst. Sci., 18, 4807–4823,
https://doi.org/10.5194/hess-18-4807-2014, 2014.
Brázdil, R., Pfister, C., Wanner, H., von Storch, H., and Luterbacher,
J.: Historical climatology in Europe – the state of the art, Climatic
Change, 70, 363–430, https://doi.org/10.1007/S10584-005-5924-1, 2005.
Brázdil, R., Kiss, A., Luterbacher, J., and Valásek, H.: Weather
patterns in eastern Slovakia 1717–1730, based on records from the Breslau
meteorological network, Int. J. Climatol., 28, 1639–1651,
https://doi.org/10.1002/joc.1667, 2008.
Brázdil, R., Dobrovolný, P., Luterbacher, J., Moberg, A., Pfister,
C., Wheeler, D., and Zorita, E.: European climate of the past 500 years: new
challenges for historical climatology, Climatic Change, 101, 7–40, 2010.
Brönnimann, S., Brugnara, Y., Allan, R. J., Brunyet, M., Compo, G. P.,
Crouthamel, R. I., Jones, P. D., Jourdain, S., Luterbacher, J., Siegmund, P.,
Valente, M. A., and Wilkinson, C. W.: A roadmap to climate data rescue
services, Geosci. Data J., 5, 28–39, 2018.
Brunet, M., Saladié, O., Jones, P., Sigró, J., Aguilar, E., Moberg,
A., Lister, D., Walther, A, Lopez, D., and Almarza, C.: The development of a
new dataset of Spanish daily adjusted temperature series (SDATS)
(1850–2003), Int. J. Climatol., 26, 1777–1802, 2006.
Bullón, T.: Winter temperatures in the second half of the sixteenth
century in the central area of the Iberian Peninsula, Clim. Past, 4,
357–367, https://doi.org/10.5194/cp-4-357-2008, 2008.
Camuffo, D.: Calibration and instrumental errors in early measurements of air
temperature, Climatic Change, 53, 297–329, https://doi.org/10.1023/A:1014914707832,
2002.
Demareé, G. R.: The neo-hippocratic hypothesis – an integrated 18th
century view on medicine, climate and environment, Zeszyty Naukowe
Uniwersutetu Jagiellonskiego, MCLXXXVI, Prace Geograficzne, Zeszyt, 102,
515–518, 1996.
Domínguez-Castro, F., García-Herrera, R., Ribera, P., and Barriendos,
M.: A shift in the spatial pattern of Iberian droughts during the 17th
century, Clim. Past, 6, 553–563, https://doi.org/10.5194/cp-6-553-2010,
2010.
Domínguez-Castro, F., Trigo, R. M., and Vaquero, J. M.: The first
meteorological measurements in the Iberian Peninsula: evaluationg the storm
of November 1724, Climatic Change, 118, 443–455,
https://doi.org/10.1007/s10584-012-0628-9, 2013.
Domínguez-Castro, F., Vaquero, J. M., Rodrigo, F. S., Farrona, M. M.,
Gallego, M. C., García-Herrera, R., Barriendos, M., and
Sánchez-Lorenzo, A.: Early Spanish Meteorological records (1780–1850),
Int. J. Climatol., 34, 593–603, https://doi.org/10.1002/joc.3709, 2014.
Fahrenheit, D. G.: Experimenta & observationes de congelatione aquæ in
vacuo factæ, Philosophical Transactions, 1724, 78–84, 1724.
Fernández-Montes, S., Seubert, S., Rodrigo, F. S., and Hertig, E.:
Wintertime circulation types over the Iberian Peninsula: long-term
variability and relationships with weather extremes, Clim. Res., 53,
205–227, https://doi.org/10.3354/cr01095, 2012.
Fernández-Montes, S., Rodrigo, F. S., Seubert, S., and Sousa, P. M.:
Spring and summer extreme temperatures in Iberia during last century in
relation to circulation types, Atmos. Res., 127, 154–177,
https://doi.org/10.1016/j.atmosres.2012.07.013, 2013.
Font Tullot, I.: Historia del clima de España, Instituto nacional de
Meteorología, Madrid, España, 297 pp., 1988 (in Spanish).
Fragoso, M., Marques, D., Santos, J. A., Alcoforado, M. J., Amorim, I.,
García, J. C., Silva, L., and Nunes, M. F.: Climatic extremes in
Portugal in the 1780s based on documentary and instrumental records, Clim.
Res., 66, 151–159, https://doi.org/10.3354/cr01337, 2015.
Gil Albarracín, A. (Ed.): Francisco Fernández Navarrete 1732. Cielo
y suelo granadino (transcripción, edición, estudio e índices),
GBGeditora, Almería-Barcelona, 1997.
Giorgi, F.: Climate Change hot-spots, Geophys. Res. Lett., 33, 217–222,
2006.
Guijarro, V.: El barómetro y los proyectos meteorológicos de la
Ilustración: el caso español, ENDOXA Series Filosóficas, 19,
159–190, 2005.
INM: Guía resumida del Clima en España 1971–2000, Instituto
Nacional de Meteorología, Madrid, 257 pp., 2004.
Jones, P. D. and Briffa, K. R.: Unsual climate in northwest Europe during the
period 1730 to 1745 based on instrumental and documentary data, Climatic
Change, 79, 361–379, 2006.
Luna, M. Y., Guijarro, J. A., and López, J. A.: A monthly precipitation
database for Spain (1851–2008): reconstruction, homogeneity and trends, Adv.
Sci. Res., 8, 1–4, https://doi.org/10.5194/asr-8-1-2012, 2012.
Luterbacher, J., Xoplaki, E., Dietrich, D., Rickli, R., Jacobeit, J., Beck,
C., Gyalistras, D., Schmutz, C., and Wanner, H.: Reconstruction of sea level
pressure fields over the Eastern North Atlantic and Europe back to 1500,
Clim. Dynam., 18, 545–561, https://doi.org/10.1007/s00382-001-0196-6, 2002.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.:
European seasonal and annual temperature variability, trends and extremes
since 1500, Science, 303, 1499–1503, https://doi.org/10.1126/science.1093877, 2004.
Luterbacher, J., Liniger, M. A., Menzel, A., Estrella, N., Della-Marta, P.
M., Pfister, C., Rutishauser, T., and Xoplaki, E.: The exceptional European
warmth of autumn 2006 and winter 2007: Historical context, the underlying
dynamics and its phenological impact, Geophys. Res. Lett., 34, L12704,
https://doi.org/10.1029/2007GL029951, 2007.
Manrique, E. and Fernández-Cancio, A.: Extreme climatic events in
dendroclimatic reconstructions from Spain, Climatic Change, 44, 123–138,
2000.
Navarrete, F. F.: Cielo y suelo Granadino. Idea de la Historia Natural de
Granada en varias observaciones Físicas, Médicas y Botánicas,
Biblioteca y Archivo de la Provincia Franciscana de Cataluña, Barcelona,
Ms. 1/E/8, 1732.
Navarrete, F. F.: Efemérides barométrico-médicas matritenses,
Biblioteca de la Universidad de Sevilla, sgn: 110-57, available at:
http://fondosdigitales.us.es (last access: 28 March 2019), 1737.
Nicault, A., Alleaume, S., Brewer, S., Carrer, M., Nola, P., and Guiot, J.:
Mediterranean drought fluctuation during the last 500 years based on
tree-ring data, Clim. Dynam., 31, 227–245, https://doi.org/10.1007/s00382-007-0349-3,
2008.
Owens, M. J., Lockwood, M., Hawkins, E., Usoskin, I., Jones, G. S., Barnard,
L., Schurer, A., and Fasullo, J.: The Maunder Minimum and the Little Ice Age:
an update from recent recosntructions and climate simulations, J. Space
Weather Spac., 7, A33, https://doi.org/10.1051/swsc/2017034, 2017.
Rodrigo, F. S.: A new method to reconstruct low-frequency climatic
variability from documentary sources: application to winter rainfall series
in Andalusia (southern Spain) from 1501 to 2000, Climatic Change, 87,
471–487, 2008.
Rodrigo, F. S.: Afecciones meteorológicas: Medicina y Meteorología
en Andalucía 1754–1852, Obradoiro de Historia Moderna, 25, 95–113,
https://doi.org/10.15304/ohm.25.2944, 2016.
Rodrigo, F. S.: Meteorological observations in Granada 1706–1730, Data
Repository, University of Almería, Spain,
http://hdl.handle.net/10835/6248 (last access: 28 March 2019), 2018a.
Rodrigo, F. S.: A review of the Little Ice Age in Andalusia (southern Spain):
results and research challengues, Geographical Research Letters, 44,
245–265, https://doi.org/10.18172/cig.3316, 2018b.
Rodrigo, F. S., Gómez-Navarro, J. J., and Montávez Gómez, J. P.:
Climate variability in Andalusia (southern Spain) during the period
1701–1850 based on documentary sources: evaluation and comparison with
climate model simulations, Clim. Past, 8, 117–133,
https://doi.org/10.5194/cp-8-117-2012, 2012.
Rutherford, S., Mann, M. E., and Osborn, T. J.: Proxy-based Northern
Hemisphere surface temperature reconstructions: sensitivity to method,
predictor network, target season, and target domain, J. Climate, 18,
2308–2329, 2005.
Taborda, J. P., Alcoforado, M. J., and García, J. C.: The climate of
southern Portugal during the 18th century: a reconstruction based on
descriptive and instrumental sources, in: Geoecologia, Rel. 2, Centro de
Estudios Geográficos, Lisboa, 2004.
Vittori, O. and Mestitz, A.: Calibration of the “Florentine Little
Thermometer”, Endeavour, 5, 113–118, 1981.
Wheeler, D.: Early instrumental weather data from Cádiz: a study of late
eighteenth and early nineteenth century records, Int. J. Climatol., 15,
801–810, https://doi.org/10.1002/joc.3370150707, 1995.
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic
Press, San Diego, USA, 464 pp., 1995.
Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean,
M., and Wanner, H.: European spring and autumn temperature variability and
change of extremes over the last half millenium, Geophys. Res. Lett., 32,
L15713, https://doi.org/10.1029/2005GL023424, 2005.
Zhang, X., Hegerl, G., Zwiers, F. W., and Kenyon, J.: Avoiding Inhomegeneity
in Percentile-based Indices of Temperature Extremes, J. Climate, 18,
1641–1651, 2005.
Zúñiga, B. L.: Anales eclesiásticos y seglares de la M.N. y M.L.
ciudad de Sevilla: que comprenden la Olimpiada ó Lustro de la Corte en
ella; con dos Apéndices, uno desde el año de 1671 hasta el de 1728, y
otro desde 1734 hasta el de 1746, Biblioteca de Andalucía, Spain, Sgn.:
ANT-XVIII-470, 1747.
Short summary
The climate of Granada (southern Spain) during the first third of the 18th century is reconstructed. Results suggest that climatic conditions were similar to those of the first decades of the 20th century, when the global warming signal was of less importance than today. In addition, the paper presents the instrumental data taken in Granada in 1729, probably the first instrumental meteorological data recorded in Spain. Some extreme events, such as the cold wave of winter 1729, are studied.
The climate of Granada (southern Spain) during the first third of the 18th century is...