Articles | Volume 14, issue 6
https://doi.org/10.5194/cp-14-725-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-725-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation
Niels J. de Winter
CORRESPONDING AUTHOR
Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
Johan Vellekoop
Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
Department of Earth and Environmental Science, KU Leuven, Heverlee, Belgium
Robin Vorsselmans
Department of Earth and Environmental Science, KU Leuven, Heverlee, Belgium
Asefeh Golreihan
Department of Earth and Environmental Science, KU Leuven, Heverlee, Belgium
Jeroen Soete
Department of Earth and Environmental Science, KU Leuven, Heverlee, Belgium
Sierra V. Petersen
Earth and Environmental Sciences Department, University of Michigan, Ann Arbor, Michigan, USA
Kyle W. Meyer
Earth and Environmental Sciences Department, University of Michigan, Ann Arbor, Michigan, USA
Silvio Casadio
Escuela de Geología, Paleontología y Enseñanza de las Ciencias, Universidad Nacional de Río Negro, CONICET, General Roca, Argentina
Robert P. Speijer
Department of Earth and Environmental Science, KU Leuven, Heverlee, Belgium
Philippe Claeys
Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
Related authors
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Niels J. de Winter
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-137, https://doi.org/10.5194/gmd-2017-137, 2017
Revised manuscript not accepted
Short summary
Short summary
Bivalves grow by expanding their shells incrementally and record environmental conditions in the chemistry of their carbonate. To reconstruct these conditions, it is important to constrain the growth and trace element uptake rates in these bivalve shells. The present study models the development and chemical composition of the shells of bivalves based on XRF mapping of shell cross sections and allows changes in trace element uptake rates to be interpreted to reconstruct palaeoenvironment.
N. J. de Winter, C. Zeeden, and F. J. Hilgen
Clim. Past, 10, 1001–1015, https://doi.org/10.5194/cp-10-1001-2014, https://doi.org/10.5194/cp-10-1001-2014, 2014
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Heidi E. O'Hora, Sierra V. Petersen, Johan Vellekoop, Matthew M. Jones, and Serena R. Scholz
Clim. Past, 18, 1963–1982, https://doi.org/10.5194/cp-18-1963-2022, https://doi.org/10.5194/cp-18-1963-2022, 2022
Short summary
Short summary
At the end of the Cretaceous period, massive volcanism in India emitted enough carbon dioxide into the atmosphere to warm the climate globally above an already warm background state. We reconstruct late Cretaceous seawater temperatures much warmer than today using the chemistry of fossil oysters from the modern-day Netherlands and Belgium. Covariations in temperature and water chemistry indicate changing ocean circulation patterns, potentially related to fluctuating sea level in this region.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Matthias Sinnesael, Alfredo Loi, Marie-Pierre Dabard, Thijs R. A. Vandenbroucke, and Philippe Claeys
Geochronology, 4, 251–267, https://doi.org/10.5194/gchron-4-251-2022, https://doi.org/10.5194/gchron-4-251-2022, 2022
Short summary
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Niels J. de Winter
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-137, https://doi.org/10.5194/gmd-2017-137, 2017
Revised manuscript not accepted
Short summary
Short summary
Bivalves grow by expanding their shells incrementally and record environmental conditions in the chemistry of their carbonate. To reconstruct these conditions, it is important to constrain the growth and trace element uptake rates in these bivalve shells. The present study models the development and chemical composition of the shells of bivalves based on XRF mapping of shell cross sections and allows changes in trace element uptake rates to be interpreted to reconstruct palaeoenvironment.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Morgane Philippe, Jean-Louis Tison, Karen Fjøsne, Bryn Hubbard, Helle A. Kjær, Jan T. M. Lenaerts, Reinhard Drews, Simon G. Sheldon, Kevin De Bondt, Philippe Claeys, and Frank Pattyn
The Cryosphere, 10, 2501–2516, https://doi.org/10.5194/tc-10-2501-2016, https://doi.org/10.5194/tc-10-2501-2016, 2016
Short summary
Short summary
The reconstruction of past snow accumulation rates is crucial in the context of recent climate change and sea level rise. We measured ~ 250 years of snow accumulation using a 120 m ice core drilled in coastal East Antarctica, where such long records are very scarce. This study is the first to show an increase in snow accumulation, beginning in the 20th and particularly marked in the last 50 years, thereby confirming model predictions of increased snowfall associated with climate change.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
Matthias Sinnesael, Miroslav Zivanovic, David De Vleeschouwer, Philippe Claeys, and Johan Schoukens
Geosci. Model Dev., 9, 3517–3531, https://doi.org/10.5194/gmd-9-3517-2016, https://doi.org/10.5194/gmd-9-3517-2016, 2016
Short summary
Short summary
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This drawback is circumvented by using a polynomial approach (ACE v.1 model) to estimate instantaneous amplitude and frequency in orbital components. The model is illustrated and validated using a synthetic insolation signal and tested on two case studies: a benthic δ18O record and a magnetic susceptibility record.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
C. Nehme, S. Verheyden, S. R. Noble, A. R. Farrant, D. Sahy, J. Hellstrom, J. J. Delannoy, and P. Claeys
Clim. Past, 11, 1785–1799, https://doi.org/10.5194/cp-11-1785-2015, https://doi.org/10.5194/cp-11-1785-2015, 2015
Short summary
Short summary
The Levant is a key area to study palaeoclimatic responses over G-IG cycles. A precisely dated MIS 5 stalagmite (129–84ka) from Kanaan Cave, Lebanon, with growth rate and isotopic records variations indicate a warm humid phase at the last interglacial (~129-125ka). A shift in δ18O values (125-122ka) is driven by the source effect of the eastern Med. during sapropel 5 (S5). Low growth rates and high δ18O-δ13C values (~122-84ka) mark the onset of glacial inception and transition to drier phase.
M. Van Rampelbergh, S. Verheyden, M. Allan, Y. Quinif, H. Cheng, L. R. Edwards, E. Keppens, and P. Claeys
Clim. Past, 11, 789–802, https://doi.org/10.5194/cp-11-789-2015, https://doi.org/10.5194/cp-11-789-2015, 2015
M. Van Rampelbergh, S. Verheyden, M Allan, Y. Quinif, E. Keppens, and P. Claeys
Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, https://doi.org/10.5194/cp-10-1871-2014, 2014
N. J. de Winter, C. Zeeden, and F. J. Hilgen
Clim. Past, 10, 1001–1015, https://doi.org/10.5194/cp-10-1001-2014, https://doi.org/10.5194/cp-10-1001-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Pre-Cenozoic
Clumped-isotope-derived climate trends leading up to the end-Cretaceous mass extinction in northwestern Europe
Clumped isotope evidence for Early Jurassic extreme polar warmth and high climate sensitivity
Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy – an experimental approach
Climate variability and ocean fertility during the Aptian Stage
Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean
Heidi E. O'Hora, Sierra V. Petersen, Johan Vellekoop, Matthew M. Jones, and Serena R. Scholz
Clim. Past, 18, 1963–1982, https://doi.org/10.5194/cp-18-1963-2022, https://doi.org/10.5194/cp-18-1963-2022, 2022
Short summary
Short summary
At the end of the Cretaceous period, massive volcanism in India emitted enough carbon dioxide into the atmosphere to warm the climate globally above an already warm background state. We reconstruct late Cretaceous seawater temperatures much warmer than today using the chemistry of fossil oysters from the modern-day Netherlands and Belgium. Covariations in temperature and water chemistry indicate changing ocean circulation patterns, potentially related to fluctuating sea level in this region.
Thomas Letulle, Guillaume Suan, Mathieu Daëron, Mikhail Rogov, Christophe Lécuyer, Arnauld Vinçon-Laugier, Bruno Reynard, Gilles Montagnac, Oleg Lutikov, and Jan Schlögl
Clim. Past, 18, 435–448, https://doi.org/10.5194/cp-18-435-2022, https://doi.org/10.5194/cp-18-435-2022, 2022
Short summary
Short summary
In this study, we applied geochemical tools to well-preserved ∼180-million-year-old marine mollusc shells from polar and mid-latitude seas. These results indicate that polar shells grew at temperatures of 8–18°C, while mid-latitude shells grew at temperatures of 24–28°C. These results, together with previously published data, raise concerns about the ability of climate models to predict accurate polar temperatures under reasonably high atmospheric CO2 levels.
Holly L. Taylor, Isaac J. Kell Duivestein, Juraj Farkas, Martin Dietzel, and Anthony Dosseto
Clim. Past, 15, 635–646, https://doi.org/10.5194/cp-15-635-2019, https://doi.org/10.5194/cp-15-635-2019, 2019
Short summary
Short summary
Approximately 600 million years ago, major environmental changes set the course for the emergence of animal life. Lithium (Li) isotopes in calcium carbonates can be used as a proxy to understand changes in the palaeo-environment. We conducted experiments that allow us to use Li isotopes in dolostones to extend our understanding of palaeo-environmental changes deeper into the geological record, where other calcium carbonates archives are not present.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
H. C. Jenkyns, L. Schouten-Huibers, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 8, 215–226, https://doi.org/10.5194/cp-8-215-2012, https://doi.org/10.5194/cp-8-215-2012, 2012
Cited articles
Abele, D., Brey, T., and Philipp, E.: Bivalve models of aging and the determination of molluscan lifespans, Exp. Gerontol., 44, 307–315, 2009.
Aberhan, M. and Kiessling, W.: Rebuilding biodiversity of Patagonian marine molluscs after the end-Cretaceous mass extinction, PloS one, 9, e102629, https://doi.org/10.1371/journal.pone.0102629, 2014.
Aberhan, M., Weidemeyer, S., Kiessling, W., Scasso, R. A., and Medina, F. A.: Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections, Geology, 35, 227–230, 2007.
Al-Aasm, I. S. and Veizer, J.: Diagenetic stabilization of aragonite and low-Mg calcite, I, Trace elements in rudists, J. Sediment. Res., 56, 138–152, 1986a.
Al-Aasm, I. S. and Veizer, J.: Diagenetic stabilization of aragonite and low-Mg calcite, II, Stable isotopes in rudists, J. Sediment. Res., 56, 763–770, 1986b.
Andrews, J. E., Tandon, S. K., and Dennis, P. F.: Concentration of carbon dioxide in the Late Cretaceous atmosphere, J. Geol. Soc. London, 152, 1–3, 1995.
Ayyasami, K.: Role of oysters in biostratigraphy: A case study from the Cretaceous of the Ariyalur area, southern India, Geosci. J., 10, 237–247, 2006.
Baldoni, A. M.: Palynology of the lower lefipan formation (upper cretaceous) of barranca de los perros, chubut province, Argentina, Part I, Cryptogam spores and gymnosperm pollen, Palynology, 16, 117–136, 1992.
Banner, J. L. and Hanson, G. N.: Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Ac., 54, 3123–3137, 1990.
Barbin, V.: Cathodoluminescence of carbonate shells: biochemical vs diagenetic process, in: Cathodoluminescence in Geosciences, Springer, Berlin, 303–329, 2000.
Barreda, V. and Palazzesi, L.: Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras, Bot. Rev., 73, 31–50, 2007.
Barreda, V. D., Cúneo, N. R., Wilf, P., Currano, E. D., Scasso, R. A., and Brinkhuis, H.: Cretaceous/Paleogene floral turnover in Patagonia: drop in diversity, low extinction, and a Classopollis spike, Plos One, 7, e52455, https://doi.org/10.1371/journal.pone.0052455, 2012.
Berner, R.: Atmospheric carbon dioxide levels over Phanerozoic time, Science, 249, 1382–1386, 1990.
Bertels, A.: Micropaleontología y estratigrafía del lîmite Cretácico-Terciario en Huantrai-co (provincia de Neuquén), Ostracoda, Parte 1: Cytherellidae, Bairdiidae, Pontocypridinae, Buntoniinae y Trachyleberidinae (pro parte), Ameghiniana, 5, 279–298, 2013.
Bieler, R., Mikkelsen, P. M., Lee, T., and Foighil, D.Ó.: Discovery of the Indo-Pacific oyster Hyotissa hyotis (Linnaeus, 1758) in the Florida Keys (Bivalvia: Gryphaeidae), Molluscan Res., 24, 149–159, 2004.
Bougeois, L., De Rafélis, M., Reichart, G.-J., De Nooijer, L. J., Nicollin, F., and Dupont-Nivet, G.: A high resolution study of trace elements and stable isotopes in oyster shells to estimate Central Asian Middle Eocene seasonality, Chem. Geol., 363, 200–212, 2014.
Brand, U. and Veizer, J.: Chemical diagenesis of a multicomponent carbonate system–1: Trace elements, J. Sediment. Res., 50, 1219–1236, 1980.
Brezina, S. S., Romero, M. V., Casadío, S., and Bremec, C.: Boring Polychaetes Associated with Pycnodonte (Phygraea) vesicularis (Lamarck) from the Upper Cretaceous of Patagonia, A Case of Commensalism, Ameghiniana, 51, 129–140, 2014.
Brugger, J., Feulner, G., and Petri, S.: Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous: Chicxulub impact cooling, Geophys. Res. Lett., 44, 419–427, https://doi.org/10.1002/2016GL072241, 2017
Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A., and Reynolds, D. J.: Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica, Palaeogeogr. Palaeocl., 373, 141–151, 2013.
Calmano, W., Hong, J., and Förstner, U.: Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential, Water Sci. Technol., 28, 223–235, 1993.
Calvert, S. E. and Pedersen, T. F.: Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record, Marine Geology, Marine Sediments, Burial, Pore Water Chemistry, Microbiology and Diagenesis, Mar. Geol., 113, 67–88, https://doi.org/10.1016/0025-3227(93)90150-T, 1993.
Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos, S., Kalin, R. M., Ortlieb, L., and Fontugne, M.: Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: potential application to Peruvian paleoceanographic reconstructions, Palaeogeogr. Palaeocl., 228, 4–25, 2005.
Carriker, M. R., Palmer, R. E., Sick, L. V., and Johnson, C. C.: Interaction of mineral elements in sea water and shell of oysters (Crassostrea virginica (Gmelin)) cultured in controlled and natural systems, J. Exp. Mar. Biol. Ecol., 46, 279–296, 1980a.
Carriker, M. R., Palmer, R. E., and Prezant, R. S.: Ultrastructural morphogenesis of prodissoconch and early dissoconch valves of the oyster Crassostrea virginica, College of Marine Studies, University of Delaware, 1980b.
Chauvaud, L., Lorrain, A., Dunbar, R. B., Paulet, Y.-M., Thouzeau, G., Jean, F., Guarini, J.-M., and Mucciarone, D.: Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes, Geochem. Geophy. Geosy., 6, Q08001, https://doi.org/10.1029/2004GC000890, 2005.
Chinzei, K. and Seilacher, A.: Remote Biomineralization I: Fill skeletons in vesicular oyster shells (with 7 figures in the text), Neues Jahrb. Geol. P.-A., 190, 349–362, 1993.
Coggon, R. M., Teagle, D. A., Smith-Duque, C. E., Alt, J. C., and Cooper, M. J.: Reconstructing past seawater Mg ∕ Ca and Sr ∕ Ca from mid-ocean ridge flank calcium carbonate veins, Science, 327, 1114–1117, 2010.
Crippa, G., Angiolini, L., Bottini, C., Erba, E., Felletti, F., Frigerio, C., Hennissen, J. A. I., Leng, M. J., Petrizzo, M. R., and Raffi, I.: Seasonality fluctuations recorded in fossil bivalves during the early Pleistocene: implications for climate change, Palaeogeogr. Palaeocl., 446, 234–251, 2016.
Daëron, M., Blamart, D., Peral, M., and Affek, H. P.: Absolute isotopic abundance ratios and the accuracy of Δ47 measurements, Chem. Geol., 442, 83–96, 2016.
Dale, A., John, C. M., Mozley, P. S., Smalley, P. C., and Muggeridge, A. H.: Time-capsule concretions: unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes, Earth Planet. Sc. Lett., 394, 30–37, 2014.
de Winter, N. J. and Claeys, P.: Micro X-ray fluorescence (μXRF) line scanning on Cretaceous rudist bivalves: A new method for reproducible trace element profiles in bivalve calcite, Sedimentology, 64, 231–251, https://doi.org/10.1111/sed.12299, 2016.
de Winter, N. J., Zeeden, C., and Hilgen, F. J.: Low-latitude climate variability in the Heinrich frequency band of the Late Cretaceous greenhouse world, Clim. Past, 10, 1001–1015, https://doi.org/10.5194/cp-10-1001-2014, 2014.
de Winter, N. J., Goderis, S., Dehairs, F., Jagt, J. W. M., Fraaije, R. H. B., Van Malderen, S. J. M., Vanhaecke, F., and Claeys, P.: Tropical seasonality in the late Campanian (Late Cretaceous): Comparison between multiproxy records from three bivalve taxa from Oman, Palaeogeogr. Palaeocl., 485, 740–760, https://doi.org/10.1016/j.palaeo.2017.07.031, 2017a.
de Winter, N. J., Sinnesael, M., Makarona, C., Vansteenberge, S., and Claeys, P.: Trace element analyses of carbonates using portable and micro-X-ray fluorescence: Performance and optimization of measurement parameters and strategies, J. Anal. Atom. Spectrom., 32, 1211–1224, 2017b.
de Winter, N. J., Vellekoop, J., Vorsselmans, R., Golreihan, A., Soete, J., Petersen, S. V., Meyer, K. W., Casadio, S., Speijer, R. P., and Claeys, P.: An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: A multi-proxy investigation, PANGAEA, available at: https://doi.org/10.1594/PANGAEA.881640, Supplement to: de Winter, N. J. et al.: An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: A multi-proxy investigation, Clim. Past Discuss., 2017c.
Defliese, W. F., Hren, M. T., and Lohmann, K. C.: Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations, Chem. Geol., 396, 51–60, 2015.
Dettman, D. L. and Lohmann, K. C.: Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene, Geology 28, 243–246, https://doi.org/10.1130/0091-7613(2000)28<243:OIEFHS>2.0.CO;2, 2000.
Dettman, D. L., Kohn, M. J., Quade, J., Ryerson, F. J., Ojha, T. P., and Hamidullah, S.: Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 Myr, Geology, 29, 31–34, 2001.
Dettman, D. L. and Lohmann, K. C.: Seasonal Change in Paleogene Surface Water δ18O: Fresh-Water Bivalves of Western North America, in: Climate Change in Continental Isotopic Records, edited by: Swart, P. K., Lohmann, K. C., Mckenzie, J., and Savin, S., https://doi.org/10.1029/GM078p0153, 2013.
Dlugokencky, E.: Tans P., NOAA/ESRL, available at: www.esrl.noaa.gov/gmd/ccgg/trends/, last access 31 January 2017.
Dodd, J. R. and Crisp, E. L.: Non-linear variation with salinity of Sr ∕ Ca and Mg ∕ Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies, Palaeogeogr. Palaeocl., 38, 45–56, 1982.
Donnadieu, Y., Pierrehumbert, R., Jacob, R., and Fluteau, F.: Modelling the primary control of paleogeography on Cretaceous climate, Earth Planet. Sc. Lett., 248, 426–437, https://doi.org/10.1016/j.epsl.2006.06.007, 2006
Dreier, A., Loh, W., Blumenberg, M., Thiel, V., Hause-Reitner, D., and Hoppert, M.: The isotopic biosignatures of photo-vs. thiotrophic bivalves: are they preserved in fossil shells, Geobiology, 12, 406–423, 2014.
Duinker, J. C., Nolting, R. F., and Michel, D.: Effects of salinity, pH and redox conditions on the behaviour of Cd, Zn, Ni and Mn in the Scheldt estuary, Thalassia Jugosl., 18, 191–202, 1982.
Dunbar, R. B. and Wefer, G.: Stable isotope fractionation in benthic foraminifera from the Peruvian continental margin, Mar. Geol., 59, 215–225, 1984.
Ekart, D. D., Cerling, T. E., Montanez, I. P., and Tabor, N. J.: A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805–827, 1999.
Elderfield, H. and Ganssen, G.: Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg ∕ Ca ratios, Nature, 405, 442–445, 2000.
Elliot, M., Welsh, K., Chilcott, C., McCulloch, M., Chappell, J., and Ayling, B.: Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: potential applications in paleoclimate studies, Palaeogeogr. Palaeocl., 280, 132–142, 2009.
Folk, R. L. and Land, L. S.: Mg ∕ Ca ratio and salinity: two controls over crystallization of dolomite, AAPG Bull., 59, 60–68, 1975.
Fossilworks.org: Pycnodonte genus, age range and distribution, last access: 14 February 2017.
Freitas, P., Clarke, L. J., Kennedy, H., Richardson, C., and Abrantes, F.: Mg ∕ Ca, Sr ∕ Ca, and stable-isotope (δ18O and δ13C) ratio profiles from the fan mussel Pinna nobilis: Seasonal records and temperature relationships: Pinna Nobilis RATIO PROFILES, Geochem. Geophy. Geosy., 6, Q04D14, https://doi.org/10.1029/2004GC000872, 2005.
Freitas, P. S., Clarke, L. J., Kennedy, H., Richardson, C. A., and Abrantes, F.: Environmental and biological controls on elemental (Mg ∕ Ca, Sr ∕ Ca and Mn ∕ Ca) ratios in shells of the king scallop Pecten maximus, Geochim. Cosmochim. Ac., 70, 5119–5133, https://doi.org/10.1016/j.gca.2006.07.029, 2006.
Freitas, P. S., Clarke, L. J., Kennedy, H. A., and Richardson, C. A.: Inter- and intra-specimen variability masks reliable temperature control on shell Mg ∕ Ca ratios in laboratory- and field-cultured Mytilus edulis and Pecten maximus (bivalvia), Biogeosciences, 5, 1245–1258, https://doi.org/10.5194/bg-5-1245-2008, 2008.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late Cretaceous oceans – a 55 my record of Earth's temperature and carbon cycle, Geology, 40, 107–110, 2012.
Geist, J., Auerswald, K., and Boom, A.: Stable carbon isotopes in freshwater mussel shells: Environmental record or marker for metabolic activity, Geochim. Cosmochim. Ac., 69, 3545–3554, 2005.
Gillikin, D. P., De Ridder, F., Ulens, H., Elskens, M., Keppens, E., Baeyens, W., and Dehairs, F.: Assessing the reproducibility and reliability of estuarine bivalve shells (Saxidomus giganteus) for sea surface temperature reconstruction: implications for paleoclimate studies, Palaeogeography, Palaeogeogr. Palaeocl., 228, 70–85, 2005a.
Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., André, L., Keppens, E., Baeyens, W., and Dehairs, F.: Strong biological controls on Sr ∕ Ca ratios in aragonitic marine bivalve shells, Geochem. Geophy. Geosy., 6, Q05009, https://doi.org/10.1029/2004GC000874, 2005b.
Gillikin, D. P., Lorrain, A., Bouillon, S., Willenz, P., and Dehairs, F.: Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13CDIC and phytoplankton, Org. Geochem., 37, 1371–1382, 2006.
Gillikin, D. P., Lorrain, A., Meng, L., and Dehairs, F.: A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells, Geochim. Cosmochim. Ac., 71, 2936–2946, 2007.
Gillikin, D. P., Lorrain, A., Paulet, Y.-M., André, L., and Dehairs, F.: Synchronous barium peaks in high-resolution profiles of calcite and aragonite marine bivalve shells, Geo-Mar. Lett., 28, 351–358, 2008.
Gofas, S., Salas C., and Taviani, M.: Neopycnodonte zibrowii, available at: http://marinespecies.org/aphia.php?p=taxdetails&id=379789 (last access: 6 June 2018), 2009.
Goodwin, D. H., Flessa, K. W., Schöne, B. R., and Dettman, D. L.: Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis, Palaios, 16, 387–398, 2001.
Grossman, E. L. and Ku, T.-L.: Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects, Chem. Geol., 59, 59–74, 1986.
Guo, T., DeLaune, R. D., and Patrick, W. H.: The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment, Environ. Int., 23, 305–316, 1997.
Gutiérrez-Zugasti, I., Clarke, L. J., Garcia-Escárzaga, A., Suárez-Revilla, R., and González-Morales, M.: Changes in seawater temperatures in northern Iberia during the Late Pleistocene and Early Holocene, 22nd Annual Meeting of the EAA 2016, TH5-13, Abstract 4, 3 September 2016.
Habermann, D.: Quantitative cathodoluminescence (CL) spectroscopy of minerals: possibilities and limitations, Miner. Petrol., 76, 247–259, 2002.
Hallmann, N., Burchell, M., Brewster, N., Martindale, A., and Schöne, B. R.: Holocene climate and seasonality of shell collection at the Dundas Islands Group, northern British Columbia, Canada – A bivalve sclerochronological approach, Palaeogeogr. Palaeocl., 373, 163–172, 2013.
Harzhauser, M., Piller, W. E., Müllegger, S., Grunert, P., and Micheels, A.: Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive, Global Planet. Change, 76, 77–84, 2011.
Hay, W. W.: Evolving ideas about the Cretaceous climate and ocean circulation, Cretaceous Res., 29, 725–753, 2008.
Hay, J. E.: Small island developing states: coastal systems, global change and sustainability, Sustain. Sci., 8, 309–326, 2013.
Hayami, I. and Kase, T.: A new cryptic species of Pycnodonte from Ryukyu Islands: a living fossil oyster, Nihon Koseibutsu Gakkai hokoku, kiji, Trans. Proc. Pal. Soc. Japan, 1070–1089, 1992.
Hays, P. D. and Grossman, E. L.: Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate, Geology, 19, 441–444, https://doi.org/10.1130/0091-7613(1991)019<0441:OIIMCC>2.3.CO;2, 1991.
Huber, B. T., Norris, R. D., and MacLeod, K. G.: Deep-sea paleotemperature record of extreme warmth during the Cretaceous, Geology, 30, 123–126, https://doi.org/10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2, 2002.
Hunter, S. J., Valdes, P. J., Haywood, A. M., and Markwick, P. J.: Modelling Maastrichtian climate: investigating the role of geography, atmospheric CO2 and vegetation, Clim. Past Discuss., 4, 981–1019, https://doi.org/10.5194/cpd-4-981-2008, 2008.
Huntington, K. W., Budd, D. A., Wernicke, B. P., and Eiler, J. M.: Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite, J. Sediment. Res., 81, 656–669, 2011.
Iglesias, A., Wilf, P., Johnson, K. R., Zamuner, A. B., Cúneo, N. R., Matheos, S. D., and Singer, B. S.: A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs, Geology, 35, 947–950, 2007.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K. and Meyer, L. A.], IPCC, Geneva, Switzerland, 151 pp., 2014.
Jackson, L. J., Kalff, J., and Rasnnussen, J. B.: Sediment pH and redox potential affect the bioavailability of Al, Cu, Fe, Mn, and Zn to rooted aquatic macrophytes, Can. J. Fish Aquat. Sci., 50, 143–148, 1993.
Jia, G., Wang, X., Guo, W., and Dong, L.: Seasonal distribution of archaeal lipids in surface water and its constraint on their sources and the TEX86 temperature proxy in sediments of the South China Sea, J. Geophys. Res.-Biogeo., 122, 592–606, https://doi.org/10.1002/2016JG003732, 2017.
Jones, D. S.: Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance, Paleobiology, 6, 331–340, 1980.
Jones, D. S.: Sclerochronology: reading the record of the molluscan shell: annual growth increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity, Am. Sci., 71, 384–391, 1983.
Kiessling, W., Aragón, E., Scasso, R., Aberhan, M., Kriwet, J., Medina, F., and Fracchia, D.: Massive corals in Paleocene siliciclastic sediments of Chubut (Argentina), Facies, 51, 233–241, 2005.
Kirby, M. X.: Paleoecological differences between Tertiary and Quaternary Crassostrea oysters, as revealed by stable isotope sclerochronology, Palaios, 15, 132–141, 2000.
Kirby, M. X., Soniat, T. M., and Spero, H. J.: Stable isotope sclerochronology of Pleistocene and Recent oyster shells (Crassostrea virginica), Palaios, 13, 560–569, 1998.
Klein, J. S., Mozley, P., Campbell, A., and Cole, R.: Spatial distribution of carbon and oxygen isotopes in laterally extensive carbonate-cemented layers: implications for mode of growth and subsurface identification, J. Sediment. Res., 69, 184–201, 1999.
Klein, R. T., Lohmann, K. C., and Thayer, C. W.: Bivalve skeletons record sea-surface temperature and δ18O via Mg ∕ Ca and 18O ∕ 16O ratios, Geology, 24, 415–418, 1996a.
Klein, R. T., Lohmann, K. C., and Thayer, C. W.: Sr ∕ Ca and 13C ∕ 12C ratios in skeletal calcite of Mytilus trossulus: Covariation with metabolic rate, salinity, and carbon isotopic composition of seawater, Geochim. Cosmochim. Ac., 60, 4207–4221, 1996b.
Langlet, D., Alunno-Bruscia, M., Rafélis, M., Renard, M., Roux, M., Schein, E., and Buestel, D.: Experimental and natural cathodoluminescence in the shell of Crassostrea gigas from Thau lagoon (France): ecological and environmental implications, Mar. Ecol. Prog. Ser., 317, 143–156, 2006.
Lartaud, F., De Rafélis, M., Ropert, M., Emmanuel, L., Geairon, P., and Renard, M.: Mn labelling of living oysters: artificial and natural cathodoluminescence analyses as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells, Aquaculture, 300, 206–217, 2010a.
Lartaud, F., Emmanuel, L., De Rafélis, M., Pouvreau, S., and Renard, M.: Influence of food supply on the δ13C signature of mollusc shells: implications for palaeoenvironmental reconstitutions, Geo-Mar. Lett., 30, 23–34, 2010b.
Lazareth, C. E., Vander Putten, E., André, L., and Dehairs, F.: High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: a record of environmental spatio-temporal variations, Estuar. Coast Shelf Sci., 57, 1103–1114, 2003.
Lear, C. H., Elderfield, H., and Wilson, P. A.: Cenozoic deep-sea temperatures and global ice volumes from Mg ∕ Ca in benthic foraminiferal calcite, Science, 287, 269–272, 2000.
Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M., Rosenthal, Y., Sosdian, S. M., Thomas, E., and Wilson, P. A.: Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg ∕ Ca paleothermometry, Paleoceanography, 30, 1437–1454, 2015.
Lécuyer, C., Reynard, B., and Martineau, F.: Stable isotope fractionation between mollusc shells and marine waters from Martinique Island, Chem. Geol., 213, 293–305, 2004.
Linnaei, C.: Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis., 10th Edn., Lars Salvi, Stockholm, 1758.
Lorens, R. B. and Bender, M. L.: The impact of solution chemistry on Mytilus edulis calcite and aragonite, Geochim. Cosmochim. Ac., 44, 1265–1278, 1980.
Lorrain, A., Paulet, Y.-M., Chauvaud, L., Dunbar, R., Mucciarone, D., and Fontugne, M.: δ13C variation in scallop shells: increasing metabolic carbon contribution with body size, Geochim. Cosmochim. Ac., 68, 3509–3519, 2004.
Lorrain, A., Gillikin, D. P., Paulet, Y.-M., Chauvaud, L., Le Mercier, A., Navez, J., and André, L.: Strong kinetic effects on Sr ∕ Ca ratios in the calcitic bivalve Pecten maximus, Geology, 33, 965–968, 2005.
Loyd, S. J., Corsetti, F. A., Eiler, J. M., and Tripati, A. K.: Determining the diagenetic conditions of concretion formation: assessing temperatures and pore waters using clumped isotopes, J. Sediment. Res., 82, 1006–1016, 2012.
MacDonald, J., Freer, A., and Cusack, M.: Alignment of crystallographic c-axis throughout the four distinct microstructural layers of the oyster Crassostrea gigas, Cryst. Growth Des., 10, 1243–1246, 2009.
Machel, H. G. and Burton, E. A.: Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis, available at: http://archives.datapages.com/data/sepm_sp/sc25/Factors_Governing_Cathodoluminescence.htm (last access: 6 June 2018), 1991.
Malumian, N. and Nanez, C.: The Late Cretaceous – Cenozoic transgressions in Patagonia and the Fuegian Andes: foraminifera, palaeoecology, and palaeogeography, Biol. J. Linn. Soc., 103, 269–288, 2011.
Marali, S. and Schöne, B. R.: Oceanographic control on shell growth of Arctica islandica (Bivalvia) in surface waters of Northeast Iceland – Implications for paleoclimate reconstructions, Palaeogeogr. Palaeocl., 420, 138–149, 2015.
Marali, S., Schöne, B. R., Mertz-Kraus, R., Griffin, S. M., Wanamaker, A. D., Matras, U., and Butler, P. G.: Ba ∕ Ca ratios in shells of Arctica islandica – Potential environmental proxy and crossdating tool, Palaeogeogr. Palaeocl., 465, 347–361, 2017.
McConnaughey, T.: 13C and 18O isotopic disequilibrium in biological carbonates: II, In vitro simulation of kinetic isotope effects, Geochim. Cosmochim. Ac., 53, 163–171, 1989.
McConnaughey, T. A. and Gillikin, D. P.: Carbon isotopes in mollusk shell carbonates, Geo-Mar. Lett., 28, 287–299, 2008.
McConnaughey, T. A., Burdett, J., Whelan, J. F., and Paull, C. K.: Carbon isotopes in biological carbonates: Respiration and photosynthesis, Geochim. Cosmochim. Ac., 61, 611–622, https://doi.org/10.1016/S0016-7037(96)00361-4, 1997.
Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Hernández, J. C., Olsson, R. K., Wright, J. D., Feigenson, M. D., and Van Sickel, W.: Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world, Geology, 31, 585–588, 2003.
Morrison, J. M., Codispoti, L. A., Gaurin, S., Jones, B., Manghnani, V., and Zheng, Z.: Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study, Deep-Sea Res. Pt. II, 45, 2053–2101, 1998.
Mouchi, V., De Rafélis, M., Lartaud, F., Fialin, M., and Verrecchia, E.: Chemical labelling of oyster shells used for time-calibrated high-resolution Mg ∕ Ca ratios: a tool for estimation of past seasonal temperature variations, Palaeogeogr. Palaeocl., 373, 66–74, 2013.
Müller, A. H.: Zur funktionellen Morphologie, Taxiologie und Ökologie von Pycnodonta (Ostreina, Lamellibranchiata), Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, 12, 902–923, 1970.
Nestler, H.: Entwicklung und Schalenstruktur von Pycnodonte uesicularis (LAM.) und Dimyodon nilssoni (v. Hag.) aus der Oberkreide, Geologie, L4, 64–77, 1965.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes, Earth-Sci. Rev., 172, 224–247, https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
Omata, T., Suzuki, A., Kawahat, H., and Okamoto, M.: Annual fluctuation in the stable carbon isotope ratio of coral skeletons: the relative intensities of kinetic and metabolic isotope effects, Geochim. Cosmochim. Ac., 69, 3007–3016, 2005.
Otto-Bliesner, B. L., Brady, E. C., and Shields, C.: Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model, J. Geophys. Res., 107, ACL11-1, https://doi.org/10.1029/2001JD000821, 2002.
Owen, R., Kennedy, H., and Richardson, C.: Experimental investigation into partitioning of stable isotopes between scallop (Pecten maximus) shell calcite and sea water, Palaeogeogr. Palaeocl., 185, 163–174, 2002.
Palazzesi, L. and Barreda, V.: Major vegetation trends in the Tertiary of Patagonia (Argentina): a qualitative paleoclimatic approach based on palynological evidence, Flora-Morphology, Distribution, Functional Ecology of Plants, 202, 328–337, 2007.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 413, 481–487, 2001.
Pennington, J. T. and Chavez, F. P.: Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989–1996 in Monterey Bay, California, Deep-Sea Res. Pt. II, 47, 947–973, 2000.
Petersen, S. V., Winkelstern, I. Z., Lohmann, K. C., and Meyer, K. W.: The effects of Porapak™ trap temperature on δ18O, δ13C, and Δ47 values in preparing samples for clumped isotope analysis, Rapid Commun. Mass Sp., 30, 199–208, 2016.
Pirrie, D. and Marshall, J. D.: Diagenesis of Inoceramus and Late Cretaceous paleoenvironmental geochemistry: a case study from James Ross Island, Antarctica, Palaios, 5, 336–345, 1990.
Poli J. X.: Testacea Utriusque Siciliae eorumque historia et anatome, 2, pp. 75–264, i-lxxvi, pl. 19–39, Parma, Regio Typographeio, 1795.
Prámparo, M. B., Papu, O. H., and Milana, J. P.: Estudios palinológicos del miembro inferior de la Formación Pachaco, Terciano de la provincia de San Juan, Descripciones sistemáticas, Ameghiniana, 33, 397–407, 1996.
Prámparo, M. B. and Papu, O. H.: Late Maastrichtian dinoflagellate cysts from the Cerro Butaló section, southern Mendoza province, Argentina, J. Micropalaeontol., 25, 23–33, 2006.
Pugaczewska, H.: The Upper Cretaceous Ostreidae from the Middle Vistula Region (Poland), Acta Palaeontol. Pol., 22, 187–204, 1977.
Quan, C., Sun, C., Sun, Y., and Sun, G.: High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles, Cretaceous Res., 30, 424–428, 2009.
Ravelo, A. C. and Hillaire-Marcel, C.: Chapter Eighteen the use of oxygen and carbon isotopes of foraminifera in Paleoceanography, Dev. Mar. Bio., 1, 735–764, 2007.
Richardson, C. A., Peharda, M., Kennedy, H., Kennedy, P., and Onofri, V.: Age, growth rate and season of recruitment of Pinna nobilis (L) in the Croatian Adriatic determined from Mg: Ca and Sr: Ca shell profiles, J. Exp. Mar. Biol. Ecol., 299, 1–16, 2004.
Rimstidt, J. D., Balog, A., and Webb, J.: Distribution of trace elements between carbonate minerals and aqueous solutions, Geochim. Cosmochim. Ac., 62, 1851–1863, 1998.
Romanek, C. S., Grossman, E. L., and Morse, J. W.: Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate, Geochim. Cosmochim. Ac., 56, 419–430, 1992.
Rosenberg, G. D. and Hughes, W. W.: A metabolic model for the determination of shell composition in the bivalve mollusc, Mytilus edulis, Lethaia, 24, 83–96, 1991.
Scasso, R. A., Concheyro, A., Kiessling, W., Aberhan, M., Hecht, L., Medina, F. A., and Tagle, R.: A tsunami deposit at the Cretaceous/Paleogene boundary in the Neuquén Basin of Argentina, Cretaceous Res., 26, 283–297, 2005.
Schauer, A. J., Kelson, J., Saenger, C., and Huntington, K. W.: Choice of 17O correction affects clumped isotope (Δ47) values of CO2 measured with mass spectrometry, Rapid Commun. Mass Sp., 30, 2607–2616, 2016.
Schlager, W. and James, N. P.: Low-magnesian calcite limestones forming at the deep-sea floor, Tongue of the Ocean, Bahamas, Sedimentology, 25, 675–702, 1978.
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J., Johnson, A. L., Dreyer, W., and Oschmann, W.: Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeogr. Palaeocl., 228, 130–148, 2005a.
Schöne, B. R., Houk, S. D., Castro, A. D. F., Fiebig, J., Oschmann, W., Kröncke, I., Dreyer, W., and Gosselck, F.: Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived bivalve mollusk, Palaios, 20, 78–92, 2005b.
Schöne, B. R., Pfeiffer, M., Pohlmann, T., and Siegismund, F.: A seasonally resolved bottom-water temperature record for the period AD 1866–2002 based on shells of Arctica islandica (Mollusca, North Sea), Int. J. Climatol., 25, 947–962, 2005c.
Schouten, S., Hopmans, E. C., and Damsté, J. S. S.: The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review, Org. Geochem., 54, 19-61, 2013.
Scourse, J., Richardson, C., Forsythe, G., Harris, I., Heinemeier, J., Fraser, N., Briffa, K., and Jones, P.: First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica islandica, Holocene, 16, 967–974, 2006.
Servicio Meteorológico Nacional, Republic of Argentina, available at: http://www.smn.gov.ar/serviciosclimaticos/?mod=turismo&id=5&var=buenosaires, last access: 25 September 2017.
Stanley, S. M. and Hardie, L. A.: Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry, Palaeogeogr. Palaeocl., 144, 3–19, 1998.
Stenzel, H. B.: Cretaceous oysters of southwestern North America, Int. Geol. Congr., Mexico City, 15–37, 1956.
Stenzel, H. B.: Oysters, University of Kansas Press and Geological Society of America, Part N, Mollusca, 1971.
Steuber, T.: Stable isotope sclerochronology of rudist bivalves: Growth rates and Late Cretaceous seasonality, Geology, 24, 315–318, https://doi.org/10.1130/0091-7613(1996)024<0315:SISORB>2.3.CO;2, 1996.
Steuber, T.: Isotopic and chemical intra-shell variations in low-Mg calcite of rudist bivalves (Mollusca-Hippuritacea): disequilibrium fractionations and late Cretaceous seasonality, Int. J. Earth Sci., 88, 551–570, 1999.
Steuber, T., Rauch, M., Masse, J.-P., Graaf, J., and Malkoč, M.: Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes, Nature, 437, 1341–1344, 2005.
Surge, D. and Lohmann, K. C.: Evaluating Mg ∕ Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica, J. Geophys. Res., 113, 2001, https://doi.org/10.1029/2007JG000623, 2008.
Surge, D., Lohmann, K. C., and Dettman, D. L.: Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns, Palaeogeogr., Palaeocl., 172, 283–296, 2001.
Takesue, R. K. and van Geen, A.: Mg ∕ Ca, Sr ∕ Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region, Geochim. Cosmochim. Ac., 68, 3845–3861, 2004.
Titschack, J., Zuschin, M., Spötl, C., and Baal, C.: The giant oyster Hyotissa hyotis from the northern Red Sea as a decadal-scale archive for seasonal environmental fluctuations in coral reef habitats, Coral Reefs, 29, 1061–1075, 2010.
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J., Domeier, M., Gaina, C., and Tohver, E.: Phanerozoic polar wander, palaeogeography and dynamics, Earth-Sci. Rev., 114, 325–368, 2012.
Tripati, A., Zachos, J., Marincovich Jr., L., and Bice, K.: Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios, Palaeogeogr. Palaeocl., 170, 101–113, https://doi.org/10.1016/S0031-0182(01)00230-9, 2001.
Ullmann, C. V., Wiechert, U., and Korte, C.: Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies, Chem. Geol., 277, 160–166, https://doi.org/10.1016/j.chemgeo.2010.07.019, 2010.
Ullmann, C. V., Böhm, F., Rickaby, R. E., Wiechert, U., and Korte, C.: The Giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: isotopic (Ca, O, C) and elemental (Mg ∕ Ca, Sr ∕ Ca, Mn ∕ Ca) proxies, Geochem. Geophy. Geosy., 14, 4109–4120, 2013.
van Hinsbergen, D. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude calculator for paleoclimate studies, Plos One, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
Van Rampelbergh, M., Verheyden, S., Allan, M., Quinif, Y., Keppens, E., and Claeys, P.: Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite, Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, 2014.
Vander Putten, E., Dehairs, F., Keppens, E., and Baeyens, W.: High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: Environmental and biological controls, Geochim. Cosmochim. Ac., 64, 997–1011, 2000.
Veizer, J.: Chemical diagenesis of carbonates: theory and application of trace element technique, Stable Isotopes in Sedimentary Geology, 10, 3–100, 1983.
Vellekoop, J., Esmeray-Senlet, S., Miller, K. G., Browning, J. V., Sluijs, A., van de Schootbrugge, B., Damsté, J. S. S., and Brinkhuis, H.: Evidence for Cretaceous-Paleogene boundary bolide “impact winter” conditions from New Jersey, USA, Geology, 44, 619–622, 2016.
Vermeij, G. J.: The oyster enigma variations: a hypothesis of microbial calcification, Paleobiology, 40, 1–13, 2014.
Videt, B.: Dynamique des paléoenvironnements à huîtres du Crétacé supérieur nord-aquitain (SW France) et du Mio-Pliocène andalou (SE Espagne): biodiversité, analyse séquentielle, biogéochimie, Mém. Géosc. Rennes, 108, 1–261, 2004.
Wanamaker Jr, A. D., Kreutz, K. J., Wilson, T., Borns Jr, H. W., Introne, D. S., and Feindel, S.: Experimentally determined Mg ∕ Ca and Sr ∕ Ca ratios in juvenile bivalve calcite for Mytilus edulis: implications for paleotemperature reconstructions, Geo-Mar. Lett., 28, 359–368, 2008.
Wang, Q. J., Xu, X. H., Jin, P. H., Li, R. Y., Li, X. Q., and Sun, B. N.: Quantitative reconstruction of Mesozoic paleoatmospheric CO2 based on stomatal parameters of fossil Baiera furcata of Ginkgophytes, Geological Review, 59, 1035–1045, 2013.
Wang, W.-X. and Fisher, N. S.: Assimilation of trace elements and carbon by the mussel Mytilus edulis: effects of food composition, Limnology and Oceanography, 4, 197–207, 1996.
Watanabe, T., Winter, A., and Oba, T.: Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg ∕ Ca and 18O/16O ratios in corals, Mar. Geol., 173, 21–35, 2001.
Weiner, S. and Dove, P. M.: An overview of biomineralization processes and the problem of the vital effect, Rev. Mineral. Geochem., 54, 1–29, 2003.
Wisshak, M., Correa, M. L., Gofas, S., Salas, C., Taviani, M., Jakobsen, J., Freiwald, A.: Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. from the NE Atlantic, Deep-Sea Res. Pt. I, 56, 374–407, 2009.
Woelders, L., Vellekoop, J., Kroon, D., Smit, J., Casadío, S., Prámparo, M. B., Dinarès-Turell, J., Peterse, F., Sluijs, A., Lenaerts, J. T. M., and Speijer, R. P.: Latest Cretaceous climatic and environmental change in the South Atlantic region, Paleoceanography, 32, 2016PA003007, https://doi.org/10.1002/2016PA003007, 2017.
Woo, K.-S., Anderson, T. F., and Sandberg, P. A.: Diagenesis of skeletal and nonskeletal components of mid-Cretaceous limestones, J. Sediment. Res., 63, 18–32, 1993.
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
In this work, we apply a range of methods to measure the geochemical composition of the calcite...