Articles | Volume 14, issue 3
https://doi.org/10.5194/cp-14-339-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-339-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variations in Mediterranean–Atlantic exchange across the late Pliocene climate transition
Ángela García-Gallardo
CORRESPONDING AUTHOR
Institute of Earth Sciences, University of Graz, NAWI Graz Geocenter,
Heinrichstrasse 26, 8010 Graz, Austria
Patrick Grunert
Institute of Earth Sciences, University of Graz, NAWI Graz Geocenter,
Heinrichstrasse 26, 8010 Graz, Austria
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Straße 49a, 50674 Cologne, Germany
Werner E. Piller
Institute of Earth Sciences, University of Graz, NAWI Graz Geocenter,
Heinrichstrasse 26, 8010 Graz, Austria
Related authors
No articles found.
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Juliane Meyer, Claudia Wrozyna, Albrecht Leis, and Werner E. Piller
Biogeosciences, 14, 4927–4947, https://doi.org/10.5194/bg-14-4927-2017, https://doi.org/10.5194/bg-14-4927-2017, 2017
Short summary
Short summary
Isotopic signatures of ostracods from Florida correlate with their host water, implying a regional influence of temperature and precipitation. Calculated monthly configurations of a theoretical calcite formed in rivers were compared to ostracod isotope compositions. The data suggest a seasonal shell formation during early spring that is coupled to the hydrological cycle of the region. The surprising seasonality of the investigated ostracods is of importance for paleontological interpretation.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
P. A. Baker, S. C. Fritz, C. G. Silva, C. A. Rigsby, M. L. Absy, R. P. Almeida, M. Caputo, C. M. Chiessi, F. W. Cruz, C. W. Dick, S. J. Feakins, J. Figueiredo, K. H. Freeman, C. Hoorn, C. Jaramillo, A. K. Kern, E. M. Latrubesse, M. P. Ledru, A. Marzoli, A. Myrbo, A. Noren, W. E. Piller, M. I. F. Ramos, C. C. Ribas, R. Trnadade, A. J. West, I. Wahnfried, and D. A. Willard
Sci. Dril., 20, 41–49, https://doi.org/10.5194/sd-20-41-2015, https://doi.org/10.5194/sd-20-41-2015, 2015
Short summary
Short summary
We report on a planned Trans-Amazon Drilling Project (TADP) that will continuously sample Late Cretaceous to modern sediment in a transect along the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The TADP will document the evolution of the Neotropical forest and will link biotic diversification to changes in the physical environment, including climate, tectonism, and landscape. We will also sample the ca. 200Ma basaltic sills that underlie much of the Amazon.
G. Auer, W. E. Piller, and M. Harzhauser
Clim. Past, 11, 283–303, https://doi.org/10.5194/cp-11-283-2015, https://doi.org/10.5194/cp-11-283-2015, 2015
Short summary
Short summary
High-resolution analyses of paleoecological and geochemical proxies give insight into environmental processes and climate variations in the past on a timescale that is relevant for humans. This study, as the first of its kind, aims to resolve cyclic variations of nannofossil assemblages on a decadal to centennial scale in a highly sensitive Early Miocene (~17Ma) shallow marine setting. Our results indicate that solar variation played a major role in shaping short-term climate variability.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
M. Reuter, W. E. Piller, M. Harzhauser, and A. Kroh
Clim. Past, 9, 2101–2115, https://doi.org/10.5194/cp-9-2101-2013, https://doi.org/10.5194/cp-9-2101-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Nonlinear increase in seawater 87Sr ∕ 86Sr in the Oligocene to early Miocene and implications for climate-sensitive weathering
Limited exchange between the deep Pacific and Atlantic oceans during the warm mid-Pliocene and Marine Isotope Stage M2 “glaciation”
Late Cenozoic sea-surface-temperature evolution of the South Atlantic Ocean
Buoyancy forcing: a key driver of northern North Atlantic sea surface temperature variability across multiple timescales
Lipid-biomarker-based sea surface temperature record offshore Tasmania over the last 23 million years
Late Neogene nannofossil assemblages as tracers of ocean circulation and paleoproductivity over the NW Australian shelf
Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope paleothermometry
Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica
A revised mid-Pliocene composite section centered on the M2 glacial event for ODP Site 846
Lessons from a high-CO2 world: an ocean view from ∼ 3 million years ago
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages
Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma
Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes
Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific
Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)
A major change in North Atlantic deep water circulation 1.6 million years ago
Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to Late Pliocene/Early Pleistocene climate cooling
Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)
Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited
Pliocene three-dimensional global ocean temperature reconstruction
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Boris-Theofanis Karatsolis and Jorijntje Henderiks
Clim. Past, 19, 765–786, https://doi.org/10.5194/cp-19-765-2023, https://doi.org/10.5194/cp-19-765-2023, 2023
Short summary
Short summary
Ocean circulation around NW Australia plays a key role in regulating the climate in the area and is characterised by seasonal variations in the activity of a major boundary current named the Leeuwin Current. By investigating nannofossils found in sediment cores recovered from the NW Australian shelf, we reconstructed ocean circulation in the warmer-than-present world from 6 to 3.5 Ma, as mirrored by long-term changes in stratification and nutrient availability.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021, https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Short summary
The Pliocene represents a geologically warm period with polar ice restricted to the Antarctic. Nevertheless, variability and ice volume persisted in the Pliocene. This work revisits a classic site on which much of our understanding of Pliocene paleoclimate variability is based and corrects errors in data sets related to ice volume and ocean surface temperature. In particular, it generates an improved representation of an enigmatic glacial episode in Pliocene times (circa 3.3 Ma).
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019, https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary
Short summary
Fossil microorganisms from the last glacial found in marine sediments collected off southern Brazil suggest that more productive austral summer upwelling and more frequent austral winter incursions of nutrient-rich waters from the Plata River boosted regional productivity year-round. While upwelling was more productive due to the higher silicon content from the Southern Ocean, more frequent riverine incursions were modulated by stronger alongshore southwesterly winds.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
April N. Abbott, Brian A. Haley, Aradhna K. Tripati, and Martin Frank
Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, https://doi.org/10.5194/cp-12-837-2016, 2016
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) was a brief period when the Earth was in an extreme greenhouse state. We use neodymium isotopes to suggest that during this time deep-ocean circulation was distinct in each basin (North and South Atlanic, Southern, Pacific) with little exchange between. Moreover, the Pacific data show the most variability, suggesting this was a critical region possibly involved in both PETM triggering and remediation.
K. M. Pascher, C. J. Hollis, S. M. Bohaty, G. Cortese, R. M. McKay, H. Seebeck, N. Suzuki, and K. Chiba
Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, https://doi.org/10.5194/cp-11-1599-2015, 2015
Short summary
Short summary
Radiolarian taxa with high-latitude affinities are present from at least the middle Eocene in the SW Pacific and become very abundant in the late Eocene at all investigated sites. A short incursion of low-latitude taxa is observed during the MECO and late Eocene warming event at Site 277. Radiolarian abundance, diversity and taxa with high-latitude affinities increase at Site 277 in two steps in the latest Eocene due to climatic cooling and expansion of cold water masses.
M. Bordiga, J. Henderiks, F. Tori, S. Monechi, R. Fenero, A. Legarda-Lisarri, and E. Thomas
Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, https://doi.org/10.5194/cp-11-1249-2015, 2015
Short summary
Short summary
Deep-sea sediments at ODP Site 1263 (Walvis Ridge, South Atlantic) show that marine calcifying algae decreased in abundance and size at the Eocene-Oligocene boundary, when the Earth transitioned from a greenhouse to a more glaciated and cooler climate. This decreased the food supply for benthic foraminifer communities. The plankton rapidly responded to fast-changing conditions, such as seasonal nutrient availability, or to threshold-levels in pCO2, cooling and ocean circulation.
N. Khélifi and M. Frank
Clim. Past, 10, 1441–1451, https://doi.org/10.5194/cp-10-1441-2014, https://doi.org/10.5194/cp-10-1441-2014, 2014
J. Etourneau, C. Ehlert, M. Frank, P. Martinez, and R. Schneider
Clim. Past, 8, 1435–1445, https://doi.org/10.5194/cp-8-1435-2012, https://doi.org/10.5194/cp-8-1435-2012, 2012
M. Dedert, H. M. Stoll, D. Kroon, N. Shimizu, K. Kanamaru, and P. Ziveri
Clim. Past, 8, 977–993, https://doi.org/10.5194/cp-8-977-2012, https://doi.org/10.5194/cp-8-977-2012, 2012
N. Khélifi, M. Sarnthein, and B. D. A. Naafs
Clim. Past, 8, 79–87, https://doi.org/10.5194/cp-8-79-2012, https://doi.org/10.5194/cp-8-79-2012, 2012
H. J. Dowsett, M. M. Robinson, and K. M. Foley
Clim. Past, 5, 769–783, https://doi.org/10.5194/cp-5-769-2009, https://doi.org/10.5194/cp-5-769-2009, 2009
Cited articles
Ambar, I. and Howe, M. R.: Observations of the Mediterranean
outflow-I. Mixing the Mediterranean Outflow, Deep-Sea. Res. 26, 535–554,
https://doi.org/10.1016/0198-0149(79)90095-5, 1979.
Bahr, A., Kaboth, S., Jiménez-Espejo, F. J., Sierro, F. J., Voelker,
A. H. L., Lourens, L., Röhl, U., Reichart, G. J., Escutia, C.,
Hernández-Molina, F. J., Pross, J., and Friedrich, O.: Persistent
monsoonal forcing of Mediterranean Outflow Water dynamics during the late
Pleistocene, Geology, 43, 951–954, https://doi.org/10.1130/G37013.1, 2015.
Bailey, I, Bolton, C. T., DeConto, R. M., Pollard, D., Schiebel, R., and
Wilson, P. A.: A low threshold for North Atlantic ice rafting from
“low-slung slippery” late Pliocene ice sheets, Paleoceanography, 25,
PA1212, https://doi.org/10.1029/2009PA001736, 2009.
Bakun, A. and Agostini, V. N.: Seasonal patterns of wind-induced
upwelling/downwelling in the Mediterranean Sea, Sci. Mar., 65, 243–257,
https://doi.org/10.3989/scimar.2001.65n3243, 2001.
Bartoli, G., Sarnthein, M., and Weinelt, M.: Late Pliocene
millennial-scale climate variability in the northern North Atlantic prior to
and after the onset of Northern Hemisphere glaciation, Paleoceanography, 21,
PA4205, https://doi.org/10.1029/2005PA001185, 2006.
Bertini, A.: Pliocene to Pleistocene palynoflora and vegetation in
Italy: State of the art, Quaternary Int., 225, 5–24,
https://doi.org/10.1016/j.quaint.2010.04.025, 2010.
Borenäs, K. M., Wåhlin, A. K., Ambar, I., and Serra, N.: The
Mediterranean outflow splitting – a comparison between theoretical models
and CANIGO data, Deep-Sea Res. II, 49, 4195–4205,
https://doi.org/10.1016/S0967-0645(02)00150-9, 2002.
Bormans, M., Garrett, C., and Thompson, R.: Seasonal variability of
the surface inflow through the Strait of Gibraltar, Oceanol. Acta, 9,
403–414, 1986.
Bryden, H. L. and Kinder, T. H.: Steady two-layer exchange through
the Strait of Gibraltar, Deep-Sea Res. I, 38, S445–S463,
https://doi.org/10.1016/S0198-0149(12)80020-3, 1991.
Bryden, H. L. and Stommel, H. M.: Origins of the Mediterranean
Outflow, J. Mar. Res., 40, 55–71, 1982.
Bryden, H. L., Candela, J., and Kinder, T. H.: Exchange through the
Strait of Gibraltar, Progr. Oceanogr., 33, 201–248, 1994.
Budyko, M. I., Ronov, A. B., and Yanshin, A. L.: The History of the
Earth's Atmosphere. Leningrad, Gidrometeoirdat, 209 pp., English
translation: Springer, Berlin, 1987,139 pp., 1985 (in Russian).
Cacho, I., Grimalt, J. O., Canals, M., Sbaffi, L., Shackleton, N.,
Schönfeld, J., and Zahn, R.: Variability of the western
Mediterranean Sea surface temperature during the last 25,000 years and its
connection with the northern hemisphere climatic changes, Paleoceanography,
16, 40–52, https://doi.org/10.1029/2000PA000502, 2001.
Comas, M. C., Zahn, R., Klaus, A., Aubourg, C., Belanger, P. E., Bernasconi, S. M.,
Cornell, W., de Kaenel, E. P., de Larouzière, F. D., Doglioni, C., Doose, H.,
Fukusawa, H., Hobart, M., Iaccarino, S. M., Ippach, P., Marsaglia, K., Meyers, P.,
Murat, A., O'Sullivan, G. M., Platt, J. P., Prasad, M., Siesser, W. Q., Skilbeck,
C. G., Soto, J. I., Tandon, K., Torii, M., Tribble, J. S., and Wilkens, R. H.: Proc. Ocean Drill.
Prog., Initial Reports, v. 161: College Station, Texas, Ocean
Drilling Program, 1996.
DeSchepper, S., Head, M. J., and Groeneveld, J.: North Atlantic
Current variability through marine isotope stage M2 (circa 3.3 Ma) during
the mid-Pliocene, Paleoceanography, 24, PA4206, https://doi.org/10.1029/2008PA001725, 2009.
Dowsett, H., Robinson, M., Haywood, A., Salzmann, U., Hill, D., Sohl, L.,
Chandler, M., Williams, M., Foley, K., and Stoll, D.: The PRISM3D
paleoenvironmental reconstruction, Stratigraphy, 7, 123–139, 2010.
Dowsett, H. J., Robinson, M. M., Haywood, A. M., Hill, D. J., Dolan, A. M.,
Stoll, D. K., Chan, W. L., Abe-Ouchi, A., Chandler, M. A., Rosenbloom, N. A.,
Otto-Bliesner, B. L., Bragg, F. J., Lunt, D. J., Foley, K. M., and Riesselman,
C. R.: Assessing confidence in Pliocene sea surface temperatures to
evaluate predictive models, Nat. Clim. Change, 2, 365–371,
https://doi.org/10.1038/nclimate1455, 2012.
Fauquette, S., Guiot, J., and Suc, J.-P.: A method for climatic
reconstruction of the Mediterranean Pliocene using pollen data, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 144, 183–201,
https://doi.org/10.1016/S0031-0182(98)00083-2, 1998.
Fauquette, S., Suc, J.-P., Guiot, J., Diniz, F., Feddi, N., Zheng, Z.,
Bessais, E., and Drivaliari, A.: Climate and biomes in the West
Mediterranean area during the Pliocene, Palaeogeogr. Palaeoclimatol.
Palaeoecol., 152, 15–36, 1999.
Fauquette, S., Suc, J.-P., Jiménez-Moreno, G., Micheels, A., Jost, A.,
Favre, E., Bachiri-Taoufiq, N., Bertini, A., Clet-Pellerin, M., Diniz, F.,
Farjanel, G., Feddi, N., and Zheng, Z.: Latitudinal climatic gradients in
the Western European and Mediterranean regions from the Mid-Miocene (c. 15
Ma) to the Mid-Pliocene (c. 3.5 Ma) as quantified from pollen data, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer
Models and Biological Proxies, edited by:
Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., The Micropalaeontological Society, Special
Publications, The Geological Society, London, 481–502, 2007.
Folkard, A. M., Davies, P. A., Fiúza, A. F. G., and Ambar, I.:
Remotely sensed sea surface thermal patterns in the Gulf of Cadiz and the
Strait of Gibraltar: Variability, correlations, and relationships with the
surface wind field, J. Geophys. Res., 102, 5669–5683, 1997.
García-Gallardo, Á.: G. ruber delta 18O values at IODP Hole 339-U1389E and ODP Hole 161-978A, available at: https://doi.pangaea.de/10.1594/PANGAEA.887137,
2018.
García, M., Hernández-Molina, F. J., Llave, E., Stow, D. A. V.,
León, R., Fernández-Puga, M. C., Díaz del Río, V., and
Somoza, L.: Contourite erosive features caused by the Mediterranean
Outflow Water in the Gulf of Cadiz: quaternary tectonic and oceanographic
implications, Mar. Geol., 257, 24–40,
https://doi.org/10.1016/j.margeo.2008.10.009, 2009.
García-Gallardo, Á., Grunert, P., Van der Schee, M., Sierro, F. J.,
Jiménez-Espejo, F. J., Álvarez-Zarikian, C. A., and Piller, W. E.: Benthic foraminifera-based reconstruction of the first
Mediterranean–Atlantic exchange in the early Pliocene Gulf of Cadiz,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 472, 93–107,
https://doi.org/10.1016/j.palaeo.2017.02.009, 2017.
Gascard, J. C. and Richez, C.: Water masses and circulationin the
western Alboran Sea and in the Strait of Gibraltar, Prog. Oceanogr., 15,
157–216, https://doi.org/10.1016/0079-6611(85)90031-X, 1985.
Gradstein, F. M., Ogg, J. G., and Hilgen, F. J.: On the Geologic Time Scale,
Newsl. Stratigr., 45, 171–188, https://doi.org/10.1127/0078-0421/2012/0020, 2012.
Grunert, P., Balestra, B., Richter, C., Flores, J. A., Auer, G.,
García-Gallardo, Á., and Piller, W. E.: Revised and refined
age model for the upper Pliocene of IODP Site U1389 (IODP Expedition 339,
Gulf of Cádiz), Newsl. Stratigr., https://doi.org/10.1127/nos/2017/0396,
2017.
Gudjonsson, L. and van der Zwaan, G. J.: Anoxic events in the
Pliocene Mediterranean: Stable isotope evidence for run-off, Proc. K. Ned.
Akad. Wet. Ser. B, 88, 69–82, 1985.
Haywood, A. M. and Valdes, P. J.: Modelling Pliocene warmth:
contribution of atmosphere, oceans and cryosphere, Earth Planet. Sc.
Lett., 218, 363–377,
https://doi.org/10.1016/S0012-821X(03)00685-X, 2004.
Hernández-Molina, F. J., Llave, E., Stow, D. A. V., García, M.,
Somoza, L., Vázquez, J. T., Lobo, F. J., Maestro, A., Díaz del
Río, V., León, R., Medialdea, T., and Gardner, J.: The
contourite depositional system of the Gulf of Cádiz: a sedimentary model
related to the bottom current activity of the Mediterranean outflow water
and its interaction with the continental margin, Deep-Sea Res. II, 53,
1420–1463, https://doi.org/10.1016/j.dsr2.2006.04.016, 2006.
Hernández-Molina, F. J., Stow, D. A. V., Álvarez-Zarikian, C. A., Acton,
G., Bahr, A., Balestra, B., Ducassou, E., Flood, R., Flores, J.-A., Furota,
S., Grunert, P., Hodell, D., Jimenez-Espejo, F., Kim, J. K., Krissek, L.,
Kuroda, J., Li, B., Llave, E., Lofi, J., Lourens, L., Miller, M., Nanayama,
F., Nishida, N., Richter, C., Roque, C., Pereira, H., Sanchez Goñi,
M. F., Sierro, F. J., Singh, A. D., Sloss, C., Takashimizu, Y., Tzanova, A.,
Voelker, A., Williams, T., and Xuan, C.: Onset of Mediterranean
outflow into the North Atlantic, Science, 344, 1244–1250,
https://doi.org/10.1126/science.1251306, 2014.
Iorga, M. C. and Lozier, M. S.: Signatures of the Mediterranean
outflow from a North Atlantic climatology: 1. Salinity and density fields,
J. Geophys. Res., 104, 259–260, https://doi.org/10.1029/1999JC900115, 1999.
Ivanovic, R. F., Valdes, P. J., Gregoire, L., Flecker, R., and Gutjahr, M.:
Sensitivity of modern climate to the presence, strength and salinity of
Mediterranean–Atlantic exchange in a global general circulation model,
Clim. Dyn., 42, 859–877, https://doi.org/10.1007/s00382-013-1680-5, 2014.
Kaboth, S., Bahr, A., Reichart, G.-J., Jacobs, B., and Lourens, L. J.: New insights into upper MOW variability over the last 150kyr from
IODP 339 Site U1386 in the Gulf of Cadiz, Mar. Geol., 377, 136–145,
https://doi.org/10.1016/j.margeo.2015.08.014, 2016.
Kaboth, S., Grunert, P., and Lourens, L.: Mediterranean Outflow Water
variability during the Early Pleistocene, Clim. Past, 13, 1023–1035,
https://doi.org/10.5194/cp-13-1023-2017, 2017.
Khélifi, N., Sarnthein, M., Andersen, N., Blanz, T., Frank, M.,
Garbe-Schönberg, D., Haley, B. A., Stumpf, R., and Weinelt, M.: A major
and long-term Pliocene intensification of the Mediterranean outflow, 3.5–3.3
Ma ago, Geology, 37, 811–814, https://doi.org/10.1130/G30058A.1, 2009.
Khélifi, N., Sarnthein, M., Frank, M., Andersen, N., and
Garbe-Schönberg, D.: Late Pliocene variations of the Mediterranean
outflow, Mar. Geol., 357, 182–194, https://doi.org/10.1016/j.margeo.2014.07.006, 2014.
Kleiven, H. F., Jansen, E., Fronval, T., and Smith, T. M.: Intensification of
Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4
Ma) – ice-rafted detritus evidence, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
184, 213–223, https://doi.org/10.1016/S0031-0182(01)00407-2, 2002.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Llave, E., Hernández-Molina, F. J., Somoza, L., Stow, D. A. V.,
and Díaz del Río, V.: Quaternary evolution of the contourite
depositional system in the Gulf of Cadiz, Geol. Soc. Spec. Publ., 276,
49–79, https://doi.org/10.1144/GSL.SP.2007.276.01.03, 2007.
Lourens, L. J., Hilgen, F. J., Gudjonsson, L., and Zachariasse, W. J.: Late
Pliocene to early Pleistocene astronomically forced sea surface productivity
and temperature variations in the Mediterranean, Mar. Micropaleontol., 19,
49–78, https://doi.org/10.1016/0377-8398(92)90021-B, 1992.
Lourens, L. J., Antonarakou, A., Hilgen, F. J., Van Hoof, A. A. M.,
Vergnaud-Grazzini, C., and Zachariasse, W. J.: Evaluation of the
Plio-Pleistocene astronomical timescale, Palaeoceanography, 11, 391–413,
https://doi.org/10.1029/96PA01125, 1996.
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J.,
Dowsett, H. J., and Loptson, C. A.: On the causes of mid-Pliocene warmth and
polar amplification, Earth Planet. Sc. Lett., 321, 128–138,
https://doi.org/10.1016/j.epsl.2011.12.042, 2012.
Madelain, F.: Influence de la topographie du fond sur l'écoulement
méditerréen entre le Détroit de Gibraltar et le Cap
Saint-Vincent, Cah. Océanograph., 22, 43–61, 1970.
Marchès, E., Mulder, T., Cremer, M., Bonnel, C., Hanquiez, V., Gonthier,
E., and Lecroart, P.: Contourite drift construction influenced by capture of
Mediterranean outflow water deep-sea current by the Portimao submarine canyon
(Gulf of Cadiz, south Portugal), Mar. Geol., 242, 247–260,
https://doi.org/10.1016/j.margeo.2007.03.013, 2007.
MEDATLAS: MEDATLAS/2002 database. Mediterranean and Black Sea database of
temperature salinity and biochemical parameters, Climatological Atlas:
IFREMER Edition, MEDAR Group, Issy-les-Moulineaux, France, 2002.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Marine Syst.,
20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Millot, C.: Levantine Intermediate Water characteristics: an astounding
general misunderstanding!, Sci. Mar., 77, 237–232,
https://doi.org/10.3989/scimar.03518.13A, 2013.
Minas, H., Coste, J. B., Le Corre, P., Minas, M., and Raimbault, P.:
Biological and geochemical signatures associated with the water circulation
through the Straits of Gibraltar and in the western Alboran Sea, J. Geophys.
Res., 96, 8755–8771, https://doi.org/10.1029/91JC00360, 1991.
Ochoa, J. and Bray, N. A.: Water mass exchange in the Gulf of Cadiz, Deep-Sea
Res. I, 38, 465, https://doi.org/10.1016/S0198-0149(12)80021-5, 1991.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K.: Oxygen isotope
fractionation on divalent metal carbonates, J. Chem. Phys., 51, 5547–5558,
https://doi.org/10.1063/1.1671982, 1969.
Ovchinnikov, I. M.: On the water balance of the Mediterranean Sea,
Oceanology, 14, 198–202, 1974.
Pagani, M., Liu, Z., LaRiviere, L., and Ravelo, A. C.: High Earth-system
climate sensitivity determined from Pliocene carbon dioxide concentrations,
Nat. Geosci., 3, 27–30, https://doi.org/10.1038/ngeo724, 2010.
Parada, M. and Cantón, M.: The spatial and temporal evolution
of thermal structures in the Alboran Sea Mediterranean basin, Int. J. Remote
Sens., 19, 2119–2131, https://doi.org/10.1080/014311698214901, 1998.
Peeters, F. J. C., Brummer, G.-J. A., and Ganssen, G.: The effect of
upwelling on the distribution and stable isotope composition of
Globigerina bulloides and Globigerinoides ruber (planktic
foraminifera) in modern surface waters of the NW Arabian Sea, Glob. Planet.
Change, 34, 269–291, https://doi.org/10.1016/S0921-8181(02)00120-0, 2002.
Peliz, A., Marchesiello, P., Santos, A. M. P., Dubert, J., Teles-Machado, A.,
Marta-Almeida, M., and Le Cann, B.: Surface circulation in the Gulf of Cadiz:
2. Inflow-outflow coupling and the Gulf of Cadiz slope current, J. Geophys.
Res., 114, C03011, https://doi.org/10.1029/2008JC004771, 2009.
Raymo, M. E., Grant, B., Horowitz, M., and Rau, G. H.: Mid-Pliocene warmth:
stronger greenhouse and stronger conveyor, Mar. Micropaleontol., 27,
313–326, https://doi.org/10.1016/0377-8398(95)00048-8, 1996.
Reid, J. L.: On the contribution of the Mediterranean Sea outflow to the
Norwegian–Greenland Sea, Deep-Sea Res., 26, 1199–1223,
https://doi.org/10.1016/0198-0149(79)90064-5, 1979.
Rhein, M.: Deep water formation in the Western Mediterranean, J. Geophys.
Res., 10, 6943–6959, https://doi.org/10.1029/94JC03198, 1995.
Robinson, M. M., Dowsett, H. J., and Chandler, M. A.: Pliocene Role in
Assessing Future Climate Impacts, Eos, 89, 501–502,
https://doi.org/10.1029/2008EO490001, 2008.
Rogerson, M., Colmenero-Hidalgo, E., Levine, R. C., Rohling, E. J., Voelker,
A. H. L., Bigg, G. R., Schönfeld, J., and Garrick, K.: Enhanced
Mediterranean–Atlantic exchange during Atlantic freshening phases, Geochem.
Geophy. Geosy., 11, Q08013, https://doi.org/10.1029/2009GC002931, 2010.
Rogerson, M., Rohling, E. J., Bigg, G. R., and Ramirez, J.: Paleoceanography
of the Atlantic-Mediterranean exchange: overview and first quantitative
assessment of climatic forcing, Rev. Geophys., 50, RG2003,
https://doi.org/10.1029/2011RG000376, 2012.
Rohling, E. J.: Environmental control on Mediterranean salinity and
δ18O, Paleoceanography, 14, 706–715, https://doi.org/10.1029/1999PA900042,
1999.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A.,
Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F.,
Bonczkowski, J., and Zemsky, R.: Global multi-resolution topography
synthesis, Geochem. Geophy. Geosy., 10, Q03014, https://doi.org/10.1029/2008GC002332,
2009.
Salgueiro, E., Voelker, A. H. L., Abrantes, F., Meggers, H., Pflaumann, U.,
Lončarić, N., González-Álvarez, R., Oliveira, P.,
Bartels-Jónsdóttir, H. B., Moreno, J., and Wefer, G.: Planktonic
foraminifera from modern sediments reflect upwelling patterns off Iberia:
Insights from a regional transfer function, Mar. Micropaleontol., 66,
135–164, https://doi.org/10.1016/j.marmicro.2007.09.003, 2008.
Sarhan, T., García-Lafuente, J., Vargas, M., Vargas, J. M., and Plaza,
F.: Upwelling mechanisms in the northwestern Alboran Sea, J. Marine Sys., 23,
317–331, https://doi.org/10.1016/S0924-7963(99)00068-8, 2000.
Sarnthein, M., Grunert, P., Khélifi, N., Frank, M., and Nürnberg, D.:
Interhemispheric teleconnections: Late Pliocene change in Mediterranean
outflow water linked to changes in Indonesian Through-Flow and Atlantic
Meridional Overturning Circulation, a review and update, Int. J. Earth Sci., 107,
505–515,
https://doi.org/10.1007/s00531-017-1505-6, 2017.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and
Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth
Planet. Sc. Lett., 292, 201–211, https://doi.org/10.1016/j.epsl.2010.01.037, 2010.
Serra, N., Ambar, I., and Käse, R. H.: Observations and numerical
modeling of the Mediterranean outflow splitting and eddy generation, Deep-Sea
Res. II, 52, 383–408, https://doi.org/10.1016/j.dsr2.2004.05.025, 2005.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and
future scenarios for the Mediterranean Sea, Oceanologia, 56, 411–443,
https://doi.org/10.5697/oc.56-3.411, 2014.
Stow, D. A. V., Hernández-Molina, F. J., and Alvarez-Zarikian, C.:
Expedition 339 summary, Proc. Ocean Drill. Prog., 339,
https://doi.org/10.2204/iodp.proc.339.104.2013, 2013.
Thunell, R. C. and Williams, D. F.: Glacial-Holocene changes in the
Mediterranean Sea: hydrographic and depositional effects, Nature, 338,
493–496, 1989.
Tindall, J. C. and Haywood, A. M.: Modeling oxygen isotopes in the
Pliocene:Large-scale features over the land and ocean, Paleoceanography, 30,
1183–1201, https://doi.org/10.1002/2014PA002774, 2015.
Tzanova, A. and Herbert, T.: Regional and global significance of Pliocene sea
surface temperatures from the Gulf of Cadiz (Site U1387) and the
Mediterranean, Glob. Planet. Change, 133, 371–377,
https://doi.org/10.1016/j.gloplacha.2015.07.001, 2015.
Van der Schee, M., Sierro, F. J., Jiménez-Espejo, F. J.,
Hernández-Molina, F. J., Flecker, R., Flores, J. A., Acton, G., Gutjahr,
M., Grunert, P., García-Gallardo., Á., and Andersen, N.: Evidence of
early bottom water current flow after the Messinian Salinity Crisis in the
Gulf of Cadiz, Mar. Geol., 380, 315–329, https://doi.org/10.1016/j.margeo.2016.04.005,
2016.
Van Os, B. J. H., Lourens, L. J., Hilgen, F. J., and De Lange, G. J.: The
Formation of Pliocene sapropels and carbonate cycles in the Mediterranean:
Diagenesis, dilution, and productivity, Paleoceanography, 9, 601–617,
https://doi.org/10.1029/94PA00597, 1994.
Vargas-Yáñez, M., Plaza, F., García-Lafuente, J., Sarhan, T.,
Vargas, J. M., and Vélez-Belchi, P.: About the seasonal variability of
the Alboran Sea circulation, J. Marine Syst., 35, 229–248,
https://doi.org/10.1016/S0924-7963(02)00128-8, 2002.
Vergnaud-Grazzini, C., Ryan, W. B. F., and Cita, M. B.: Stable isotope
fractionation, climatic change and episodic stagnation in the eastern
Mediterranean during the late Quaternary, Mar. Micropaleontol., 2, 353–370,
https://doi.org/10.1016/0377-8398(77)90017-2, 1977.
Voelker, A. H. L., Lebreiro, S. M., Schönfeld, J., Cacho, I.,
Erlenkeuser, H., and Abrantes, F.: Mediterranean outflow strengthening during
northern hemisphere coolings: A salt source for the glacial Atlantic?, Earth
Planet. Sc. Lett., 245, 39–55, https://doi.org/10.1016/j.epsl.2006.03.014, 2006.
Voelker, A. H. L., Schönfeld, J., Erlenkeuser, H., and Abrantes, F.:
Hydrographic conditions along the western Iberian margin during marine
isotope stage 2, Geochem. Geophy. Geosy., 10, Q12U08,
https://doi.org/10.1029/2009GC002605, 2009.
Voelker, A. H. L., Salgueiro, E., Rodrigues, T., Jiménez-Espejo, F. J.,
Bahr, A., Alberto, A., Loureiro, I., Padilha, M., Rebotim, A., and Röhl,
U.: Mediterranean outflow and surface water variability off southern Portugal
during the early Pleistocene: a snapshot at marine isotope stages 29 to 34
(1020–1135 ka), Glob. Planet. Change, 133, 223–237,
https://doi.org/10.1016/j.gloplacha.2015.08.015, 2015.
Wüst, G.: On the vertical circulation of the Mediterranean Sea, J.
Geophys. Res., 66, 3261–3271, https://doi.org/10.1029/JZ066i010p03261, 1961.
Zenk, W.: On the Mediterranean outflow west of Gibraltar,
Meteor-Forschungsergebnisse A, 16, 23–34, 1975.
Short summary
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic inflow across the mid-Pliocene warm period and the onset of the Northern Hemisphere glaciation, still unresolved by previous works. Oxygen isotope gradients between both sides of the Strait of Gibraltar reveal weak inflow during warm periods that turns stronger during severe glacials and the start of a negative feedback between exchange at the Strait and the Atlantic Meridional Overturning Circulation.
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic...