Articles | Volume 15, issue 2
https://doi.org/10.5194/cp-15-617-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/cp-15-617-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-decadal atmospheric and marine climate variability in southern Iberia during the mid- to late-Holocene
Julien Schirrmacher
CORRESPONDING AUTHOR
CRC 1266, Christian-Albrechts-Universität, Kiel, 24118, Germany
Leibniz-Laboratory for Radiometric Dating and Stable Isotope Research,
Christian-Albrechts-Universität, Kiel, 24118, Germany
Mara Weinelt
CRC 1266, Christian-Albrechts-Universität, Kiel, 24118, Germany
Thomas Blanz
Department of Geosciences, Christian-Albrechts-Universität, Kiel,
24118, Germany
Nils Andersen
Leibniz-Laboratory for Radiometric Dating and Stable Isotope Research,
Christian-Albrechts-Universität, Kiel, 24118, Germany
Emília Salgueiro
Div. Geologia e Georecursos Marinhos, Instituto Português do Mar e
da Atmosfera (IPMA), Lisbon, 1749-077, Portugal
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus
de Gambelas, 8005-139 Faro, Portugal
Ralph R. Schneider
CRC 1266, Christian-Albrechts-Universität, Kiel, 24118, Germany
Leibniz-Laboratory for Radiometric Dating and Stable Isotope Research,
Christian-Albrechts-Universität, Kiel, 24118, Germany
Department of Geosciences, Christian-Albrechts-Universität, Kiel,
24118, Germany
Related authors
No articles found.
Aline Martins Mega, Teresa Rodrigues, Emilia Salgueiro, Maria Padilha, Henning Kuhnert, and Antje H. L. Voelker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3185, https://doi.org/10.5194/egusphere-2024-3185, 2024
Short summary
Short summary
Our research explores climatic changes during the Early-Middle Pleistocene (1006–750 kilo years) on the southern Portuguese margin. We found that warm, subtropical gyre related conditions dominated. However, those conditions were occasionally interrupted by extreme cold events during the glacial periods. Our data shows that these cold events, linked to changes in the North Atlantic’s circulation, reached as far south as 36° N and significantly impacting marine ecosystems in the surface ocean.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
Fátima Abrantes, Teresa Rodrigues, Marta Rufino, Emília Salgueiro, Dulce Oliveira, Sandra Gomes, Paulo Oliveira, Ana Costa, Mário Mil-Homens, Teresa Drago, and Filipa Naughton
Clim. Past, 13, 1901–1918, https://doi.org/10.5194/cp-13-1901-2017, https://doi.org/10.5194/cp-13-1901-2017, 2017
Short summary
Short summary
Reconstructions of the last 2000-year climatic conditions along the Iberian Margin, a vulnerable region regarding current global warming, reveal a long-term cooling in sea surface temperature (SST) ending with the 19th century and centennial-scale variability that exposes warm SSTs throughout the first 1300 years followed by the colder Little Ice Age. The Industrial Era starts by 1800 CE, with an SST rise and a second increase in SST at ca. 1970 CE, particularly marked in the southern region.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Fátima Abrantes, Teresa Rodrigues, Marta Rufino, Emília Salgueiro, Dulce Oliveira, Sandra Gomes, Paulo Oliveira, Ana Costa, Mário Mil-Homens, Teresa Drago, and Filipa Naughton
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-39, https://doi.org/10.5194/cp-2017-39, 2017
Manuscript not accepted for further review
Short summary
Short summary
This work presents proxy reconstructions of the last 2000 yr climatic conditions along the eastern Margin of the Iberian Peninsula, a vulnerable region regarding current global warming. Sea Surface Temperature shows a long-term cooling ending with the 19th century, and centennial scale variability that exposes 1300 yr of warm conditions, up to the end of the Medieval Warm Period (MWP), followed by a 1 ºC colder Little Ice Age. The Industrial Era starts by 1800 CE with a rise to MWP values.
Diana Zúñiga, Celia Santos, María Froján, Emilia Salgueiro, Marta M. Rufino, Francisco De la Granda, Francisco G. Figueiras, Carmen G. Castro, and Fátima Abrantes
Biogeosciences, 14, 1165–1179, https://doi.org/10.5194/bg-14-1165-2017, https://doi.org/10.5194/bg-14-1165-2017, 2017
Short summary
Short summary
Diatoms are one of the most important primary producers in highly productive coastal regions. Their silicified valves are susceptible to escape from the upper water column and be preserved in the sediment record, and thus are frequently used to reconstruct environmental conditions in the past from sediment cores. Here, we assess how water column diatom’s community in the NW Iberian coastal upwelling system is seasonally transferred from the surface to the seafloor sediments.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
Related subject area
Subject: Atmospheric Dynamics | Archive: Marine Archives | Timescale: Holocene
Signals of Holocene climate transition amplified by anthropogenic land-use changes in the westerly–Indian monsoon realm
Glacial to interglacial climate variability in the southeastern African subtropics (25–20° S)
Extreme storms during the last 6500 years from lagoonal sedimentary archives in the Mar Menor (SE Spain)
Changes in East Asian summer monsoon precipitation during the Holocene deduced from a freshwater flux reconstruction of the Changjiang (Yangtze River) based on the oxygen isotope mass balance in the northern East China Sea
Tracking atmospheric and riverine terrigenous supplies variability during the last glacial and the Holocene in central Mediterranean
Holocene evolution of summer winds and marine productivity in the tropical Indian Ocean in response to insolation forcing: data-model comparison
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Annette Hahn, Enno Schefuß, Jeroen Groeneveld, Charlotte Miller, and Matthias Zabel
Clim. Past, 17, 345–360, https://doi.org/10.5194/cp-17-345-2021, https://doi.org/10.5194/cp-17-345-2021, 2021
Laurent Dezileau, Angel Pérez-Ruzafa, Philippe Blanchemanche, Jean-Philippe Degeai, Otmane Raji, Philippe Martinez, Concepcion Marcos, and Ulrich Von Grafenstein
Clim. Past, 12, 1389–1400, https://doi.org/10.5194/cp-12-1389-2016, https://doi.org/10.5194/cp-12-1389-2016, 2016
Short summary
Short summary
Amongst the most devastating marine catastrophes that can occur in coastal areas are storms and tsunamis, which may seriously endanger human society. In a sediment core from the Mar Menor (SE Spain), we discovered eight coarse-grained layers which document marine incursions during periods of intense storm activity or tsunami events. These periods of surge events seem to coincide with the coldest periods in Europe during the late Holocene, suggesting a control by a climatic mechanism.
Y. Kubota, R. Tada, and K. Kimoto
Clim. Past, 11, 265–281, https://doi.org/10.5194/cp-11-265-2015, https://doi.org/10.5194/cp-11-265-2015, 2015
V. Bout-Roumazeilles, N. Combourieu-Nebout, S. Desprat, G. Siani, J.-L. Turon, and L. Essallami
Clim. Past, 9, 1065–1087, https://doi.org/10.5194/cp-9-1065-2013, https://doi.org/10.5194/cp-9-1065-2013, 2013
F. C. Bassinot, C. Marzin, P. Braconnot, O. Marti, E. Mathien-Blard, F. Lombard, and L. Bopp
Clim. Past, 7, 815–829, https://doi.org/10.5194/cp-7-815-2011, https://doi.org/10.5194/cp-7-815-2011, 2011
Cited articles
Abrantes, F., Rodrigues, T., Rufino, M., Salgueiro, E., Oliveira, D., Gomes,
S., Oliveira, P., Costa, A., Mil-Homens, M., Drago, T., and Naughton, F.: The
climate of the Common Era off the Iberian Peninsula, Clim. Past, 13,
1901–1918, https://doi.org/10.5194/cp-13-1901-2017, 2017.
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and
Clark, P. U.: Geology: Holocene climatic instability: A prominent, widespread
event 8200 yr ago, Geology, 25, 483–486, 1997.
Ausín, B., Flores, J. A., Sierro, F. J., Cacho, I.,
Hernández-Almeida, I., Martrat, B., and Grimalt, J. O.: Atmospheric
patterns driving Holocene productivity in the Alboran Sea (Western
Mediterranean): A multiproxy approach, Holocene, 25, 583–595,
https://doi.org/10.1177/0959683614565952, 2015.
Bakke, J., Dahl, S. O., Paasche, Ø., Riis Simonsen, J., Kvisvik, B.,
Bakke, K., and Nesje, A.: A complete record of Holocene glacier variability
at Austre Okstindbreen, northern Norway: An integrated approach, Quaternary
Sci. Rev., 29, 1246–1262, https://doi.org/10.1016/j.quascirev.2010.02.012, 2010.
Bird, M. I., Summons, R. E., Gagan, M. K., Roksandic, Z., Dowling, L., Head,
J., Keith Fifield, L., Cresswell, R. G., and Johnson, D. P.: Terrestrial
vegetation change inferred from n-alkane σ13C analysis in the
marine environment, Geochim. Cosmochim. Ac., 59, 2853–2857,
https://doi.org/10.1016/0016-7037(95)00160-2, 1995.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/11-BA618, 2011.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P.,
Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A Pervasive
Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates,
Science, 278, 1257–1266, https://doi.org/10.1126/science.278.5341.1257, 1997.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar
influence on North Atlantic climate during the Holocene, Science, 294,
2130–2136, https://doi.org/10.1126/science.1065680, 2001.
Booth, R. K., Jackson, S. T., Forman, S. L., Kutzbach, J. E., Bettis, E. A.,
Kreigs, J., and Wright, D. K.: A severe centennial-scale drought in
midcontinental North America 4200 years ago and apparent global linkages,
Holocene, 15, 321–328, https://doi.org/10.1191/0959683605hl825ft, 2005.
Burjachs, F. and Expósito, I.: Charcoal and pollen analysis: Examples of
Holocene fire dynamics in Mediterranean Iberian Peninsula, Catena, 135,
340–349, https://doi.org/10.1016/j.catena.2014.10.006, 2015.
Burjachs, F., Giralt, S., Roca, J. R., Seret, G., and Julià, R.:
Palinología holocénica y desertización en el Mediterráneo
occidental, in: El paisaje mediterráneo a través del espacio y del
tiempo: Implicaiones en la desertificación, edited by: Ibañez, J. J.,
Valero, B. L., and Machado, C., Geoforma Editores, Logroño, 379–394,
1997.
Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and
across modern plants: Implications for paleoecology and chemotaxonomy,
Geochim. Cosmochim. Ac., 117, 161–179, https://doi.org/10.1016/j.gca.2013.04.016, 2013.
Cacho, I., Grimalt, J. O., Canals, M., Sbaffi, L., Shackleton, N. J.,
Schönfeld, J., and Zahn, R.: Variability of the western Mediterranean Sea
surface temperature during the last 25,000 years and its connection with the
Northern Hemisphere climatic changes, Paleoceanography, 16, 40–52,
https://doi.org/10.1029/2000PA000502, 2001.
Calò, C., Henne, P. D., Curry, B., Magny, M., Vescovi, E., La Mantia, T.,
Pasta, S., Vannière, B., and Tinner, W.: Spatio-temporal patterns of
Holocene environmental change in southern Sicily, Palaeogeogr. Palaeocl.,
323–325, 110–122, https://doi.org/10.1016/j.palaeo.2012.01.038, 2012.
Carrión, J. S., Sánchez-Gómez, P., Mota, J. F., Yll, R., and
Chaín, C.: Holocene vegetation dynamics, fire and grazing in the Sierra
de Gádor, southern Spain, Holocene, 13, 839–849,
https://doi.org/10.1191/0959683603hl662rp, 2016.
Cheng, H., Sinha, A., Verheyden, S., Nader, F. H., Li, X. L., Zhang, P. Z.,
Yin, J. J., Yi, L., Peng, Y. B., Rao, Z. G., Ning, Y. F., and Edwards, R. L.:
The climate variability in northern Levant over the past 20,000 years,
Geophys. Res. Lett., 42, 8641–8650, https://doi.org/10.1002/2015GL065397, 2015.
Comas, M. C., Zahn, R., and Klaus, A., et al.: Proc. ODP, Init. Repts., 161:
College Station, TX (Ocean Drilling Program),
https://doi.org/10.2973/odp.proc.ir.161.1996, 1996.
Combourieu Nebout, N., Turon, J. L., Zahn, R., Capotondi, L., Londeix, L.,
and Pahnke, K.: Enhanced aridity and atmospheric high-pressure stability over
the western Mediterranean during the North Atlantic cold events of the past
50 k.y, Geology, 30, 863,
https://doi.org/10.1130/0091-7613(2002)030<0863:EAAAHP>2.0.CO;2, 2002.
Conte, M. H. and Weber, J. C.: Long-range atmospheric transport of
terrestrial biomarkers to the western North Atlantic, Global Biogeochem. Cy.,
16, 89-1–89-17, https://doi.org/10.1029/2002GB001922, 2002.
Cortina, A., Grimalt, J. O., Rigual-Hernández, A., Ballegeer, A.-M.,
Martrat, B., Sierro, F. J., and Flores, J. A.: The impact of ice-sheet
dynamics in western Mediterranean environmental conditions during
Terminations. An approach based on terrestrial long chain n-alkanes deposited
in the upper slope of the Gulf of Lions, Chem. Geol., 430, 21–33,
https://doi.org/10.1016/j.chemgeo.2016.03.015, 2016.
Deininger, M., McDermott, F., Mudelsee, M., Werner, M., Frank, N., and
Mangini, A.: Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation, Clim. Dynam., 49,
595–618, https://doi.org/10.1007/s00382-016-3360-8, 2017.
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker,
L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid
Period, Quaternary Sci. Rev., 19, 347–361,
https://doi.org/10.1016/S0277-3791(99)00081-5, 2000.
Eglinton, G. and Hamilton, R. J.: Leaf Epicuticular Waxes, Science, 156,
1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967.
Fernández-Delgado, C., Baldó, F., Vilas, C.,
García-González, D., Cuesta, J. A., González-Ortegón, E.,
and Drake, P.: Effects of the river discharge management on the nursery
function of the Guadalquivir river estuary (SW Spain), Hydrobiologia, 587,
125–136, https://doi.org/10.1007/s10750-007-0691-9, 2007.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: New 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315,
https://doi.org/10.1002/joc.5086, 2017.
Finné, M., Holmgren, K., Shen, C.-C., Hu, H.-M., Boyd, M., and Stocker,
S.: Late Bronze Age climate change and the destruction of the Mycenaean
Palace of Nestor at Pylos, PloS one, 12, e0189447,
https://doi.org/10.1371/journal.pone.0189447, 2017.
Fletcher, W. J. and Sánchez Goñi, M. F.: Orbital- and
sub-orbital-scale climate impacts on vegetation of the western Mediterranean
basin over the last 48,000 yr, Quaternary Res., 70, 451–464,
https://doi.org/10.1016/j.yqres.2008.07.002, 2008.
Fletcher, W. J., Boski, T., and Moura, D.: Palynological evidence for
environmental and climatic change in the lower Guadiana valley, Portugal,
during the last 13 000 years, Holocene, 17, 481–494,
https://doi.org/10.1177/0959683607077027, 2007.
García-Alix, A., Jiménez-Espejo, F. J., Toney, J. L.,
Jiménez-Moreno, G., Ramos-Román, M. J., Anderson, R. S., Ruano, P.,
Queralt, I., Delgado Huertas, A., and Kuroda, J.: Alpine bogs of southern
Spain show human-induced environmental change superimposed on long-term
natural variations, Sci. Rep.-UK, 7, 7439, https://doi.org/10.1038/s41598-017-07854-w,
2017.
García-Alix, A., Jiménez-Espejo, F. J., Jiménez-Moreno, G.,
Toney, J. L., Ramos-Román, M. J., Camuera, J., Anderson, R. S.,
Delgado-Huertas, A., Martínez-Ruiz, F., and Queralt, I.: Holocene
geochemical footprint from Semi-arid alpine wetlands in southern Spain,
Scientific Data, 5, 180024, https://doi.org/10.1038/sdata.2018.24, 2018.
Goslin, J., Fruergaard, M., Sander, L., Gałka, M., Menviel, L.,
Monkenbusch, J., Thibault, N., and Clemmensen, L. B.: Holocene centennial to
millennial shifts in North-Atlantic storminess and ocean dynamics, Sci.
Rep.-UK, 8, 12778, https://doi.org/10.1038/s41598-018-29949-8, 2018.
Hayes, A., Kucera, M., Kallel, N., Sbaffi, L., and Rohling, E. J.: Glacial
Mediterranean sea surface temperatures based on planktonic foraminiferal
assemblages, Quaternary Sci. Rev., 24, 999–1016,
https://doi.org/10.1016/j.quascirev.2004.02.018, 2005.
Haynes, R., Barton, E. D., and Pilling, I.: Development, persistence, and
variability of upwelling filaments off the Atlantic coast of the Iberian
Peninsula, J. Geophys. Res., 98, 22681, https://doi.org/10.1029/93JC02016, 1993.
Hernández, A., Trigo, R. M., Pla-Rabes, S., Valero-Garcés, B. L.,
Jerez, S., Rico-Herrero, M., Vega, J. C., Jambrina-Enríquez, M., and
Giralt, S.: Sensitivity of two Iberian lakes to North Atlantic atmospheric
circulation modes, Clim. Dynam., 45, 3403–3417,
https://doi.org/10.1007/s00382-015-2547-8, 2015.
Herrmann, N., Boom, A., Carr, A. S., Chase, B. M., Granger, R., Hahn, A.,
Zabel, M., and Schefuß, E.: Sources, transport and deposition of
terrestrial organic material: A case study from southwestern Africa,
Quaternary Sci. Rev., 149, 215–229, https://doi.org/10.1016/j.quascirev.2016.07.028,
2016.
Hurrell, J. W.: Decadal trends in the north atlantic oscillation: regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Jalali, B., Sicre, M.-A., Bassetti, M.-A., and Kallel, N.: Holocene climate
variability in the North-Western Mediterranean Sea (Gulf of Lions), Clim.
Past, 12, 91–101, https://doi.org/10.5194/cp-12-91-2016, 2016.
Jalali, B., Sicre, M.-A., Kallel, N., Azuara, J., Combourieu-Nebout, N.,
Bassetti, M.-A., and Klein, V.: High-resolution Holocene climate and
hydrological variability from two major Mediterranean deltas (Nile and
Rhone), Holocene, 27, 1158–1168, https://doi.org/10.1177/0959683616683258, 2017.
Jalut, G., Esteban Amat, A., Bonnet, L., Gauquelin, T., and Fontugne, M.:
Holocene climatic changes in the Western Mediterranean, from south-east
France to south-east Spain, Palaeogeogr. Palaeocl., 160, 255–290,
https://doi.org/10.1016/S0031-0182(00)00075-4, 2000.
Jiménez-Amat, P. and Zahn, R.: Offset timing of climate oscillations
during the last two glacial-interglacial transitions connected with
large-scale freshwater perturbation, Paleoceanography, 30, 768–788,
https://doi.org/10.1002/2014PA002710, 2015.
Kim, J.-H., Rimbu, N., Lorenz, S. J., Lohmann, G., Nam, S.-I., Schouten, S.,
Rühlemann, C., and Schneider, R. R.: North Pacific and North Atlantic
sea-surface temperature variability during the Holocene, Quaternary Sci.
Rev., 23, 2141–2154, https://doi.org/10.1016/j.quascirev.2004.08.010, 2004.
Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., and Weinelt,
M.: Multiproxy approach for the reconstruction of the glacial ocean surface
(MARGO), Quaternary Sci. Rev., 24, 813–819,
https://doi.org/10.1016/j.quascirev.2004.07.017, 2005a.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M.,
Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins,
S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from
assemblages of planktonic foraminifera: Multi-technique approach based on
geographically constrained calibration data sets and its application to
glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998,
https://doi.org/10.1016/j.quascirev.2004.07.014, 2005b.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335,
2004.
Leider, A., Hinrichs, K.-U., Schefuß, E., and Versteegh, G. J.M.:
Distribution and stable isotopes of plant wax derived n-alkanes in
lacustrine, fluvial and marine surface sediments along an Eastern Italian
transect and their potential to reconstruct the hydrological cycle, Geochim.
Cosmochim. Ac., 117, 16–32, https://doi.org/10.1016/j.gca.2013.04.018, 2013.
Le Roy, M., Deline, P., Carcaillet, J., Schimmelpfennig, I., and Ermini, M.:
10Be exposure dating of the timing of Neoglacial glacier advances
in the Ecrins-Pelvoux massif, southern French Alps, Quaternary Sci. Rev.,
178, 118–138, https://doi.org/10.1016/j.quascirev.2017.10.010, 2017.
Lionello, P. (Ed.): The climate of the Mediterranean region: From the past to
the future, 1st Edn., Elsevier Insights, Elsevier Science, Amsterdam, 502
pp., 2012.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia,
H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R.,
Hamilton, M., and Seidov, D.: World OceanAtlas 2013, Volume 1: Temperature,
S.Levitus, edited by: Mishonov, A., Technical Ed., NOAA Atlas NESDIS 73, 40
pp., National Oceanographic Data Center User Services TeamNOAA/NESDIS
E/OC1SSMCIII, Silver Spring, MD, 2013.
Magny, M., Combourieu-Nebout, N., de Beaulieu, J. L., Bout-Roumazeilles, V.,
Colombaroli, D., Desprat, S., Francke, A., Joannin, S., Ortu, E., Peyron, O.,
Revel, M., Sadori, L., Siani, G., Sicre, M. A., Samartin, S., Simonneau, A.,
Tinner, W., Vannière, B., Wagner, B., Zanchetta, G., Anselmetti, F.,
Brugiapaglia, E., Chapron, E., Debret, M., Desmet, M., Didier, J., Essallami,
L., Galop, D., Gilli, A., Haas, J. N., Kallel, N., Millet, L., Stock, A.,
Turon, J. L., and Wirth, S.: North–south palaeohydrological contrasts in the
central Mediterranean during the Holocene: tentative synthesis and working
hypotheses, Clim. Past, 9, 2043–2071,
https://doi.org/10.5194/cp-9-2043-2013, 2013.
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M.
A., and Stocker, T. F.: Four climate cycles of recurring deep and surface
water destabilizations on the Iberian margin, Science, 317, 502–507,
https://doi.org/10.1126/science.1139994, 2007.
Martrat, B., Jiménez-Amat, P., Zahn, R., and Grimalt, J. O.: Similarities
and dissimilarities between the last two deglaciations and interglaciations
in the North Atlantic region, Quaternary Sci. Rev., 99, 122–134,
https://doi.org/10.1016/j.quascirev.2014.06.016, 2014.
Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K.
A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K.,
Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and
Steig, E. J.: Holocene Climate Variability, Quaternary Res., 62, 243–255,
https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
Minas, H. J., Coste, B., Le Corre, P., Minas, M., and Raimbault, P.:
Biological and geochemical signatures associated with the water circulation
through the Strait of Gibraltar and in the western Alboran Sea, J. Geophys.
Res., 96, 8755, https://doi.org/10.1029/91JC00360, 1991.
Moreno, A., Pérez-Mejías, C., Bartolomé, M., Sancho, C., Cacho,
I., Stoll, H., Delgado-Huertas, A., Hellstrom, J., Edwards, R. L., and Cheng,
H.: New speleothem data from Molinos and Ejulve caves reveal Holocene
hydrological variability in northeast Iberia, Quaternary Res., 88, 223–233,
https://doi.org/10.1017/qua.2017.39, 2017.
Müller, P. J., Kirst, G., Ruhland, G., von Storch, I., and
Rosell-Melé, A.: Calibration of the alkenone paleotemperature index
based on core-tops from the eastern South Atlantic
and the global ocean (60∘ N–60∘ S), Geochim. Cosmochim.
Ac., 62, 1757–1772, https://doi.org/10.1016/S0016-7037(98)00097-0, 1998.
Navarro-Hervás, F., Ros-Salas, M.-M., Rodríguez-Estrella, T.,
Fierro-Enrique, E., Carrión, J.-S., García-Veigas, J., Flores,
J.-A., Bárcena, M. Á., and García, M. S.: Evaporite evidence of
a mid-Holocene (c 4550–4400 cal. yr BP) aridity crisis in southwestern
Europe and palaeoenvironmental consequences, Holocene, 24, 489–502,
https://doi.org/10.1177/0959683613520260, 2014.
NGRIP-Members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004.
Olsen, J., Anderson, N. J., and Knudsen, M. F.: Variability of the North
Atlantic Oscillation over the past 5,200 years, Nat. Geosci., 5, 808–812,
https://doi.org/10.1038/ngeo1589, 2012.
Pantaléon-Cano, J., Yll, E.-I., Pérez-Obiol, R., and Roure, J. M.:
Palynological evidence for vegetational history in semi-arid areas of the
western Mediterranean (Almería, Spain), Holocene, 13, 109–119,
https://doi.org/10.1191/0959683603hl598rp, 2003.
Peliz, Á., Rosa, T. L., Santos, A. M. P., and Pissarra, J. L.: Fronts,
jets, and counter-flows in the Western Iberian upwelling system, J. Marine
Syst., 35, 61–77, https://doi.org/10.1016/S0924-7963(02)00076-3, 2002.
Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., and Le Cann,
B.: Winter upper ocean circulation in the Western Iberian Basin – Fronts,
Eddies and Poleward Flows: An overview, Deep-Sea Res. Pt I, 52, 621–646,
https://doi.org/10.1016/j.dsr.2004.11.005, 2005.
Penaud, A., Eynaud, F., Voelker, A. H. L., and Turon, J.-L.:
Palaeohydrological changes over the last 50 ky in the central Gulf of Cadiz:
complex forcing mechanisms mixing multi-scale processes, Biogeosciences, 13,
5357–5377, https://doi.org/10.5194/bg-13-5357-2016, 2016.
Pérez-Folgado, M., Sierro, F. J., Flores, J. A., Cacho, I., Grimalt, J.
O., Zahn, R., and Shackleton, N.: Western Mediterranean planktonic
foraminifera events and millennial climatic variability during the last
70 kyr, Mar. Micropaleontol., 48, 49–70, https://doi.org/10.1016/S0377-8398(02)00160-3,
2003.
Pflaumann, U., Duprat, J., Pujol, C., and Labeyrie, L. D.: SIMMAX: A modern
analog technique to deduce Atlantic sea surface temperatures from planktonic
foraminifera in deep-sea sediments, Paleoceanography, 11, 15–35,
https://doi.org/10.1029/95PA01743, 1996.
Pflaumann, U., Sarnthein, M., Chapman, M., d'Abreu, L., Funnell, B., Huels,
M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S.,
Vautravers, M., Vogelsang, E., and Weinelt, M.: Glacial North Atlantic:
Sea-surface conditions reconstructed by GLAMAP 2000, Paleoceanography, 18,
1065, https://doi.org/10.1029/2002PA000774, 2003.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in
long-chain ketone compositions for palaeotemperature assessment, Nature, 330,
367–369, https://doi.org/10.1038/330367a0, 1987.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of
long-chain alkenones as indicators of paleoceanographic conditions, Geochim.
Cosmochim. Ac., 52, 2303–2310, https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Ramos-Román, M. J., Jiménez-Moreno, G., Camuera, J., García-Alix,
A., Anderson, R. S., Jiménez-Espejo, F. J., and Carrión, J. S.:
Holocene climate aridification trend and human impact interrupted by
millennial- and centennial-scale climate fluctuations from a new sedimentary
record from Padul (Sierra Nevada, southern Iberian Peninsula), Clim. Past,
14, 117–137, https://doi.org/10.5194/cp-14-117-2018, 2018a.
Ramos-Román, M. J., Jiménez-Moreno, G., Camuera, J.,
García-Alix, A., Scott Anderson, R., Jiménez-Espejo, F. J., Sachse,
D., Toney, J. L., Carrión, J. S., Webster, C., and Yanes, Y.:
Millennial-scale cyclical environment and climate variability during the
Holocene in the western Mediterranean region deduced from a new multi-proxy
analysis from the Padul record (Sierra Nevada, Spain), Global Planet. Change,
168, 35–53, https://doi.org/10.1016/j.gloplacha.2018.06.003, 2018b.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H.,
Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T.,
Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: Refining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M.,
Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J.,
Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves
0–50,000 Years cal BP, Radiocarbon, 55, 1869–1887,
https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Repschläger, J., Garbe-Schönberg, D., Weinelt, M., and Schneider, R.:
Holocene evolution of the North Atlantic subsurface transport, Clim. Past,
13, 333–344, https://doi.org/10.5194/cp-13-333-2017, 2017.
Rodrigo-Gámiz, M., Martínez-Ruiz, F., Rampen, S. W., Schouten, S.,
and Sinninghe Damsté, J. S.: Sea surface temperature variations in the
western Mediterranean Sea over the last 20 kyr: A dual-organic proxy
( and LDI) approach, Paleoceanography, 29, 87–98,
https://doi.org/10.1002/2013PA002466, 2014.
Rodrigo-Gámiz, M., Martínez-Ruiz, F., Chiaradia, M.,
Jiménez-Espejo, F. J., and Ariztegui, D.: Radiogenic isotopes for
deciphering terrigenous input provenance in the western Mediterranean, Chem.
Geol., 410, 237–250, https://doi.org/10.1016/j.chemgeo.2015.06.004, 2015.
Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., and
Rullkötter, J.: Chemotaxonomic significance of distribution and stable
carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4
grass waxes, Org. Geochem., 37, 1303–1332,
https://doi.org/10.1016/j.orggeochem.2005.12.013, 2006.
Ruan, J., Kherbouche, F., Genty, D., Blamart, D., Cheng, H., Dewilde, F.,
Hachi, S., Edwards, R. L., Régnier, E., and Michelot, J.-L.: Evidence of
a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement
abandonment from the Gueldaman GLD1 Cave, Northern Algeria, Clim. Past, 12,
1–14, https://doi.org/10.5194/cp-12-1-2016, 2016.
Salgueiro, E., Naughton, F., Voelker, A. H. L., Abreu, L. de, Alberto, A.,
Rossignol, L., Duprat, J., Magalhães, V. H., Vaqueiro, S., Turon, J.-L.,
and Abrantes, F.: Past circulation along the western Iberian margin: A time
slice vision from the Last Glacial to the Holocene, Quaternary Sci. Rev.,
106, 316–329, https://doi.org/10.1016/j.quascirev.2014.09.001, 2014.
Sarhan, T., Lafuente, J. G., Vargas, M., Vargas, J. M., and Plaza, F.:
Upwelling mechanisms in the northwestern Alboran Sea, J. Marine Syst., 23,
317–331, https://doi.org/10.1016/S0924-7963(99)00068-8, 2000.
Schirrmacher, J., Weinelt, M., Blanz, T., Andersen, N., Salgueiro, E., and
Schneider, R. R.: Organic geochemical and foraminiferal MAT data for mid- to
late-Holocene sediments of the Gulf of Cadiz and Alboran Sea, PANGAEA,
https://doi.org/10.1594/PANGAEA.899720, 2019.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last
access: 24 January 2019), 2018.
Schott, F., Meincke, J., Meinecke, G., Neuer, S., and Zenk, W.: North
Atlantic 1999 – Cruise No. M45, 18 May–4 November 1999, Malaga, Spain–Las
Palmas, Spain, METEOR-Berichte, M45, 161 pp., DFG-Senatskommission für
Ozeanographie, https://doi.org/10.2312/cr_m45, 2000.
Schreuder, L. T., Stuut, J.-B. W., Korte, L. F., Sinninghe Damsté, J. S.,
and Schouten, S.: Aeolian transport and deposition of plant wax n-alkanes
across the tropical North Atlantic Ocean, Org. Geochem., 115, 113–123,
https://doi.org/10.1016/j.orggeochem.2017.10.010, 2018.
Schröder, T., van't Hoff, J., López-Sáez, J. A., Viehberg, F.,
Melles, M., and Reicherter, K.: Holocene climatic and environmental evolution
on the southwestern Iberian Peninsula: A high-resolution multi-proxy study
from Lake Medina (Cádiz, SW Spain), Quaternary Sci. Rev., 198, 208–225,
https://doi.org/10.1016/j.quascirev.2018.08.030, 2018.
Walczak, I. W., Baldini, J. U. L., Baldini, L. M., McDermott, F., Marsden,
S., Standish, C. D., Richards, D. A., Andreo, B., and Slater, J.:
Reconstructing high-resolution climate using CT scanning of unsectioned
stalagmites: A case study identifying the mid-Holocene onset of the
Mediterranean climate in southern Iberia, Quaternary Sci. Rev., 127,
117–128, https://doi.org/10.1016/j.quascirev.2015.06.013, 2015.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure
and origin of Holocene cold events, Quaternary Sci. Rev., 30, 3109–3123,
https://doi.org/10.1016/j.quascirev.2011.07.010, 2011.
Wassenburg, J. A., Dietrich, S., Fietzke, J., Fohlmeister, J., Jochum, K. P.,
Scholz, D., Richter, D. K., Sabaoui, A., Spötl, C., Lohmann, G., Andreae,
M. O., and Immenhauser, A.: Reorganization of the North Atlantic Oscillation
during early Holocene deglaciation, Nat. Geosci., 9, 602–605,
https://doi.org/10.1038/ngeo2767, 2016.
Weinelt, M., Schwab, C., Kneisel, J., and Hinz, M.: Climate and societal
change in the western Mediterranean area around 4.2 ka BP, in: 2200 BC,
ein Klimasturz als Ursache für den Zerfall der alten Welt?: 7.
Mitteldeutscher Archäologentag vom 23. bis 26. Oktober 2014 in Halle
(Saale), edited by: Meller, H., Arz, H. W., Jung, R., Risch, R., Tagungen des
Landesmuseums für Vorgeschichte Halle, Band 12,1, Landesamt für
Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für
Vorgeschichte, Halle (Saale), 461–480, 2015.
Zanchetta, G., Regattieri, E., Isola, I., Drysdale, R. N., Bini, M.,
Baneschi, I., and Hellstrom, J. C.: The so-called “4.2 event” in the
Central Mediterranean and its climatic teleconnections, Alpine and
Mediterranean Quaternary, 29, 5–17, 2016.
Zielhofer, C., Fletcher, W. J., Mischke, S., de Batist, M., Campbell, J. F.
E., Joannin, S., Tjallingii, R., El Hamouti, N., Junginger, A., Stele, A.,
Bussmann, J., Schneider, B., Lauer, T., Spitzer, K., Strupler, M., Brachert,
T., and Mikdad, A.: Atlantic forcing of Western Mediterranean winter rain
minima during the last 12,000 years, Quaternary Sci. Rev., 157, 29–51,
https://doi.org/10.1016/j.quascirev.2016.11.037, 2017.
Zielhofer, C., Köhler, A., Mischke, S., Benkaddour, A., Mikdad, A., and
Fletcher, W. J.: Western Mediterranean hydro-climatic consequences of
Holocene ice-rafted debris (Bond) events, Clim. Past, 15, 463–475,
https://doi.org/10.5194/cp-15-463-2019, 2019.
Zorita, E., Kharin, V., and von Storch, H.: The Atmospheric Circulation and
Sea Surface Temperature in the North Atlantic Area in Winter: Their
Interaction and Relevance for Iberian Precipitation, J. Climate, 5,
1097–1108, https://doi.org/10.1175/1520-0442(1992)005<1097:TACASS>2.0.CO;2, 1992.
Special issue