Articles | Volume 15, issue 4
https://doi.org/10.5194/cp-15-1187-2019
https://doi.org/10.5194/cp-15-1187-2019
Research article
 | 
02 Jul 2019
Research article |  | 02 Jul 2019

Role of the stratospheric chemistry–climate interactions in the hot climate conditions of the Eocene

Sophie Szopa, Rémi Thiéblemont, Slimane Bekki, Svetlana Botsyun, and Pierre Sepulchre

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (15 Apr 2019) by Arne Winguth
AR by Sophie Szopa on behalf of the Authors (23 Apr 2019)  Author's response   Manuscript 
ED: Publish as is (11 May 2019) by Arne Winguth
AR by Sophie Szopa on behalf of the Authors (13 May 2019)  Manuscript 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Here, with a chemistry–climate model, we evaluate the potential role of stratospheric ozone chemistry in the case of Eocene hot conditions. Our results suggest that using stratospheric ozone calculated by the modeled Eocene conditions instead of the commonly specified preindustrial ozone distribution could change the simulated global surface air temperature by as much as 14 %.