Articles | Volume 14, issue 7
https://doi.org/10.5194/cp-14-969-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-969-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly
James U. L. Baldini
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Durham, Durham, DH1 3LE,
UK
Richard J. Brown
Department of Earth Sciences, University of Durham, Durham, DH1 3LE,
UK
Natasha Mawdsley
Department of Earth Sciences, University of Durham, Durham, DH1 3LE,
UK
Related authors
Sina Panitz, Michael Rogerson, Jack Longman, Nick Scroxton, Tim J. Lawson, Tim C. Atkinson, Vasile Ersek, James Baldini, Lisa Baldini, Stuart Umbo, Mahjoor A. Lone, Gideon M. Henderson, and Sebastian F. M. Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-48, https://doi.org/10.5194/cp-2024-48, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g., stalagmites) in the British Isles to help constrain the extent of past glaciations both in time and space. Speleothems require liquid water to grow, and therefore, their presence indicates the absence of ice above the cave. By dating these speleothems we can improve existing reconstructions of past ice sheets.
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary
Short summary
During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
Sina Panitz, Michael Rogerson, Jack Longman, Nick Scroxton, Tim J. Lawson, Tim C. Atkinson, Vasile Ersek, James Baldini, Lisa Baldini, Stuart Umbo, Mahjoor A. Lone, Gideon M. Henderson, and Sebastian F. M. Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-48, https://doi.org/10.5194/cp-2024-48, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g., stalagmites) in the British Isles to help constrain the extent of past glaciations both in time and space. Speleothems require liquid water to grow, and therefore, their presence indicates the absence of ice above the cave. By dating these speleothems we can improve existing reconstructions of past ice sheets.
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary
Short summary
During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
T. J. Jones, J. K. Russell, L. A. Porritt, and R. J. Brown
Solid Earth, 5, 313–326, https://doi.org/10.5194/se-5-313-2014, https://doi.org/10.5194/se-5-313-2014, 2014
Cited articles
Alley, R. B.: The Younger Dryas cold interval as viewed from central
Greenland, Quaternary Sci. Rev., 19, 213–226, https://doi.org/10.1016/S0277-3791(99)00062-1, 2000.
Andronikov, A. V., Rudnickait, E., Lauretta, D. S., Andronikova, I. E.,
Kaminskas, D., Sinkunas, P., and Melesyte, M.: Geochemical evidence of the
presence of volcanic and meteoritic materials in Late Pleistocene lake
sediments of Lithuania, Quatern. Int., 386, 18–29, 2015.
Arce, J. L., Macias, J. L., and Vazquez-Selem, L.: The 10.5 ka Plinian
eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard
implications, Geol. Soc. Am. Bull., 115, 230–248, 2003.
Asmerom, Y., Polyak, V. J., and Burns, S. J.: Variable winter moisture in the
southwestern United States linked to rapid glacial climate shifts, Nat.
Geosci., 3, 114–117, https://doi.org/10.1038/Ngeo754, 2010.
Baales, M., Joris, O., Street, M., Bittmann, F., Weninger, B., and Wiethold,
J.: Impact of the late glacial eruption of the Laacher See volcano, Central
Rhineland, Germany, Quaternary Res., 58, 273–288,
https://doi.org/10.1006/qres.2002.2379, 2002.
Bahr, A., Hoffmann, J., Schönfeld, J., Schmidt, M. W., Nürnberg, D.,
Batenburg, S. J., and Voigt, S.: Low-latitude expressions of high-latitude
forcing during Heinrich Stadial 1 and the Younger Dryas in northern South
America, Glob. Planet. Change, 160, 1–9,
https://doi.org/10.1016/j.gloplacha.2017.11.008, 2018.
Bakke, J., Lie, O., Heegaard, E., Dokken, T., Haug, G. H., Birks, H. H.,
Dulski, P., and Nilsen, T.: Rapid oceanic and atmospheric changes during the
Younger Dryas cold period, Nat. Geosci., 2, 202–205, 2009.
Baldini, J. U. L., Brown, R. J., and McElwaine, J. N.: Was millennial scale
climate change during the Last Glacial triggered by explosive volcanism?,
Sci. Rep., 5, 17442, https://doi.org/10.1038/srep17442, 2015a.
Baldini, L. M., McDermott, F., Baldini, J. U. L., Arias, P., Cueto, M.,
Fairchild, I. J., Hoffmann, D. L., Mattey, D. P., Müller, W., Nita, D.
C., Ontañón, R., Garciá-Moncó, C., and Richards, D. A.:
Regional temperature, atmospheric circulation, and sea-ice variability within
the Younger Dryas Event constrained using a speleothem from northern Iberia,
Earth Planet. Sc. Lett., 419, 101–110, https://doi.org/10.1016/j.epsl.2015.03.015,
2015b.
Barker, S., Knorr, G., Vautravers, M. J., Diz, P., and Skinner, L. C.:
Extreme deepening of the Atlantic overturning circulation during
deglaciation, Nat. Geosci., 3, 567–571, https://doi.org/10.1038/ngeo921, 2010.
Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner,
L. C., Wolff, E., and Ziegler, M.: 800,000 years of abrupt climate
variability, Science, 334, 347–351, 2011.
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., and Thornalley, D.:
Icebergs not the trigger for North Atlantic cold events, Nature, 520,
333–338, https://doi.org/10.1038/Nature14330, 2015.
Baroni, M., Savarino, J., Cole-Dai, J., Rai, V. K., and Thiemens, M. H.:
Anomalous sulfur isotope compositions of volcanic sulfate over the last millennium
in Antarctic ice cores, J. Geophys. Res., 113, D20112, https://doi.org/10.1029/2008JD010185, 2008.
Bartlett, L. J., Williams, D. R., Prescott, G. W., Balmford, A., Green, R.
E., Eriksson, A., Valdes, P. J., Singarayer, J. S., and Manica, A.:
Robustness despite uncertainty: regional climate data reveal the dominant
role of humans in explaining global extinctions of Late Quaternary megafauna,
Ecography, 39, 152–161, https://doi.org/10.1111/ecog.01566, 2016.
Bay, R. C., Bramall, N., and Price, P. B.: Bipolar correlation of volcanism
with millennial climate change, P. Natl. Acad. Sci. USA, 101, 6341–6345,
https://doi.org/10.1073/pnas.0400323101, 2004.
Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K., and Severinghaus,
J.: Mean global ocean temperatures during the last glacial transition,
Nature, 553, 39–44,
https://doi.org/10.1038/nature25152, 2018.
Berger, W. H.: The Younger Dryas cold spell – a quest for causes, Glob.
Planet. Change, 89, 219–237, 1990.
Blaga, C. I., Reichart, G. J., Lotter, A. F., Anselmetti, F. S., and Damste,
J. S. S.: A TEX86 lake record suggests simultaneous shifts in temperature in
Central Europe and Greenland during the last deglaciation, Geophys. Res.
Lett., 40, 948–953, https://doi.org/10.1002/grl.50181, 2013.
Bogaard, P. and Schmincke, H. U.: Laacher See Tephra – a widespread
isochronous Late Quaternary tephra layer in central and northern Europe,
Geol. Soc. Am. Bull., 96, 1554–1571,
https://doi.org/10.1130/0016-7606(1985)96<1554:Lstawi>2.0.Co;2, 1985.
Bondevik, S., Mangerud, J., Birks, H. H., Gulliksen, S., and Reimer, P.:
Changes in North Atlantic radiocarbon reservoir ages during the Allerod and
Younger Dryas, Science, 312, 1514–1517, 2006.
Boslough, M., Harris, A. W., Chapman, C., and Morrison, D.: Younger Dryas
impact model confuses comet facts, defies airburst physics, P. Natl. Acad.
Sci. USA, 110, E4170–E4170, https://doi.org/10.1073/pnas.1313495110, 2013.
Brauer, A., Endres, C., Gunter, C., Litt, T., Stebich, M., and Negendank, J.
F. W.: High resolution sediment and vegetation responses to Younger Dryas
climate change in varved lake sediments from Meerfelder Maar, Germany,
Quaternary Sci. Rev., 18, 321–329, https://doi.org/10.1016/S0277-3791(98)00084-5, 1999a.
Brauer, A., Endres, C., and Negendank, J.: Lateglacial calendar year
chronology based on annually laminated sediments from Lake Meerfelder Maar,
Germany, 17–25, 1999b.
Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M., and Negendank, J. F. W.:
An abrupt wind shift in western Europe at the onset of the Younger Dryas cold
period, Nat. Geosci., 1, 520–523, https://doi.org/10.1038/ngeo263, 2008.
Broecker, W. S.: Salinity history of the Northern Atlantic during the last
deglaciation, Paleoceanography, 5, 459–467, https://doi.org/10.1029/Pa005i004p00459,
1990.
Broecker, W. S.: Was the younger dryas triggered by a flood?, Science, 312,
1146–1148, https://doi.org/10.1126/science.1123253, 2006a.
Broecker, W. S.: Abrupt climate change revisited, Glob. Planet. Change, 54,
211–215, https://doi.org/10.1016/j.gloplacha.2006.06.019, 2006b.
Broecker, W. S., Andree, M., Wolfli, W., Oeschger, H., Bonani, G., Kennett,
J., and Peteet, D.: The chronology of the last deglaciation: Implications to
the cause of the Younger Dryas Event, Paleoceanography, 3, 1–19,
https://doi.org/10.1029/Pa003i001p00001, 1988.
Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B., and
Putnam, A. E.: Putting the Younger Dryas cold event into context, Quaternary
Sci. Rev., 29, 1078–1081, https://doi.org/10.1016/j.quascirev.2010.02.019, 2010.
Bronk Ramsey, C., Albert, P. G., Blockley, S. P. E., Hardiman, M., Housley,
R. A., Lane, C. S., Lee, S., Matthews, I. P., Smith, V. C., and Lowe, J. J.:
Improved age estimates for key Late Quaternary European tephra horizons in
the RESET lattice, Quaternary Sci. Rev., 118, 18–32,
https://doi.org/10.1016/j.quascirev.2014.11.007, 2015.
Brown, S., Crosweller, H., Sparks, R. S., Cottrell, E., Deligne, N.,
Guerrero, N., Hobbs, L., Kiyosugi, K., Loughlin, S., Siebert, L., and
Takarada, S.: Characterisation of the Quaternary eruption record: analysis of
the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database, J. Appl.
Volcanol., 3, 5, 2014.
Buizert, C., Gkinis, V., Severinghaus, J. P., He, F., Lecavalier, B. S.,
Kindler, P., Leuenberger, M., Carlson, A. E., Vinther, B., Masson-Delmotte,
V., White, J. W. C., Liu, Z. Y., Otto-Bliesner, B., and Brook, E. J.:
Greenland temperature response to climate forcing during the last
deglaciation, Science, 345, 1177–1180, 2014.
Buntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo, N.,
Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan, J. O.,
de Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., and Kirdyanov, A.
V.: Cooling and societal change during the Late Antique Little Ice Age from
536 to around 660 AD, Nat. Geosci., 9, 231–236, https://doi.org/10.1038/NGEO2652, 2016.
Cabedo-Sanz, P., Belt, S. T., Knies, J., and Husum, K.: Identification of
contrasting seasonal sea ice conditions during the Younger Dryas, Quaternary
Sci. Rev., 79, 74–86, 2013.
Cadoux, A., Scaillet, B., Bekki, S., Oppenheimer, C., and Druitt, T. H.:
Stratospheric ozone destruction by the Bronze-Age Minoan eruption (Santorini
Volcano, Greece), Sci. Rep., 5, 12243, 2015.
Carlson, A. E.: Why there was not a Younger Dryas-like event during the
Penultimate Deglaciation, Quaternary Sci. Rev., 27, 882–887,
https://doi.org/10.1016/j.quascirev.2008.02.004, 2008.
Carlson, A. E., Clark, P. U., Haley, B. A., Klinkhammer, G. P., Simmons, K.,
Brook, E. J., and Meissner, K. J.: Geochemical proxies of North American
freshwater routing during the Younger Dryas cold event, P. Natl. Acad. Sci.
USA, 104, 6556–6561, https://doi.org/10.1073/pnas.0611313104, 2007.
Carn, S. A., Clarisse, L., and Prata, A. J.: Multi-decadal satellite
measurements of global volcanic degassing, J. Volcanol. Geotherm. Res., 311,
99–134, https://doi.org/10.1016/j.jvolgeores.2016.01.002, 2016.
Carolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau,
S., Malang, J., and Tuen, A. A.: Varied response of western Pacific hydrology
to climate forcings over the Last Glacial period, Science, 340, 1564–1566,
https://doi.org/10.1126/science.1233797, 2013.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X. G., Wang,
Y. J., Zhang, R., and Wang, X. F.: Ice age terminations, Science, 326,
248–252, 2009.
Chiang, J. C. H. and Bitz, C. M.: Influence of high latitude ice cover on
the marine Intertropical Convergence Zone, Clim. Dynam., 25, 477–496, 2005.
Chiang, J. C. H., Lee, S. Y., Putnam, A. E., and Wang, X. F.: South Pacific
Split Jet, ITCZ shifts, and atmospheric North-South linkages during abrupt
climate changes of the last glacial period, Earth Planet. Sc. Lett., 406,
233–246, https://doi.org/10.1016/j.epsl.2014.09.012, 2014.
Colose, C. M., LeGrande, A. N., and Vuille, M.: Hemispherically asymmetric
volcanic forcing of tropical hydroclimate during the last millennium, Earth
Syst. Dynam., 7, 681–696, https://doi.org/10.5194/esd-7-681-2016, 2016.
Condron, A. and Winsor, P.: Meltwater routing and the Younger Dryas, P. Natl.
Acad. Sci. USA, 109, 19928–19933, https://doi.org/10.1073/pnas.1207381109, 2012.
Cooper, A., Turney, C., Hughen, K. A., Brook, B. W., McDonald, H. G., and
Bradshaw, C. J. A.: Abrupt warming events drove Late Pleistocene Holarctic
megafaunal turnover, Science, 349, 602–606, 2015.
Daulton, T. L., Amari, S., Scott, A. C., Hardiman, M., Pinter, N., and
Anderson, R. S.: Comprehensive analysis of nanodiamond evidence relating to
the Younger Dryas Impact Hypothesis, J. Quaternary Sci., 32, 7–34,
https://doi.org/10.1002/jqs.2892, 2017.
de Klerk, P., Janke, W. F., Kuehn, P., and Theuerkauf, M.: Environmental
impact of the Laacher See eruption at a large distance from the volcano:
Integrated palaeoecological studies from Vorpommern (NE Germany),
Palaeogeogr. Palaeocl., 270, 196–214, https://doi.org/10.1016/j.palaeo.2008.09.013,
2008.
Deligne, N., Coles, S., and Sparks, R.: Recurrence rates of large explosive
volcanic eruptions, J. Geophys. Res., 115, B06203, https://doi.org/10.1029/2009JB006554 2010.
Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L., and Zhang, R.:
The North Atlantic Oscillation as a driver of rapid climate change in the
Northern Hemisphere, Nat. Geosci., 9, 509–512, https://doi.org/10.1038/ngeo2738, 2016.
Devine, J. D., Sigurdsson, H., Davis, A. N., and Self, S.: Estimates of
Sulfur and Chlorine Yield to the Atmosphere from Volcanic-Eruptions and
Potential Climatic Effects, J. Geophys. Res., 89, 6309–6325, 1984.
Diallo, M., Ploeger, F., Konopka, P., Birner, T., Muller, R., Riese, M.,
Garny, H., Legras, B., Ray, E., Berthet, G., and Jegou, F.: Significant
contributions of volcanic aerosols to decadal changes in the stratospheric
circulation, Geophys. Res. Lett., 44, 10780–10791, 2017.
Ding, Y. N., Carton, J. A., Chepurin, G. A., Stenchikov, G., Robock, A.,
Sentman, L. T., and Krasting, J. P.: Ocean response to volcanic eruptions in
Coupled Model Intercomparison Project 5 simulations, J. Geophys. Res.-Ocean.,
119, 5622–5637, 2014.
Engels, S., van Geel, B., Buddelmeijer, N., and Brauer, A.: High-resolution
palynological evidence for vegetation response to the Laacher See eruption
from the varved record of Meerfelder Maar (Germany) and other central
European records, Rev. Palaeobot. Palyno., 221, 160–170,
https://doi.org/10.1016/j.revpalbo.2015.06.010, 2015.
Engels, S., Brauer, A., Buddelmeijer, N., Martin-Puertas, C., Rach, O.,
Sachse, D., and Van Geel, B.: Subdecadal-scale vegetation responses to a
previously unknown late-Allerod climate fluctuation and Younger Dryas cooling
at Lake Meerfelder Maar (Germany), J. Quaternary Sci., 31, 741–752, 2016.
Eychenne, J., Cashman, K., Rust, A., and Durant, A.: Impact of the lateral
blast on the spatial pattern and grain size characteristics of the 18 May
1980 Mount St. Helens fallout deposit, J. Geophys. Res.-Sol. Ea., 120,
6018–6038, 2015.
Firestone, R. B., West, A., Kennett, J. P., Becker, L., Bunch, T. E., Revay,
Z. S., Schultz, P. H., Belgya, T., Kennett, D. J., Erlandson, J. M.,
Dickenson, O. J., Goodyear, A. C., Harris, R. S., Howard, G. A., Kloosterman,
J. B., Lechler, P., Mayewski, P. A., Montgomery, J., Poreda, R., Darrah, T.,
Hee, S. S. Q., Smitha, A. R., Stich, A., Topping, W., Wittke, J. H., and
Wolbach, W. S.: Evidence for an extraterrestrial impact 12,900 years ago that
contributed to the megafaunal extinctions and the Younger Dryas cooling, P.
Natl. Acad. Sci. USA, 104, 16016–16021, https://doi.org/10.1073/pnas.0706977104, 2007.
Flower, B. P. and Kennett, J. P.: The Younger Dryas Cool Episode in the Gulf
of Mexico, Paleoceanography, 5, 949–961, https://doi.org/10.1029/Pa005i006p00949, 1990.
Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated
in a coupled climate model, Nature, 409, 153–158, 2001.
Gerlach, T. M., Westrich, H. R., and Symonds, R. B.: Preeruption vapor in
magma of the climactic Mount Pinatubo eruption: Source of the giant
stratospheric sulfur dioxide cloud, in: Fire and Mud: eruptions and lahars of
Mount Pinotubo, Phillipines, edited by: Newhall, C. G. and Punongbayan, R.
S., University of Washington Press, Seattle, 415–433, 1996.
Graf, H. F. and Timmreck, C.: A general climate model simulation of the
aerosol radiative effects of the Laacher See eruption (10,900 BC), J.
Geophys. Res.-Atmos., 106, 14747–14756, https://doi.org/10.1029/2001jd900152, 2001.
Hajdas, I., IvyOchs, S. D., Bonani, G., Lotter, A. F., Zolitschka, B., and
Schluchter, C.: Radiocarbon age of the Laacher See Tephra:
11,230 ± 40 BP, Radiocarbon, 37, 149–154, 1995.
Harms, E. and Schmincke, H. U.: Volatile composition of the phonolitic
Laacher See magma (12,900 yr BP): implications for syn-eruptive degassing
of S, F, Cl and H2O, Contrib. Mineral. Petrol., 138, 84–98,
https://doi.org/10.1007/Pl00007665, 2000.
Haslam, M., and Petraglia, M.: Comment on “Environmental impact of the
73 ka Toba super-eruption in South Asia” by M. A. J. Williams, S. H.
Ambrose, S. van der Kaars, C. Ruehlemann, U. Chattopadhyaya, J. Pal and P. R.
Chauhan, Palaeogeogr. Palaeocl., 296, 199–203,
https://doi.org/10.1016/j.palaeo.2010.03.057, 2010.
Hogg, A., Southon, J., Turney, C., Palmer, J., Ramsey, C. B., Fenwick, P.,
Boswijk, G., Friedrich, M., Helle, G., Hughen, K., Jones, R., Kromer, B.,
Noronha, A., Reynard, L., Staff, R., and Wacker, L.: Punctuated Shutdown of
Atlantic Meridional Overturning Circulation during Greenland Stadial 1, Sci.
Rep., 6, 25902, https://doi.org/10.1038/Srep25902, 2016.
Holliday, V. T.: Problematic dating of claimed Younger Dryas boundary impact
proxies, P. Natl. Acad. Sci. USA, 112, E6721, https://doi.org/10.1073/pnas.1518945112,
2015.
Hwang, Y. T., Frierson, D. M. W., and Kang, S. M.: Anthropogenic sulfate
aerosol and the southward shift of tropical precipitation in the late 20th
century, Geophys. Res. Lett., 40, 2845–2850, https://doi.org/10.1002/Grl.50502, 2013.
Johnson, R. G. and McClure, B. T.: Model for Northern Hemisphere continental
ice sheet variation, Quaternary Res., 6, 325–353,
https://doi.org/10.1016/0033-5894(67)90001-4, 1976.
Kaplan, M. R., Schaefer, J. M., Denton, G. H., Barrell, D. J. A., Chinn, T.
J. H., Putnam, A. E., Andersen, B. G., Finkel, R. C., Schwartz, R., and
Doughty, A. M.: Glacier retreat in New Zealand during the Younger Dryas
stadial, Nature, 467, 194–197, https://doi.org/10.1038/nature09313, 2010.
Keller, G.: Impacts, volcanism and mass extinction: random coincidence or
cause and effect?, Aust. J. Earth Sci., 52, 725–757, 2005.
Kennett, D. J., Kennett, J. P., West, A., Mercer, C., Hee, S. S. Q., Bement,
L., Bunch, T. E., Sellers, M., and Wolbach, W. S.: Nanodiamonds in the
Younger Dryas Boundary Sediment Layer, Science, 323, 94–94,
https://doi.org/10.1126/science.1162819, 2009.
Klobas, J. E., Wilmouth, D. M., Weisenstein, D. K., Anderson, J. G., and
Salawitch, R. J.: Ozone depletion following future volcanic eruptions,
Geophys. Res. Lett., 44, 7490–7499, 2017.
Knorr, G. and Lohmann, G.: Rapid transitions in the Atlantic thermohaline
circulation triggered by global warming and meltwater during the last
deglaciation, Geochem. Geophys. Geosy., 8, Q12006, https://doi.org/10.1029/2007GC001604, 2007.
Kobashi, T., Menviel, L., Jeltsch-Thömmes, A., Vinther, B. M., Box, J.
E., Muscheler, R., Nakaegawa, T., Pfister, P. L., Döring, M.,
Leuenberger, M., Wanner, H., and Ohmura, A.: Volcanic influence on centennial
to millennial Holocene Greenland temperature change, Sci. Rep., 7, 1441,
https://doi.org/10.1038/s41598-017-01451-7, 2017.
Kutterolf, S., Hansteen, T. H., Appel, K., Freundt, A., Kruger, K., Perez,
W., and Wehrmann, H.: Combined bromine and chlorine release from large
explosive volcanic eruptions: A threat to stratospheric ozone?, Geology, 41,
707–710, 2013.
Lane, C. S., Brauer, A., Blockley, S. P. E., and Dulski, P.: Volcanic ash
reveals time-transgressive abrupt climate change during the Younger Dryas,
Geology, 41, 1251–1254, https://doi.org/10.1130/G34867.1, 2013a.
Lane, C. S., Chorn, B. T., and Johnson, T. C.: Ash from the Toba
supereruption in Lake Malawi shows no volcanic winter in East Africa at 75
ka, P. Natl. Acad. Sci. USA, 110, 8025–8029, https://doi.org/10.1073/pnas.1301474110,
2013b.
Lane, C. S., Brauer, A., Martín-Puertas, C., Blockley, S. P. E., Smith,
V. C., and Tomlinson, E. L.: The Late Quaternary tephrostratigraphy of
annually laminated sediments from Meerfelder Maar, Germany, Quaternary Sci.
Rev., 122, 192–206, https://doi.org/10.1016/j.quascirev.2015.05.025, 2015.
LeCompte, M. A., Goodyear, A. C., Demitroff, M. N., Batchelor, D., Vogel, E.
K., Mooney, C., Rock, B. N., and Seidel, A. W.: Independent evaluation of
conflicting microspherule results from different investigations of the
Younger Dryas impact hypothesis, P. Natl. Acad. Sci. USA, 109, E2960–E2969,
https://doi.org/10.1073/pnas.1208603109, 2012.
LeGrande, A. N., Tsigaridis, K., and Bauer, S. E.: Role of atmospheric
chemistry in the climate impacts of stratospheric volcanic injections, Nat.
Geosci., 9, 652, https://doi.org/10.1038/ngeo2771, 2016.
Lehner, F., Born, A., Raible, C. C., and Stocker, T. F.: Amplified Inception
of European Little Ice Age by Sea Ice-Ocean-Atmosphere Feedbacks, J. Clim.,
26, 7586–7602, 2013.
Levac, E., Lewis, M., Stretch, V., Duchesne, K., and Neulieb, T.: Evidence
for meltwater drainage via the St. Lawrence River Valley in marine cores from
the Laurentian Channel at the time of the Younger Dryas, Glob. Planet.
Change, 130, 47–65, https://doi.org/10.1016/j.gloplacha.2015.04.002, 2015.
Leydet, D. J., Carlson, A. E., Teller, J. T., Breckenridge, A., Barth, A. M.,
Ullman, D. J., Sinclair, G., Milne, G. A., Cuzzone, J. K., and Caffee, M. W.:
Opening of glacial Lake Agassiz's eastern outlets by the start of the Younger
Dryas cold period, Geology, 46, 155–158, https://doi.org/10.1130/G39501.1, 2018.
Litt, T., Brauer, A., Goslar, T., Merkt, J., Balaga, K., Muller, H.,
Ralska-Jasiewiczowa, M., Stebich, M., and Negendank, J. F. W.: Correlation
and synchronisation of Lateglacial continental sequences in northern central
Europe based on annually laminated lacustrine sediments, Quaternary Sci.
Rev., 20, 1233–1249, 2001.
Lotter, A. F., Eicher, U., Siegenthaler, U., and Birks, H. J. B.:
Late-glacial climatic oscillations as recorded in Swiss lake sediments, J.
Quaternary Sci., 7, 187–204, https://doi.org/10.1002/jqs.3390070302, 1992.
Lowell, T., Waterson, N., Fisher, T., Loope, H., Glover, K., Comer, G.,
Hajdas, I., Denton, G., Schaefer, J., Rinterknecht, V., Broecker, W., and
Teller, J.: Testing the Lake Agassiz meltwater trigger for the Younger Dryas,
Eos, Transactions American Geophysical Union, 86, 365–372,
https://doi.org/10.1029/2005EO400001, 2005.
Lynch-Stieglitz, J.: The Atlantic Meridional Overturning Circulation and
Abrupt Climate Change, Ann. Rev. Mar. Sci., 9, 83–104,
https://doi.org/10.1146/annurev-marine-010816-060415, 2017.
Martin, E., Bekki, S., Ninin, C., and Bindeman, I.: Volcanic sulfate aerosol
formation in the troposphere, J. Geophys. Res.-Atmos., 119, 12660–12673,
2014.
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and
Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428, 834–837,
https://doi.org/10.1038/nature02494, 2004.
Meissner, K. J.: Younger Dryas: A data to model comparison to constrain the
strength of the overturning circulation, Geophys. Res. Lett.,
34, L21705, https://doi.org/10.1029/2007GL031304, 2007.
Meltzer, D. J., Holliday, V. T., Cannon, M. D., and Miller, D. S.:
Chronological evidence fails to support claim of an isochronous widespread
layer of cosmic impact indicators dated to 12,800 years ago, P. Natl. Acad.
Sci. USA, 111, E2162–E2171, https://doi.org/10.1073/pnas.1401150111, 2014.
Merkt, J. and Muller, H.: Varve chronology and palynology of the Lateglacial
in Northwest Germany from lacustrine sediments of Hamelsee in Lower Saxony,
Quatern. Int., 61, 41–59, https://doi.org/10.1016/S1040-6182(99)00016-6, 1999.
Metcalf, J. L., Turney, C., Barnett, R., Martin, F., Bray, S. C., Vilstrup,
J. T., Orlando, L., Salas-Gismondi, R., Loponte, D., Medina, M., De Nigris,
M., Civalero, T., Fernandez, P. M., Gasco, A., Duran, V., Seymour, K. L.,
Otaola, C., Gil, A., Paunero, R., Prevosti, F. J., Bradshaw, C. J. A.,
Wheeler, J. C., Borrero, L., Austin, J. J., and Cooper, A.: Synergistic roles
of climate warming and human occupation in Patagonian megafaunal extinctions
during the Last Deglaciation, Sci. Adv., 2, e1501682, https://doi.org/10.1126/sciadv.1501682, 2016.
Mignot, J., Khodri, M., Frankignoul, C., and Servonnat, J.: Volcanic impact
on the Atlantic Ocean over the last millennium, Clim. Past, 7, 1439–1455,
https://doi.org/10.5194/cp-7-1439-2011, 2011.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J.,
Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A.,
Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and
Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism and
sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708,
https://doi.org/10.1029/2011GL050168, 2012.
Moore, C. R., West, A., LeCompte, M. A., Brooks, M. J., Daniel Jr, I. R.,
Goodyear, A. C., Ferguson, T. A., Ivester, A. H., Feathers, J. K., Kennett,
J. P., Tankersley, K. B., Adedeji, A. V., and Bunch, T. E.: Widespread
platinum anomaly documented at the Younger Dryas onset in North American
sedimentary sequences, Sci. Rep., 7, 44031, https://doi.org/10.1038/srep44031, 2017.
Moreno-Chamarro, E., Zanchettin, D., Lohmann, K., and Jungclaus, J. H.: An
abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type
episodes, Clim. Dynam., 48, 727–744, 2017.
Moreno, A., Stoll, H., Jimenez-Sanchez, M., Cacho, I., Valero-Garces, B.,
Ito, E., and Edwards, R. L.: A speleothem record of glacial
(25–11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula,
Glob. Planet. Change, 71, 218–231, https://doi.org/10.1016/j.gloplacha.2009.10.002,
2010.
Mortensen, A. K., Bigler, M., Gronvold, K., Steffensen, J. P., and Johnsen,
S. J.: Volcanic ash layers from the Last Glacial Termination in the NGRIP ice
core, J. Quaternary Sci., 20, 209–219, 2005.
Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T., and Yang, Z.
R.: Identification of Younger Dryas outburst flood path from Lake Agassiz to
the Arctic Ocean, Nature, 464, 740–743, https://doi.org/10.1038/Nature08954, 2010.
Muscheler, R., Adolphi, F., and Knudsen, M. F.: Assessing the differences
between the IntCal and Greenland ice-core time scales for the last 14,000
years via the common cosmogenic radionuclide variations, Quaternary Sci.
Rev., 106, 81–87, 2014.
Muschitiello, F. and Wohlfarth, B.: Time-transgressive environmental shifts
across Northern Europe at the onset of the Younger Dryas, Quaternary Sci.
Rev., 109, 49–56, https://doi.org/10.1016/j.quascirev.2014.11.015, 2015.
Muschitiello, F., Pausata, F. S. R., Watson, J. E., Smittenberg, R. H.,
Salih, A. A. M., Brooks, S. J., Whitehouse, N. J., Karlatou-Charalampopoulou,
A., and Wohlfarth, B.: Fennoscandian freshwater control on Greenland
hydroclimate shifts at the onset of the Younger Dryas, Nat. Commun.,
6, 8939, https://doi.org/10.1038/ncomms9939, 2015.
Muschitiello, F., Lea, J. M., Greenwood, S. L., Nick, F. M., Brunnberg, L.,
MacLeod, A., and Wohlfarth, B.: Timing of the first drainage of the Baltic
Ice Lake synchronous with the onset of Greenland Stadial 1, Boreas, 45,
322–334, https://doi.org/10.1111/bor.12155, 2016.
Muschitiello, F., Pausata, F. S. R., Lea, J. M., Mair, D. W. F., and
Wohlfarth, B.: Enhanced ice sheet melting driven by volcanic eruptions during
the last deglaciation, Nat. Commun., 8, 1020, https://doi.org/10.1038/s41467-017-01273-1,
2017.
Not, C. and Hillaire-Marcel, C.: Enhanced sea-ice export from the Arctic
during the Younger Dryas, Nat. Commun., 3, 647, https://doi.org/10.1038/ncomms1658, 2012.
Nowell, D. A. G., Jones, M. C., and Pyle, D. M.: Episodic Quaternary
volcanism in France and Germany, J. Quaternary Sci., 21, 645–675, 2006.
Oppenheimer, C.: Ice core and palaeoclimatic evidence for the timing and
nature of the great mid-13th century volcanic eruption, Int. J. Climatol.,
23, 417–426, https://doi.org/10.1002/Joc.891, 2003.
Ottera, O. H., Bentsen, M., Drange, H., and Suo, L. L.: External forcing as a
metronome for Atlantic multidecadal variability, Nat. Geosci., 3, 688–694,
2010.
Pausata, F. S. R., Chafik, L., Caballero, R., and Battisti, D. S.: Impacts of
high-latitude volcanic eruptions on ENSO and AMOC, P. Natl. Acad. Sci. USA,
112, 13784–13788, 2015.
Petaev, M. I., Huang, S. C., Jacobsen, S. B., and Zindler, A.: Large Pt
anomaly in the Greenland ice core points to a cataclysm at the onset of
Younger Dryas, P. Natl. Acad. Sci. USA, 110, 12917–12920,
https://doi.org/10.1073/pnas.1303924110, 2013.
Pinter, N., Scott, A. C., Daulton, T. L., Podoll, A., Koeberl, C., Anderson,
R. S., and Ishman, S. E.: The Younger Dryas impact hypothesis: A requiem,
Earth Sci. Rev., 106, 247–264, https://doi.org/10.1016/j.earscirev.2011.02.005, 2011.
Pitari, G., Di Genova, G., Mancini, E., Visioni, D., Gandolfi, I., and
Cionni, I.: Stratospheric aerosols from major volcanic eruptions: a
composition-climate model study of the aerosol cloud dispersal and e-folding
time, Atmosphere-Basel, 7, 75, 2016.
Polyak, V. J., Rasmussen, J. B. T., and Asmerom, Y.: Prolonged wet period in
the southwestern United States through the Younger Dryas, Geology, 32, 5–8,
https://doi.org/10.1130/G19957.1, 2004.
Polyak, V. J., Asmerom, Y., and Lachniet, M. S.: Rapid speleothem delta C-13
change in southwestern North America coincident with Greenland stadial 20 and
the Toba (Indonesia) supereruption, Geology, 45, 843–846, 2017.
Rach, O., Brauer, A., Wilkes, H., and Sachse, D.: Delayed hydrological
response to Greenland cooling at the onset of the Younger Dryas in western
Europe, Nat. Geosci., 7, 109–112, https://doi.org/10.1038/NGEO2053, 2014.
Rampino, M. R. and Self, S.: Historic eruptions of Tambora (1815), Krakatau
(1883), and Agung (1963), their stratospheric aerosols, and climatic impact,
Quaternary Res., 18, 127–143, https://doi.org/10.1016/0033-5894(82)90065-5, 1982.
Rampino, M. R. and Self, S.: Sulfur-rich volcanic-eruptions and stratospheric
aerosols, Nature, 310, 677–679, https://doi.org/10.1038/310677a0, 1984.
Rampino, M. R. and Self, S.: Volcanic winter and accelerated glaciation
following the Toba super-eruption, Nature, 359, 50–52, 1992.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H.,
Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111,
D06102, https://doi.org/10.1029/2005JD006079, 2006.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H.,
Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T.,
Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Rayburn, J. A., Cronin, T. M., Franzi, D. A., Knuepfer, P. L. K., and
Willard, D. A.: Timing and duration of North American glacial lake discharges
and the Younger Dryas climate reversal, Quaternary Res., 75, 541–551,
https://doi.org/10.1016/j.yqres.2011.02.004, 2011.
Renssen, H., Mairesse, A., Goosse, H., Mathiot, P., Heiri, O., Roche, D. M.,
Nisancioglu, K. H., and Valdes, P. J.: Multiple causes of the Younger Dryas
cold period, Nat. Geosci., 8, 946–980, https://doi.org/10.1038/NGEO2557, 2015.
Ridgwell, A., Maslin, M., and Kaplan, J. O.: Flooding of the continental
shelves as a contributor to deglacial CH4 rise, J. Quaternary Sci., 27,
800–806, https://doi.org/10.1002/jqs.2568, 2012.
Ridley, H. E., Asmerom, Y., Baldini, J. U. L., Breitenbach, S. F. M., Aquino,
V. V., Prufer, K. M., Culleton, B. J., Polyak, V., Lechleitner, F. A.,
Kennett, D. J., Zhang, M., Marwan, N., Macpherson, C. G., Baldini, L. M.,
Xiao, T., Peterkin, J. L., Awe, J., and Haug, G. H.: Aerosol forcing of the
position of the intertropical convergence zone since AD1550, Nat. Geosci., 8,
195–200, https://doi.org/10.1038/ngeo2353, 2015.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
2000.
Robock, A. and Mao, J. P.: The volcanic signal in surface temperature
observations, J. Clim., 8, 1086–1103,
https://doi.org/10.1175/1520-0442(1995)008<1086:Tvsist>2.0.Co;2, 1995.
Robock, A., Ammann, C. M., Oman, L., Shindell, D., Levis, S., and Stenchikov,
G.: Did the Toba volcanic eruption of similar to 74 ka BP produce
widespread glaciation?, J. Geophys. Res.-Atmos., 114, D10107, https://doi.org/10.1029/2008JD011652, 2009.
Sadler, J. P. and Grattan, J. P.: Volcanoes as agents of past environmental
change, Glob. Planet. Change, 21, 181–196,
https://doi.org/10.1016/S0921-8181(99)00014-4, 1999.
Sandom, C., Faurby, S., Sandel, B., and Svenning, J. C.: Global late
Quaternary megafauna extinctions linked to humans, not climate change, P.
Roy. Soc. B-Biol. Sci., 281, 20133254,
https://doi.org/10.1098/rspb.2013.3254, 2014.
Savarino, J., Bekki, S., Cole-Dai, J. H., and Thiemens, M. H.: Evidence from
sulfate mass independent oxygen isotopic compositions of dramatic changes in
atmospheric oxidation following massive volcanic eruptions, J. Geophys.
Res.-Atmos., 108, 4671, https://doi.org/10.1029/2003JD003737, 2003.
Scaillet, B., Luhr, J. F., and Carroll, M. R.: Petrological and
volcanological constraints on volcanic sulfur emissions to the atmosphere,
in: Volcanism and the Earth's Atmosphere (Geophysical Monograph Series),
edited by: Robock, A. and Oppenheimer, C., 11–40, 2004.
Schenk, F., Väliranta, M., Muschitiello, F., Tarasov, L., Heikkilä,
M., Björck, S., Brandefelt, J., Johansson, A. V., Näslund, J.-O., and
Wohlfarth, B.: Warm summers during the Younger Dryas cold reversal, Nat.
Commun., 9, 1634, https://doi.org/10.1038/s41467-018-04071-5, 2018.
Schleussner, C. F. and Feulner, G.: A volcanically triggered regime shift in
the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age,
Clim. Past, 9, 1321–1330, https://doi.org/10.5194/cp-9-1321-2013, 2013.
Schmidt, M. W., Vautravers, M. J., and Spero, H. J.: Rapid subtropical North
Atlantic salinity oscillations across Dansgaard-Oeschger cycles, Nature, 443,
561–564, 2006.
Schmincke, H. U.: Volcanism, Springer-Verlag, Berlin, 327 pp., 2004.
Schmincke, H. U., Park, C., and Harms, E.: Evolution and environmental
impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP,
Quatern. Int., 61, 61–72, https://doi.org/10.1016/S1040-6182(99)00017-8, 1999.
Scott, A. C., Hardiman, M., Pinter, N., Anderson, R. S., Daulton, T. L.,
Ejarque, A., Finch, P., and Carter-champion, A.: Interpreting palaeofire
evidence from fluvial sediments: a case study from Santa Rosa Island,
California, with implications for the Younger Dryas Impact Hypothesis, J.
Quaternary Sci., 32, 35–47, https://doi.org/10.1002/jqs.2914, 2017.
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J.,
Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E.,
Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D.
S., Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and
Vinther, B. M.: Consistently dated records from the Greenland GRIP, GISP2 and
NGRIP ice cores for the past 104 ka reveal regional millennial-scale delta
O-18 gradients with possible Heinrich event imprint, Quaternary Sci. Rev.,
106, 29–46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014.
Shakun, J. D., Burns, S. J., Fleitmann, D., Kramers, J., Matter, A., and
Al-Subary, A.: A high-resolution, absolute-dated deglacial speleothem record
of Indian Ocean climate from Socotra Island, Yemen, Earth Planet. Sc. Lett.,
259, 442–456, 2007.
Sheng, J. X., Weisenstein, D. K., Luo, B. P., Rozanov, E., Arfeuille, F., and
Peter, T.: A perturbed parameter model ensemble to investigate Mt.
Pinatubo's 1991 initial sulfur mass emission, Atmos. Chem. Phys., 15,
11501–11512, https://doi.org/10.5194/acp-15-11501-2015, 2015.
Shinohara, H.: Excess Degassing from Volcanoes and Its Role on Eruptive and
Intrusive Activity, Rev. Geophys., 46, RG4005, https://doi.org/10.1029/2007RG000244,
2008.
Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, C., Meischner, D.,
Schmelzer, I., and Smeed, D. A.: Sea-level fluctuations during the last
glacial cycle, Nature, 423, 853–858, https://doi.org/10.1038/Nature01690, 2003.
Sima, A., Paul, A., and Schulz, M.: The Younger Dryas – an intrinsic feature
of late Pleistocene climate change at millennial timescales, Earth Planet.
Sc. Lett., 222, 741–750, 2004.
Slawinska, J. and Robock, A.: Impact of volcanic eruptions on decadal to
centennial fluctuations of Arctic sea ice extent during the last millennium
and on initiation of the Little Ice Age, J. Climate, 31, 2145–2167, https://doi.org/10.1175/jcli-d-16-0498.1, 2017.
Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen,
D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S. J., Jouzel, J.,
Masson-Delmotte, V., Popp, T., Rasmussen, S. O., Rothlisberger, R., Ruth, U.,
Stauffer, B., Siggaard-Andersen, M. L., Sveinbjornsdottir, A. E., Svensson,
A., and White, J. W. C.: High-resolution Greenland Ice Core data show abrupt
climate change happens in few years, Science, 321, 680–684,
https://doi.org/10.1126/science.1157707, 2008.
Sternai, P., Caricchi, L., Castelltort, S., and Champagnac, J. D.:
Deglaciation and glacial erosion: A joint control on magma productivity by
continental unloading, Geophys. Res. Lett., 43, 1632–1641, 2016.
Stuiver, M., Grootes, P. M., and Braziunas, T. F.: The GISP2 δ18O
climate record of the past 16,500 years and the role of the Sun, ocean, and
volcanoes, Quaternary Res., 44, 341–354, 1995.
Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R., and Myers, A. D.: Test
of Martin's overkill hypothesis using radiocarbon dates on extinct megafauna,
P. Natl. Acad. Sci. USA, 113, 886–891, https://doi.org/10.1073/pnas.1504020112, 2016.
Svensson, A., Bigler, M., Blunier, T., Clausen, H. B., Dahl-Jensen, D.,
Fischer, H., Fujita, S., Goto-Azuma, K., Johnsen, S. J., Kawamura, K.,
Kipfstuhl, S., Kohno, M., Parrenin, F., Popp, T., Rasmussen, S. O.,
Schwander, J., Seierstad, I., Severi, M., Steffensen, J. P., Udisti, R.,
Uemura, R., Vallelonga, P., Vinther, B. M., Wegner, A., Wilhelms, F., and
Winstrup, M.: Direct linking of Greenland and Antarctic ice cores at the Toba
eruption (74 ka BP), Clim. Past, 9, 749–766, https://doi.org/10.5194/cp-9-749-2013,
2013.
Swingedouw, D., Mignot, J., Labetoulle, S., Guilyardi, E., and Madec, G.:
Initialisation and predictability of the AMOC over the last 50 years in a
climate model, Clim. Dynam., 42, 555–556, 2014.
Tarasov, L., and Peltier, W. R.: Arctic freshwater forcing of the Younger
Dryas cold reversal, Nature, 435, 662–665, https://doi.org/10.1038/Nature03617, 2005.
Teller, J. T.: Meltwater and precipitation runoff to the North Atlantic,
Arctic, and Gulf of Mexico from the Laurentide Ice Sheet and adjacent regions
during the Younger Dryas, Paleoceanography, 5, 897–905,
https://doi.org/10.1029/Pa005i006p00897, 1990.
Textor, C., Sachs, P. M., Graf, H.-F., and Hansteen, T. H.: The 12,900 years
BP Laacher See eruption: estimation of volatile yields and simulation of
their fate in the plume, Geol. Soc., London, Special Publications, 213,
307–328, https://doi.org/10.1144/gsl.sp.2003.213.01.19, 2003.
Thornalley, D. J. R., Barker, S., Broecker, W. S., Elderfield, H., and
McCave, I. N.: The Deglacial Evolution of North Atlantic Deep Convection,
Science, 331, 202–205, 2011.
Thornalley, D. J. R., Oppo, D. W., Ortega, P., Robson, J. I., Brierley, C.
M., Davis, R., Hall, I. R., Moffa-Sanchez, P., Rose, N. L., Spooner, P. T.,
Yashayaev, I., and Keigwin, L. D.: Anomalously weak Labrador Sea convection
and Atlantic overturning during the past 150 years, Nature, 556, 227–230,
https://doi.org/10.1038/s41586-018-0007-4, 2018.
Tian, H., Schryvers, D., and Claeys, P.: Nanodiamonds do not provide unique
evidence for a Younger Dryas impact, P. Natl. Acad. Sci. USA, 108, 40–44,
https://doi.org/10.1073/pnas.1007695108, 2011.
Timmreck, C. and Graf, H.-F.: The initial dispersal and radiative forcing of
a Northern Hemisphere mid-latitude super volcano: a model study, Atmos. Chem.
Phys., 6, 35–49, https://doi.org/10.5194/acp-6-35-2006, 2006.
Timmreck, C., Graf, H. F., Zanchettin, D., Hagemann, S., Kleinen, T., and
Kruger, K.: Climate response to the Toba super-eruption: Regional changes,
Quatern. Int., 258, 30–44, https://doi.org/10.1016/j.quaint.2011.10.008, 2012.
Tobin, T. S.: Recognition of a likely two phased extinction at the K-Pg
boundary in Antarctica, Sci. Rep., 7, 16317,
2017.
van den Bogaard, P., Schmincke, H. U., Freundt, A., and Park, C.: Thera and
the Aegean World, Third International Congress, Santorini, Greece,
463–485, 1989.
van den Bogaard, P.: 40Ar ∕ 39Ar ages of sanidine phenocrysts
from Laacher See Tephra (12,900 Yr Bp): chronostratigraphic and petrological
significance, Earth Planet. Sc. Lett., 133, 163–174,
https://doi.org/10.1016/0012-821x(95)00066-L, 1995.
van der Kaars, S., Miller, G. H., Turney, C. S. M., Cook, E. J., Nurnberg,
D., Schonfeld, J., Kershaw, A. P., and Lehman, S. J.: Humans rather than
climate the primary cause of Pleistocene megafaunal extinction in Australia,
Nat. Commun., 8, 14142,
https://doi.org/10.1038/ncomms14142, 2017.
van Hoesel, A., Hoek, W. Z., Pennock, G. M., Kaiser, K., Plumper, O.,
Jankowski, M., Hamers, M. F., Schlaak, N., Kuster, M., Andronikov, A. V., and
Drury, M. R.: A search for shocked quartz grains in the Allerod-Younger Dryas
boundary layer, Meteorit. Planet. Sci., 50, 483–498, https://doi.org/10.1111/maps.12435,
2015.
van Raden, U. J., Colombaroli, D., Gilli, A., Schwander, J., Bernasconi, S.
M., van Leeuwen, J., Leuenberger, M., and Eicher, U.: High-resolution
late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP, Palaeogeogr.
Palaeocl. Pt. B, 391, 13–24, https://doi.org/10.1016/j.palaeo.2012.05.017, 2013.
Vidal, C. M., Métrich, N., Komorowski, J.-C., Pratomo, I., Michel, A.,
Kartadinata, N., Robert, V., and Lavigne, F.: The 1257 Samalas eruption
(Lombok, Indonesia): the single greatest stratospheric gas release of the
Common Era, Sci. Rep., 6, 34868, https://doi.org/10.1038/srep34868, 2016.
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S.
J.: A mid-European decadal isotope record from 15,500 to 5,000 years B.P,
Science, 284, 1654–1657, 1999.
Wallace, P. J.: Volcanic SO2 emissions and the abundance and
distribution of exsolved gas in magma bodies, J. Volcanol. Geotherm. Res.,
108, 85–106, 2001.
White, R. V. and Saunders, A. D.: Volcanism, impact and mass extinctions:
incredible or credible coincidences?, Lithos, 79, 299–316, 2005.
Williams, M. A. J., Ambrose, S. H., van der Kaars, S., Ruehlemann, C.,
Chattopadhyaya, U., Pal, J., and Chauhan, P. R.: Environmental impact of the
73 ka Toba super-eruption in South Asia, Palaeogeogr. Palaeocl., 284,
295–314, https://doi.org/10.1016/j.palaeo.2009.10.009, 2009.
Wittke, J. H., Weaver, J. C., Bunch, T. E., Kennett, J. P., Kennett, D. J.,
Moore, A. M. T., Hillman, G. C., Tankersley, K. B., Goodyear, A. C., Moore,
C. R., Daniel, I. R., Ray, J. H., Lopinot, N. H., Ferraro, D.,
Israde-Alcantara, I., Bischoff, J. L., DeCarli, P. S., Hermes, R. E.,
Kloosterman, J. B., Revay, Z., Howard, G. A., Kimbel, D. R., Kletetschka, G.,
Nabelek, L., Lipo, C. P., Sakai, S., West, A., and Firestone, R. B.: Evidence
for deposition of 10 million tonnes of impact spherules across four
continents 12,800 y ago, P. Natl. Acad. Sci. USA, 110, E2088–E2097,
https://doi.org/10.1073/pnas.1301760110, 2013.
Wolbach, W. S., Ballard, J. P., Mayewski, P. A., Adedeji, V., Bunch, T. E.,
Firestone, R. B., French, T. A., Howard, G. A., Israde-Alcantara, I.,
Johnson, J. R., Kimbel, D., Kinzie, C. R., Kurbatov, A., Kletetschka, G.,
LeCompte, M. A., Mahaney, W. C., Melott, A. L., Maiorana-Boutilier, A.,
Mitra, S., Moore, C. R., Napier, W. M., Parlier, J., Tankersley, K. B.,
Thomas, B. C., Wittke, J. H., West, A., and Kennett, J. P.: Extraordinary
Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas
Cosmic Impact approximate to 12,800 Years Ago. 1. Ice Cores and Glaciers, J.
Geol., 126, 165–184, 2018a.
Wolbach, W. S., Ballard, J. P., Mayewski, P. A., Parnell, A. C., Cahill, N.,
Adedeji, V., Bunch, T. E., Dominguez-Vazquez, G., Erlandson, J. M.,
Firestone, R. B., French, T. A., Howard, G., Israde-Alcantara, I., Johnson,
J. R., Kimbel, D., Kinzie, C. R., Kurbatov, A., Kletetschka, G., LeCompte, M.
A., Mahaney, W. C., Melott, A. L., Mitra, S., Maiorana-Boutilier, A., Moore,
C. R., Napier, W. M., Parlier, J., Tankersley, K. B., Thomas, B. C., Wittke,
J. H., West, A., and Kennett, J. P.: Extraordinary Biomass-Burning Episode
and Impact Winter Triggered by the Younger Dryas Cosmic Impact approximate to
12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments, J. Geol., 126,
185–205, 2018b.
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson,
A.: Millennial-scale variability during the last glacial: The ice core
record, Quaternary Sci. Rev., 29, 2828–2838, 2010.
Wu, Y. Z., Sharma, M., LeCompte, M. A., Demitroff, M. N., and Landis, J. D.:
Origin and provenance of spherules and magnetic grains at the Younger Dryas
boundary, P. Natl. Acad. Sci. USA, 110, E3557–E3566,
https://doi.org/10.1073/pnas.1304059110, 2013.
Wulf, S., Ott, F., Slowinski, M., Noryskiewicz, A. M., Drager, N.,
Martin-Puertas, C., Czymzik, M., Neugebauer, I., Dulski, P., Bourne, A. J.,
Blaszkiewicz, M., and Brauer, A.: Tracing the Laacher See Tephra in the
varved sediment record of the Trzechowskie palaeolake in central Northern
Poland, Quaternary Sci. Rev., 76, 129–139,
https://doi.org/10.1016/j.quascirev.2013.07.010, 2013.
Yang, H., Wang, K., Dai, H., Wang, Y., and Li, Q.: Wind effect on the
Atlantic meridional overturning circulation via sea ice and vertical
diffusion, Clim. Dynam., 46, 3387–3403, https://doi.org/10.1007/s00382-015-2774-z, 2016.
Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate
shifts controlled by ice sheet changes, Nature, 512, 290–294,
https://doi.org/10.1038/nature13592, 2014.
Zhang, X., Knorr, G., Lohmann, G., and Barker, S.: Abrupt North Atlantic
circulation changes in response to gradual CO2 forcing in a glacial
climate state, Nat. Geosci., 10, 518–523,
https://doi.org/10.1038/ngeo2974, 2017.
Zhong, Y., Miller, G. H., Otto-Bliesner, B. L., Holland, M. M., Bailey, D.
A., Schneider, D. P., and Geirsdottir, A.: Centennial-scale climate change
from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism,
Clim. Dynam., 37, 2373–2387, https://doi.org/10.1007/s00382-010-0967-z, 2011.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., and Twickler,
M. S.: A 110,000-Yr Record of Explosive Volcanism from the GISP2 (Greenland)
Ice Core, Quaternary Res., 45, 109–118, 1996.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Gronvold, K., Germani, M.
S., Whitlow, S., Twickler, M. S., and Taylor, K.: Volcanic aerosol records
and tephrochronology of the Summit, Greenland, ice cores, J. Geophys.
Res.-Ocean., 102, 26625–26640, https://doi.org/10.1029/96jc03547, 1997.
Short summary
The Younger Dryas occurred ~13 ka BP and is an iconic millennial-scale climate anomaly. However, the cause of the event is still ambiguous. Here, we propose that the event was triggered by a large, sulfur-rich eruption of the Laacher See volcano (Germany). The eruption's direct (sulfate aerosol-induced) cooling effects lasted less than 5 years, and we suggest these were amplified and extended by a sea-ice–ocean circulation positive feedback, leading to the event's characteristic features.
The Younger Dryas occurred ~13 ka BP and is an iconic millennial-scale climate anomaly. However,...