Articles | Volume 15, issue 4
Research article
02 Jul 2019
Research article |  | 02 Jul 2019

Role of the stratospheric chemistry–climate interactions in the hot climate conditions of the Eocene

Sophie Szopa, Rémi Thiéblemont, Slimane Bekki, Svetlana Botsyun, and Pierre Sepulchre

Data sets

LMDz-REPROBUS model outputs for Eocene and preindustrial stratospheric conditions S. Szopa, R. Thiéblemont, S. Bekki, S. Botsyun, and P. Sepulchre


The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Here, with a chemistry–climate model, we evaluate the potential role of stratospheric ozone chemistry in the case of Eocene hot conditions. Our results suggest that using stratospheric ozone calculated by the modeled Eocene conditions instead of the commonly specified preindustrial ozone distribution could change the simulated global surface air temperature by as much as 14 %.