Articles | Volume 14, issue 12
https://doi.org/10.5194/cp-14-1991-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1991-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deglacial to postglacial history of Nares Strait, Northwest Greenland: a marine perspective from Kane Basin
Eleanor Georgiadis
CORRESPONDING AUTHOR
Université de Bordeaux, CNRS, UMR 5805 EPOC, 33615 Pessac, France
Université Laval, UMI 3376 TAKUVIK, Québec, G1V 0A6, Canada
Jacques Giraudeau
Université de Bordeaux, CNRS, UMR 5805 EPOC, 33615 Pessac, France
Philippe Martinez
Université de Bordeaux, CNRS, UMR 5805 EPOC, 33615 Pessac, France
Patrick Lajeunesse
Université Laval, UMI 3376 TAKUVIK, Québec, G1V 0A6, Canada
Guillaume St-Onge
Université du Québec à Rimouski and GEOTOP Research
Center, Institut des sciences de la mer de Rimouski (ISMER), Rimouski, G5L
3A1, Canada
Sabine Schmidt
Université de Bordeaux, CNRS, UMR 5805 EPOC, 33615 Pessac, France
Guillaume Massé
Université Laval, UMI 3376 TAKUVIK, Québec, G1V 0A6, Canada
Related authors
No articles found.
Marie-Eugénie Meusseunan Pascale Jamba, Pierre Francus, Antoine Gagnon-Poiré, and Guillaume St-Onge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2511, https://doi.org/10.5194/egusphere-2024-2511, 2024
Short summary
Short summary
This article presents a non-destructive method for studying laminated sediments with X-ray computed tomography (μCT). It aims to study the possibility of using μCT as an analytical tool to analyse varved sediments in the context of paleoclimatic studies. As results, µCT offers the possibility of to do fasts analysis and constitutes a powerful tool to improve the quality of results through the access of a 3D view allowing choosing the most representative part of varved record.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Antoine Gagnon-Poiré, Pierre Brigode, Pierre Francus, David Fortin, Patrick Lajeunesse, Hugues Dorion, and Annie-Pier Trottier
Clim. Past, 17, 653–673, https://doi.org/10.5194/cp-17-653-2021, https://doi.org/10.5194/cp-17-653-2021, 2021
Short summary
Short summary
A very high quality 160-year-long annually laminated (varved) sediment sequence of fluvial origin was recently discovered in an especially deep lake in Labrador. Each varve represents 1 hydrological year. A significant relation between varves' physical parameters (i.e., thickness and grain size extracted from each annual lamination) and river discharge instrumental observations provided the opportunity to develop regional discharge reconstructions beyond the instrumental period.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Katixa Lajaunie-Salla, Aldo Sottolichio, Sabine Schmidt, Xavier Litrico, Guillaume Binet, and Gwenaël Abril
Nat. Hazards Earth Syst. Sci., 19, 2551–2564, https://doi.org/10.5194/nhess-19-2551-2019, https://doi.org/10.5194/nhess-19-2551-2019, 2019
Flor Vermassen, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen
Clim. Past, 15, 1171–1186, https://doi.org/10.5194/cp-15-1171-2019, https://doi.org/10.5194/cp-15-1171-2019, 2019
Short summary
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
Salomé Mignard, Thierry Mulder, Philippe Martinez, and Thierry Garlan
Solid Earth, 10, 851–869, https://doi.org/10.5194/se-10-851-2019, https://doi.org/10.5194/se-10-851-2019, 2019
Short summary
Short summary
A large quantity a continental material is transported to the oceans by the world rivers. Once in the ocean, these particles can be transported down the continental shelf thanks to underwater avalanches. The repetition of such massive events can form very important sedimentary deposits at the continent–ocean transition. Data obtained during an oceanic cruise in 2010 allowed us to study such a system located offshore of Gabon and to evaluate the importance sediment transport in this area.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Etienne Brouard and Patrick Lajeunesse
The Cryosphere, 13, 981–996, https://doi.org/10.5194/tc-13-981-2019, https://doi.org/10.5194/tc-13-981-2019, 2019
Short summary
Short summary
Modifications in ice-stream networks have major impacts on ice sheet mass balance and global sea level. However, the mechanisms controlling ice-stream switching remain poorly understood. We report a flow switch in an ice-stream system that occurred on the Baffin Island shelf through the erosion of a marginal trough. Up-ice propagation of ice streams through marginal troughs can lead to the piracy of neighboring ice catchments, which induces an adjacent ice-stream switch and shutdown.
Marine Bretagnon, Aurélien Paulmier, Véronique Garçon, Boris Dewitte, Séréna Illig, Nathalie Leblond, Laurent Coppola, Fernando Campos, Federico Velazco, Christos Panagiotopoulos, Andreas Oschlies, J. Martin Hernandez-Ayon, Helmut Maske, Oscar Vergara, Ivonne Montes, Philippe Martinez, Edgardo Carrasco, Jacques Grelet, Olivier Desprez-De-Gesincourt, Christophe Maes, and Lionel Scouarnec
Biogeosciences, 15, 5093–5111, https://doi.org/10.5194/bg-15-5093-2018, https://doi.org/10.5194/bg-15-5093-2018, 2018
Short summary
Short summary
In oxygen minimum zone, the fate of the organic matter is a key question as the low oxygen condition would preserve the OM and thus enhance the biological carbon pump while the high microbial activity would foster the remineralisation and the greenhouse gases emission. To investigate this paradigm, sediment traps were deployed off Peru. We pointed out the influence of the oxygenation as well as the organic matter quantity and quality on the carbon transfer efficiency in the oxygen minimum zone.
Margaux Gourdal, Martine Lizotte, Guillaume Massé, Michel Gosselin, Michel Poulin, Michael Scarratt, Joannie Charette, and Maurice Levasseur
Biogeosciences, 15, 3169–3188, https://doi.org/10.5194/bg-15-3169-2018, https://doi.org/10.5194/bg-15-3169-2018, 2018
Short summary
Short summary
Melt ponds (MP) forming over first year ice (FYI) represent a potential source of the climate-relevant gas dimethylsulfide (DMS) to the atmosphere. Nine MP were sampled in the Canadian Arctic Archipelago. DMS concentrations reaching up to 6 nmol L−1, twice the world's surface oceanic mean, were measured. Seawater intrusion appeared to seed MP with DMS-producing communities. DMS flux from Arctic MP is expected to increase in response to the expanding areal and temporal trends of MP on FYI.
Douglas B. Collins, Julia Burkart, Rachel Y.-W. Chang, Martine Lizotte, Aude Boivin-Rioux, Marjolaine Blais, Emma L. Mungall, Matthew Boyer, Victoria E. Irish, Guillaume Massé, Daniel Kunkel, Jean-Éric Tremblay, Tim Papakyriakou, Allan K. Bertram, Heiko Bozem, Michel Gosselin, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017, https://doi.org/10.5194/acp-17-13119-2017, 2017
Short summary
Short summary
The sources of aerosol particles and their growth to sizes large enough to act as cloud droplet seeds is of major importance to climate since clouds exert substantial control over the atmospheric energy balance. Using ship-board measurements from two summers in the Canadian Arctic, aerosol formation events were related to co-sampled atmospheric and oceanic parameters, providing insight into factors that drive particle formation and motivating further study of ocean–atmosphere interactions.
Roger D. Flood, Roberto A. Violante, Thomas Gorgas, Ernesto Schwarz, Jens Grützner, Gabriele Uenzelmann-Neben, F. Javier Hernández-Molina, Jennifer Biddle, Guillaume St-Onge, and APVCM workshop participants
Sci. Dril., 22, 49–61, https://doi.org/10.5194/sd-22-49-2017, https://doi.org/10.5194/sd-22-49-2017, 2017
Philippine Campagne, Xavier Crosta, Sabine Schmidt, Marie Noëlle Houssais, Olivier Ther, and Guillaume Massé
Biogeosciences, 13, 4205–4218, https://doi.org/10.5194/bg-13-4205-2016, https://doi.org/10.5194/bg-13-4205-2016, 2016
Short summary
Short summary
Diatoms and biomarkers have been recently used for palaeoclimate reconstructions in the Southern Ocean. Few sediment-based ecological studies have investigated their relationships with environmental conditions. Here, we compare high-resolution sedimentary records with meteorological data to study relationships between our proxies and recent atmospheric and sea surface changes. Our results indicate that coupled wind pattern and sea surface variability act as the proximal forcing at that scale.
Laurent Dezileau, Angel Pérez-Ruzafa, Philippe Blanchemanche, Jean-Philippe Degeai, Otmane Raji, Philippe Martinez, Concepcion Marcos, and Ulrich Von Grafenstein
Clim. Past, 12, 1389–1400, https://doi.org/10.5194/cp-12-1389-2016, https://doi.org/10.5194/cp-12-1389-2016, 2016
Short summary
Short summary
Amongst the most devastating marine catastrophes that can occur in coastal areas are storms and tsunamis, which may seriously endanger human society. In a sediment core from the Mar Menor (SE Spain), we discovered eight coarse-grained layers which document marine incursions during periods of intense storm activity or tsunami events. These periods of surge events seem to coincide with the coldest periods in Europe during the late Holocene, suggesting a control by a climatic mechanism.
I. Jalón-Rojas, S. Schmidt, and A. Sottolichio
Hydrol. Earth Syst. Sci., 19, 2805–2819, https://doi.org/10.5194/hess-19-2805-2015, https://doi.org/10.5194/hess-19-2805-2015, 2015
Short summary
Short summary
This study aims to analyse for the first time suspended sediment dynamics in the fluvial Gironde through a unique set of a 10-year continuous turbidity record. We demonstrate the following: the interest of turbidity-discharge hysteresis loops to evaluate the presence of sediment depositions; the relationships between features of the turbidity maximum zone (TMZ) and river flow; and the definition of hydrological indicators of the persistence and concentration of the TMZ.
G. Milzer, J. Giraudeau, S. Schmidt, F. Eynaud, and J. Faust
Clim. Past, 10, 305–323, https://doi.org/10.5194/cp-10-305-2014, https://doi.org/10.5194/cp-10-305-2014, 2014
Related subject area
Subject: Ice Dynamics | Archive: Marine Archives | Timescale: Holocene
Deglacial and Holocene sea-ice and climate dynamics in the Bransfield Strait, northern Antarctic Peninsula
Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat
Trace elements and cathodoluminescence of detrital quartz in Arctic marine sediments – a new ice-rafted debris provenance proxy
Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
A. Müller and J. Knies
Clim. Past, 9, 2615–2630, https://doi.org/10.5194/cp-9-2615-2013, https://doi.org/10.5194/cp-9-2615-2013, 2013
J. Etourneau, L. G. Collins, V. Willmott, J.-H. Kim, L. Barbara, A. Leventer, S. Schouten, J. S. Sinninghe Damsté, A. Bianchini, V. Klein, X. Crosta, and G. Massé
Clim. Past, 9, 1431–1446, https://doi.org/10.5194/cp-9-1431-2013, https://doi.org/10.5194/cp-9-1431-2013, 2013
Cited articles
Andrews, J., T. and Ives, J. D.: “Cockburn” Nomenclature and the Late
Quaternary History of the Eastern Canadian Arctic, Arctic Alpine Res., 10, 617–633, 1978.
Axford, Y., Briner, J. P., Miller, G. H., and Francis, D. R.: Paleoecological
evidence for abrupt cold reversals during peak Holocene warmth on Baffin
Island, Arctic Canada, Quaternary Sci. Rev., 71, 142-149, 2009.
Bahr, A., Jimenez-Espejo, F. J., Kolasinac, N., Grunert, P.,
Hernández-Molina, F. J., Rohl, U., Voelker, A. H. L., Escutia, C., Stow, D. A. V., Hodell, D., and Alvarez-Zarikian, C. A.: Deciphering bottom
current velocity and paleoclimate signals from contourite deposits in the
Gulf of Cádiz during the last 140 kyr: An inorganic
geochemical approach, Geochem. Geophy. Geosys., 15, 3145–3160,
https://doi.org/10.1002/2014GC005356, 2014.
Bailey, W. B.: Oceanographic Features of the Canadian Archipelago, J. of the Fish. Res. Board Can., 14, 731–769, 1957.
Barber, D. G., Hanesiak, J. M., Chan, W., and Piwowar, J.: Sea-ice and
meteorological conditions in Northern Baffin Bay and the North Water polynya
between 1979 and 1996, Atmos. Ocean, 39, 343–359, 2001.
Belkin, I. M., Levitus, S. Antonov, J., and Malmberg, S. A:. “Great Salinity
Anomalies” in the North Atlantic, Prog. Oceanogr. 41, 1–68, 1998.
Bennike, O.: Late Quaternary history of Washington Land, North Greenland,
Boreas, 31, 260–272, 2002.
Bennike, O., Dawes, P. R., Funder, S., Kelly, M., and Weidick, A.: The late
Quaternary history of Hall Land, Northwest Greenland: Discussion, Can. J.
Earth Sci., 24, 370–374, 1987.
Bervid, H., Carlson, A., Hendy, I., Walczak, M., Stoner, J.: Deglacial
sea-surface temperature change and rapid response along the western margin
of the northern and southern Cordilleran ice sheet, Geological Society of
America, Abstracts with Programs, 49, 6, https://doi.org/10.1130/abs/2017AM-306898, 2017.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon
sequences, Quat. Geochronol., 5, 512–518, 2010.
Blake Jr., W.: Age determination on marine and terrestrial materials of
Holocene age, southern Ellesmere Island, Arctic Archipelago, Geol. Surv.
Can., 79, 105–109, 1979.
Blake Jr., W., Boucherle, M. M., Fredskild, B., Jannssens, J. A., and Smol, J.
P.: The geomorphological setting, glacial history and Holocene development
of “Kap Inglefield Sø”, Inglefield Land, North-West Greenland.
Meddelelser om Grønland, Geosci., 27, 42 pp., 1992.
Blake Jr., W., Jackson, H. R., and Currie, C. G.: Seafloor evidence for
glaciation, northernmost Baffin Bay, B. Geol. Soc. Denmark, 43, 157–168, 1996.
Bradley, R. S.: Holocene paleoclimatology of the Queen Elizabeth islands,
Canadian high arctic, QRS, 9, 365–384, https://doi.org/10.1016/0277-3791(90)90028-9, 1990.
Briner, J. P., Nicholas, P., McKay, N. P., Axford, Y., Bennike, O., Bradley, R.
S., de Vernal, A., Fisher, D., Francus, P., Fréchette, B., Gajewski, K.,
Jennings, A., Kaufman, D. A., Miller, G., Rouston, C., and Wagner, B.: Holocene
climate change in Arctic Canada and Greenland, Quaternary Sci. Rev., 147, 1–25,
2016.
Caron, M., Montero-Serrano, J.-C., St-Onge, G., Rochon, A., Giraudeau, J.,
and Massé, G.: Holocene sediment dynamics on the north-western Greenland
glaciated margin: insight from sedimentological, mineralogical, and magnetic
data, in preparation, 2018.
Christie, R. L.: Geological reconnaissance of northeastern Ellesmere Island,
district of Franklin, Geol. Surv. Can., 331, 79 pp., 1964.
Christie, R. L.: Northeastern Ellesmere Island: Lake Hazen region and Judge
Daly Promontory structural geology, stratigraphy and palaeontology, Geol.
Surv. Can. Report of Activities, 74-1, 297–299, 1973.
Coulthard, R. D., Furze, M. F. A., Pienkowski, A. J., Nixon, F. C., and England,
J. H.: New marine DR values for Arctic Canada, Quat. Geochronol., 5,
419–434, https://doi.org/10.1016/j.quageo.2010.03.002, 2010.
Davies, H. C., Dobson, M. R., and Whittington, R. J.: A revised seismic
stratigraphy for Quaternary deposits on the inner continental shelf of
Scotland between 55∘30′ N and 57∘30′ N, Boreas, 13, 49–66, 1984.
Dawes, P. R.: Precambrian to Tertiary of northern Greenland, in: Geology of Greenland,
edited by: Escher, A. and Watt, W. S., Geol. Surv. Greenland, 248–303,
1976.
Dawes, P. R. and Garde, A. A.: Geological map of Greenland, 1 :500 000,
Humboldt Gletscher, sheet 6. Copenhagen, Geol. Surv. Den. Greenl.,
2004.
Dowdeswell, J. A., Elverhøi, A., and Spielhagen, R.: Glacimarine sedimentary
processes and facies on the polar north Atlantic margins, QRS, 17, 243–272,
1998.
Dyke, A. S., Andrews, J. T., Clark, P. U., England, J. H., Miller, G. H.,
Shaw, J., and Veillette, J. J.: The Laurentide and Innuitian ice sheets
during the last glacial maximum, Quaternary Sci. Rev., 21, 9–31, 2002.
Elverhøi, A., Liestel, O., and Nagy, J.: Glacial erosion, sedimentation and
microfauna in the inner part of Kongsfjorden, Spitsbergen, Norsk
Polarinst. Skri., 172, 33–58, 1980.
England, J.: Late Quaternary glaciation of the eastern Queen Elizabeth Island,
Northwest Territories, Canada: alternative models, Quaternary Res., 6,
185–202, 1976.
England, J.: Coalescent Greenland and Innuitian ice during the Last Glacial
Maximum: Revising the Quaternary of the Canadian High Arctic,
Quaternary Sci. Rev., 18, 421–426, https://doi.org/10.1016/S0277-3791(98)00070-5,
1999.
England, J., Dyke, A. S., Coulthard, R. D., McNeely, R. and Aitken, A.: The
exaggerated radiocarbon age of deposit-feeding molluscs in calcareous
environments, Boreas, 42, 362–373, https://doi.org/10.1111/j.1502-3885.2012.00256.x, 2013.
England, J. H. K., Lakeman, T. R., Lemmen, D. S., Bednarski, J. M., Stewart, T.
G., and Evans, D. J. A.: A millennial-scale record of Arctic Ocean sea ice
variability and the demise of the Ellesmere Island ice shelves, Geoph. Res.
Lett., 35, L19502, https://doi.org/10.1029/2008GL034470, 2008.
Fisher, D., Zheng, J., Burgess, D., Zdanowicz, C., Kinnard, C., Sharp, M.,
and Bourgeois, J.: Recent melt rates of Canadian Arctic ice caps are the highest
in four millennia, Global Planet. Change, 84–85, 3–7, https://doi.org/10.1016/j.gloplacha.2011.06.005, 2011.
Funder, S.: Late Quaternary stratigraphy and glaciology in the Thule area,
Northwest Greenland, Meddelelser om Grønland, Geosci., 22, 1–63, 1990.
Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjær, K. H., Korsgaard, N.
J., Larsen, N. K., Linderson, H., Lyså, A., Möller, P., Olsen, J.,
and Willerslev, E.: A 10 000-Year Record of Arctic Ocean Sea-Ice
Variability – View from the Beach, Science, 333, 747–750, 2011.
Gilbert, R.: Sedimentary processes of Canadian Arctic fjords, Sediment.
Geol., 36, 147–175, 1983.
Guyard, H., Chaprin, E., St-Onge, G., and Labrie, J.: Late-Holocene NAO and
oceanic forcing on high-altitude proglacial sedimentation (Lake Bramant,
Western French Alps), The Holocene, 23, 1163–1172, 2013.
Harrison, J. C., Brent, T. A., and Oakey, G. N.: Bedrock Geology of the
Nares Strait Region of Arctic Canada and Greenland, with explanatory text
and GIS content, Geol. Surv. Can., Open File 5278, 74, 185–189, 2006.
Harrison, J. C., St-Onge, M. R., Petrov, O. V., Strelnikov, S. I., Lopatin, B.
G., Wilson, F. H., Tella, S., Paul, D., Lynds, T., Shokalsky, A. P., Hults,
C. K., Bergman, S., Jepsen, H. F., and Solli, A.: Geological map of the
Arctic, Geol. Surv. Can., Map 2159A, scale 1 : 5 000 000, 2011.
Hein, F. J. and Syvitski, J. P. M.: Sedimentary environments and facies in
an Arctic basin, Itirbilung Fiord, Baffin Island, Canada. Sediment. Geol.,
81, 17–45, 1992.
Hogan, K., Ó Cofaigh, C., Jennings, A., Dowdeswell, J., and Hiemstra, J.:
Deglaciation of a major palaeo-ice stream in Disko Trough, West Greenland, Quaternary Sci. Rev., 147, 5–26, 2016.
Hoogakker, B. A. A., McCave, I. N., Elderfield, H., Hillaire-Marcel, C.,
and Simstich, J.: Holocene climate variability in the Labrador Sea, J. Geol.
Soc. London, 172, 272–277, https://doi.org/10.1144/jgs2013-097, 2014.
Jakobsson, M., Hogan, K. A., Mayer, L. A., Mix, A., Jennings, J., Stoner,
J., Eriksson, B., Jerram, K., Mohammad, R., Pearce, C., Reilly, B., and Stranne,
C.: The Holocene retreat dynamics and stability of Petermann Glacier
in northwest Greenland, Nat. Commun. 9, 2104, https://doi.org/10.1038/s41467-018-04573-2,
2018.
Jennings, A. E., Sheldon, C., Cronin, T. M., Francus, P., Stoner, J.,
and Andrews, J. T.: The Holocene history of Nares Strait: transition from
glacial bay to Arctic-Atlantic throughflow, Oceanography, 24, 26–41, 2011.
Jones, E. P. and Eert, A. J.: Waters of Nares Strait in 2001 (printed 2006),
Polarforschung, 74, 185–189, 2004.
Jones, E. P., Swift, J. H., Anderson, L. G., Lipizer, M., Civitarese, G.,
Falkner, K. K., Kattner, G., and McLaughlin, F.: Tracing Pacific water in the
North Atlantic Ocean, J. Geophys. Res., 108, 3116,
https://doi.org/10.1029/2001JC001141, 2003.
Kalkreuth, W. D., McCullough, K. M., and Richardson, R. J. H.: Geological,
Archaeological, and Historical Occurrences of Coal, East-central Ellesmere
Island, Arctic Canada, Arctic Alpine Res., 25, 277–307, 1993.
Kelly, M. and Bennike, O.: Quaternary Geology of Western and Central North
Greenland, Rapport Grønlands Geologiske Undersøgelse 153, 34 pp., 1992.
Kelly, M., Funder, S., Houmark-Nielsen, M., Knudsen, K. L., Kronborg, C.,
Landvik, J., and Sorby, L.: Quaternary glacial and marine environmental
history of Northwest Greenland: a review and reappraisal, Quaternary Sci. Rev., 18, 373–392, 1999.
Kerr, J. W.: Stratigraphy of Central and Eastern Ellesmere Island, Arctic
Canada, Part I, Proterozoic and Cambrian, Geol. Surv. Can., 63 pp.,
1967.
Kerr, J. W.: Stratigraphy of Central and Eastern Ellesmere Island, Arctic
Canada, Part II, Ordovician, Geol. Surv. Can., 92 pp., 1968.
Kliem, N. and Greenberg, D. A.: Diagnostic simulations of the summer
circulation in the Canadian Arctic Archipelago, Atmos. Ocean., 41, 273–289,
https://doi.org/10.3137/ao.410402, 2003.
Knudsen, K. L., Stabell, B., Seidenkrantz, M.-S., Eirıksson, J., and Blake Jr., W.: Deglacial and Holocene conditions in northernmost Baffin Bay:
sediments, foraminifera, diatoms and stable isotopes, Boreas, 37, 346–376,
https://doi.org/10.1111/j.1502-3885.2008.00035.x, 2008.
Koch, L.: Stratigraphy of Greenland, Meddr. Grønland, 73, 205–320,
1929a.
Koch, L.: The Geology of the South Coast of Washington Land, Meddr.
Grønland, 73, 205–320, 1929b.
Koch, L.: The geology of Inglefield Land, Meddr. Grønland, 73, 39 pp.,
1933.
Kravitz, J. H.: Textural and Mineralogical Characteristics of the Surficial
Sediments of Kane Basin, J. Sedimetary Petrology., 46, 710–725, 1976.
Kravitz, J. H.: Sediments and sediment processes in Kane Basin, a high
Arctic glacial marine basin. University of Colorado, Institute of Arctic
Alpine Res., Occasional Paper, 39, 184 pp., 1982.
Lecavalier, B. S., Fisher, D. A., Milne, G. A., Vinther, B. M., Tarasov, L.,
Huybrechts, P., Lacelle, D., Main, B., Zheng, J., Bourgeois, J., and Dyke, A. S.: High Arctic Holocene temperature record from the Agassiz ice cap and
Greenland ice sheet evolution, P. Natl. Acad. Sci. USA, 114, 5952–5957, https://doi.org/10.1073/pnas.1616287114, 2017.
Levac, E., de Vernal, A., and Blake Jr., W.: Sea-surface conditions in the
northernmost Baffin Bay during the Holocene: Palynological evidence, J.
Quaternary Sci., 16, 353–363, 2001.
List, E. J.: Turbulent jets and plumes, Annu. Rev. Fluid Mech., 14, 189–212,
1982.
MacGregor, J. A., Colgan, W. T., Rahnestock, M. A., Morlighem, M., Catania,
G. A., Paden, G. A., and Gogineni, S. P.: Holocene deceleration of the Greenland
Ice Sheet, Science, 351, 6273, 590–593, https://doi.org/10.1126/science.aab1702, 2016.
McGeehan, T. and W. Maslowski,: Evaluation and control mechanisms of volume
and freshwater export through the Canadian Arctic Archipelago in a
high-resolution pan-Arctic ice ocean model, J. Geophys. Res., 117, C00D14,
https://doi.org/10.1029/2011JC007261, 2012.
McNeely, R., Dyke, A. S., and Southon, J. R.: Marine Reservoir Ages Preliminary
Data Assessment, Geol. Surv. Can. Open File 5049, 2006.
Melling, H., Gratton, Y., and Ingram, R. G.: Ocean circulation within the North
Water polynya of Baffin Bay. Atmos. Ocean 9, 301–325,
https://doi.org/10.1080/07055900.2001.9649683, 2001.
Miall, A. D.: Tertiary sedimentation and tectonics in the Judge Daly Basin,
northeast Ellesmere Island, Arctic Canada, Geol. Surv. Can., 80-30, 17 pp., 1982.
Moffa-Sanchez, P. and Hall, I. R.: North Atlantic variability and its links
to European climate over the last 3000 years, Nat. Commun., 8, 1726, https://doi.org/10.1038/s41467-017-01884-8, 2017.
Møller, H. S., Jensen, K. G., Kuijpers, A., Aagaard-Sørensen, S.,
Seidenkrantz, M.-S., Prins, M., Endler R., and Mikkelsen, N.: Late-Holocene
environment and climatic changes in Ameralik Fjord, southwest Greenland:
evidence from the sedimentary record, The Holocene, 61, 685–695, https://doi.org/10.1191/0959683606hl963rp, 2006.
Moynihan, M. J.: Oceanographic observations in Kane Basin, September 1968
and July–September 1969, United States Coast Guard Oceanographic Report 55,
70, 1972.
Mudie, P. T., Rochon, A., Prins, M. A., Soenarjo, D., Troelstra, S. R.,
Levac, E., Scott, D. B., Roncaglia, L., and Kuijpers, A.: Late
Pleistocene–Holocene marine geology of Nares Strait region:
Palaeoceanography from foraminifera and dinoflagellate cysts, sedimentology
and stable isotopes (printed 2006), Polarforschung, 74, 169–183, 2004.
Muench, R. D.: Oceanographic conditions at a fixed location in western Kane
Basin, May 1969, Oceanogr. Rep. CG 373-44, 1–5, U.S. Coast Guard,
Washington, D.C., USA, 1971.
Mulder, T., Hassan, R., Ducassou, E., Zaragosi, S., Gonthier, E., Hanquiez,
V., Marchès, E., and Toucanne, S.: Contourites in the Gulf of Càdiz: A
cautionary note on potentially ambiguous indicators of bottom current
velocity, Geo-Mar. Lett., 33, 357–367, https://doi.org/10.1007/s00367-013-0332-4,
2013.
Münchow, A.: Volume and freshwater flux observations from Nares Strait
to the west of Greenland at daily time scales from 2003 to 2009, J. Phys.
Oceanogr., 46, 141–157, https://doi.org/10.1175/JPO-D-15-0093.1, 2016.
Münchow, A., Melling, H., and Falkner, K. K.: An observational estimate of
volume and freshwater flux leaving the Arctic Ocean through Nares Strait, J.
Phys. Oceanogr., 36, 2025–2041, 2006.
Münchow, A., Falkner, K. K., and Melling, H.: Spatial continuity of measured
seawater and tracer fluxes through Nares Strait, a dynamically wide channel
bordering the Canadian Archipelago, J. Mar. Res., 65, 759–788,
https://doi.org/10.1357/002224007784219048, 2007.
Mundy, C. J. and Barber, D. G.: On the relationship between spatial patterns
of sea-ice type and the mechanisms which create and maintain the North Water
(NOW) polynya, Atmos. Ocean 39, 327–341, https://doi.org/10.1080/07055900.2001.9649684, 2001.
Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H.,
Letzig, T., Reimnitz, E., and Thiede, J.: Sediments in Arctic sea ice:
implications for entrainment, transport and release, Mar. Geol., 119,
185–214, 1994.
Oakey, G. N. and Damaske, D.: Continuity of basement structures and dyke
swarms in the Kane Basin region of central Nares Strait constrained by
aeromagnetic data, Polarforschung, 74, 51–62, 2004.
Ó Cofaigh, C. and Dowdeswell, J. A.: Laminated sediments in glacimarine
environments: diagnostic criteria for their interpretation, Quaternary Sci. Rev., 20, 1411–1436, 2001.
Pfirman, S., Wollenburg, I., Thiede, J., Lange, M.A.: Lithogenic sediment on
Artic pack ice: potential aeolian flux and contributions to deep sea
sediments, in: Paleoclimatology and Paleometeorology: Modern and Past
Pattern of Global Atmospheric Transport, edited by: Sarnthein, M. and Leinen, M.,
Kluwer, Dordrecht, the Netherlands, 463–493, 1989.
Pienkowski, A. J., England, J. H., Furze, M. F. A., Marret, F., Eynaud, F.,
Vilks, G., MacLean B., Blasco, S., and Scourse, J. D.: The deglacial to
postglacial marine environments of SE Barrow Strait, Canadian Arctic
Archipelago, Boreas, 41, 141–179, https://doi.org/10.1111/j.1502-3885.2011.00227.x, 2012.
Rabe, B., Johnson, H. L., Münchow, A., and Melling, H.: Geostrophic ocean
currents and freshwater fluxes across the Canadian polar shelf via Nares
Strait, J. Mar. Res., 70, 603–640, 2012.
Reeh, N., Thomsen, H. H., Higgins, A. K., and Weidick, A.: Sea ice and the
stability of north and northeast Greenland floating glaciers, Ann. Glaciol.,
33, 474–480, 2001.
Reimer, P. J., Bayliss, E. B. A., Beck, J. W., Blackwell, P. G., Ramsey, C.
B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M.,
Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J.,
Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, A. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13
and MARINE13 radiocarbon age calibration curves 0–50 00 years cal. BP.,
Radiocarbon, 55, 1869–1887, 2013.
Reusche, M. M., Marcott, S. A., Ceperley, E. G., Barth, A. M., Brook, E. J.,
Mix, A. C., Caffee, M. W.: Early to Late Holocene surface exposure ages from
two marine-terminating outlet glaciers in Northwest Greenland. Geophys. Res.
Lett., 45, 7028–7039, https://doi.org/10.1029/2018GL078266, 2018.
Samelson, R. M. and Barbour, P. L.: Low-level winds in Nares Strait: A
model-based mesoscale climatology, Mon. Weather Rev., 136, 4746–4759, 2008.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 7.1 [WWW program], available at:
http://calib.org, last access: 6 June 2018.
Svendsen, J. I., Mangerud, J., Elverhøi, A., Solheim, A., and
Schüttenhelm, R. T. E.: The Late Weichselian glacial maximum on western
Spitsbergen inferred from offshore sediment cores, Mar. Geol., 104, 1–17,
1992.
Tjallingii, R., Röhl, U., Kölling, M., and Bickert, T.: Influence of the
water content on X-ray fluorescence core-scanning measurements in soft
marine sediments, Geochem. Geophy. Geosys. 8, Q02004,
https://doi.org/10.1029/2006GC001393, 2007.
Tushingham, A. M.: On the extent and thickness of the Innuitian Ice Sheet: a
postglacial-adjustment approach, Can. J. Earth Sci., 28, 231–239, 1990.
Vare, L. L., Massé, G., Gregory, T. R., Smart, C. W., and Belt, S. T.: Sea ice
variations in the central Canadian Arctic Archipelago during the Holocene, Quaternary Sci. Rev., 28, 1354–1366, 2009.
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen,
M. L., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.: A
synchronized dating of three Greenland ice cores throughout the Holocene, J.
Geophys. Res., 111, D13102, https://doi.org/10.1029/2005JD006921, 2006.
Weltje, G. J. and Tjanllingii, R. Calibration of XRF core scanners for
quantitative geochemical logging of sediment cores: Theory and applications,
Earth Planet Sc. Lett. 274, 4238, https://doi.org/10.1016/j.epsl.2008.07.054, 2008.
Zaragosi, S., Bourillet, J.-F., Eynaud, F., Toucanne, S., Denhard, B., Van
Toer, A., and Lanfumey, A.: The impact of the last European deglaciation on the
deep-sea turbidite systems of the Celtic-Armorican margin (Bay of Biscay),
Geo-Mar. Lett., 26, 317–329, https://doi.org/10.1007/s00367-006-0048-9, 2006.
Zreda, M., England, J., Phillips, F., Elmore, D., and Sharma, P.: Unblocking of
the Nares Strait by Greenland and Ellesmere Ice-Sheet retreat 10 000 years
ago, Nature, 398, 139–142, https://doi.org/10.1038/18197, 1999.
Short summary
We present our results from a radiocarbon-dated core collected in central Nares Strait, NW Greenland. Sedimentological and geochemical data reveal that marine sedimentation began ca. 9.0 cal ka BP with the complete opening of the strait occurring at 8.3 cal ka BP. The collapse of the glacial buttress in central Nares Strait led to accelerated glacial fluxes of the bordering ice sheets between 8.3 and 7.5 cal ka BP, while the Humboldt Glacier retreated in eastern Kane Basin ca. 8.1 cal ka BP.
We present our results from a radiocarbon-dated core collected in central Nares Strait, NW...