Articles | Volume 14, issue 12
https://doi.org/10.5194/cp-14-1893-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1893-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A stalagmite test of North Atlantic SST and Iberian hydroclimate linkages over the last two glacial cycles
Rhawn F. Denniston
CORRESPONDING AUTHOR
Department of Geology, Cornell College, Mount Vernon, Iowa 52314, USA
Amanda N. Houts
Department of Geology, Cornell College, Mount Vernon, Iowa 52314, USA
current address: Department of Earth Sciences, University of New
Hampshire, Durham, New Hampshire 03824, USA
Yemane Asmerom
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
Alan D. Wanamaker Jr.
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, USA
Jonathan A. Haws
Department of Anthropology, University of Louisville, Louisville, Kentucky 40208, USA
Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Universidade
do Algarve, Faro, Portugal
Victor J. Polyak
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
Diana L. Thatcher
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, USA
Setsen Altan-Ochir
Department of Geology, Cornell College, Mount Vernon, Iowa 52314, USA
current address: Department of Geosciences, École Normale
Supérieure, PSL Res. Univ., Paris, France
Alyssa C. Borowske
Department of Geology, Cornell College, Mount Vernon, Iowa 52314, USA
current address: Department of Ecology and Evolutionary Biology,
University of Connecticut, Storrs, Connecticut 06269, USA
Sebastian F. M. Breitenbach
Institute for Geology, Mineralogy, and Geophysics, Ruhr-University, 44801 Bochum, Germany
Caroline C. Ummenhofer
Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
Frederico T. Regala
Associação de Estudos Subterrâneos e Defesa do Ambiente, Torres Vedras, Portugal
Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Universidade
do Algarve, Faro, Portugal
Michael M. Benedetti
Department of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Universidade
do Algarve, Faro, Portugal
Nuno F. Bicho
Interdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArEHB), Universidade
do Algarve, Faro, Portugal
Related authors
No articles found.
Sina Panitz, Michael Rogerson, Jack Longman, Nick Scroxton, Tim J. Lawson, Tim C. Atkinson, Vasile Ersek, James Baldini, Lisa Baldini, Stuart Umbo, Mahjoor A. Lone, Gideon M. Henderson, and Sebastian F. M. Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-48, https://doi.org/10.5194/cp-2024-48, 2024
Revised manuscript under review for CP
Short summary
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g., stalagmites) in the British Isles to help constrain the extent of past glaciations both in time and space. Speleothems require liquid water to grow, and therefore, their presence indicates the absence of ice above the cave. By dating these speleothems we can improve existing reconstructions of past ice sheets.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1691, https://doi.org/10.5194/egusphere-2024-1691, 2024
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate 8.68 ± 0.09 million years ago. We show that when global average temperature was about 4.5 °C warmer than today (similar to what’s expected in the coming decades should carbon emissions continue unabated), Arctic temperature increased by more than 18 °C. Similar levels of Arctic warming in the future would see huge areas of permafrost (permanently frozen ground) thaw and release greenhouse gases to the atmosphere.
Jade Margerum, Julia Homann, Stuart Umbo, Gernot Nehrke, Thorsten Hoffmann, Anton Vaks, Aleksandr Kononov, Alexander Osintsev, Alena Giesche, Andrew Mason, Franziska A. Lechleitner, Gideon M. Henderson, Ola Kwiecien, and Sebastian F. M. Breitenbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1707, https://doi.org/10.5194/egusphere-2024-1707, 2024
Short summary
Short summary
We analyse a southern Siberian stalagmite to reconstruct soil respiration, wildfire, and vegetation trends, during the last interglacial (LIG) (124.1 – 118.8 ka BP) and Holocene (10 – 0 ka BP). We show that wildfires were greater during the LIG than the Holocene and were supported by fire prone-species, low soil respiration, and a greater difference between summer and winter temperature. We show that vegetation type and summer/winter temperature contrast are strong drivers of Siberian wildfires.
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Andrew J. Mason, Anton Vaks, Sebastian F. M. Breitenbach, John N. Hooker, and Gideon M. Henderson
Geochronology, 4, 33–54, https://doi.org/10.5194/gchron-4-33-2022, https://doi.org/10.5194/gchron-4-33-2022, 2022
Short summary
Short summary
A novel technique for the uranium–lead dating of geologically young carbonates is described and tested. The technique expands our ability to date geological events such as fault movements and past climate records.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Oana A. Dumitru, Victor J. Polyak, Yemane Asmerom, and Bogdan P. Onac
Earth Syst. Sci. Data, 13, 2077–2094, https://doi.org/10.5194/essd-13-2077-2021, https://doi.org/10.5194/essd-13-2077-2021, 2021
Short summary
Short summary
Here we describe a global database that summarizes the current knowledge of MIS 5 sea level as captured by speleothems. We used the framework of the WALIS database to provide a standardized format which will facilitate the sea-level research community to utilize this worldwide database. This is the first speleothem database and contains all the information needed to assess former paleo relative sea levels and their chronological constraints.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Ana M. Morales-Williams, Alan D. Wanamaker Jr., and John A. Downing
Biogeosciences, 14, 2865–2875, https://doi.org/10.5194/bg-14-2865-2017, https://doi.org/10.5194/bg-14-2865-2017, 2017
Short summary
Short summary
Our study investigated the mechanisms sustaining cyanobacteria blooms when CO2 is depleted in lake surface waters. We found that when lake CO2 concentrations drop below those of the atmosphere, cyanobacteria switch on carbon concentrating mechanisms (CCMs), allowing them to actively take up bicarbonate. This may provide bloom-forming cyanobacteria with a competitive advantage over other algae. These results provide insight into the timing and duration of blooms in high-nutrient lakes.
Stefania Milano, Gernot Nehrke, Alan D. Wanamaker Jr., Irene Ballesta-Artero, Thomas Brey, and Bernd R. Schöne
Biogeosciences, 14, 1577–1591, https://doi.org/10.5194/bg-14-1577-2017, https://doi.org/10.5194/bg-14-1577-2017, 2017
Y.-W. Liu, S. M. Aciego, and A. D. Wanamaker Jr.
Biogeosciences, 12, 3351–3368, https://doi.org/10.5194/bg-12-3351-2015, https://doi.org/10.5194/bg-12-3351-2015, 2015
Short summary
Short summary
We report the first high-resolution strontium (87Sr/86Sr and δ88/86Sr) and boron (δ11B) isotopic values in the aragonite shell of cultured Arctica islandica. These results suggest that well-preserved subfossil specimens may be used to determine the past Sr isotopic composition of seawater. The δ11B in this experiment suggests that the boron uptake of the shell changes at a temperature threshold of 13°C and a species-specific fractionation factor may be required for seawater pH reconstructions.
R. A. Eagle, J. M. Eiler, A. K. Tripati, J. B. Ries, P. S. Freitas, C. Hiebenthal, A. D. Wanamaker Jr., M. Taviani, M. Elliot, S. Marenssi, K. Nakamura, P. Ramirez, and K. Roy
Biogeosciences, 10, 4591–4606, https://doi.org/10.5194/bg-10-4591-2013, https://doi.org/10.5194/bg-10-4591-2013, 2013
E. A. A. Versteegh, M. E. Blicher, J. Mortensen, S. Rysgaard, T. D. Als, and A. D. Wanamaker Jr.
Biogeosciences, 9, 5231–5241, https://doi.org/10.5194/bg-9-5231-2012, https://doi.org/10.5194/bg-9-5231-2012, 2012
Related subject area
Subject: Teleconnections | Archive: Terrestrial Archives | Timescale: Pleistocene
Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial–interglacial period
Volcanic ash layers in Lake El'gygytgyn: eight new regionally significant chronostratigraphic markers for western Beringia
Distinct lake level lowstand in Lake Prespa (SE Europe) at the time of the 74 (75) ka Toba eruption
T.-Y. Li, C.-C. Shen, L.-J. Huang, X.-Y. Jiang, X.-L. Yang, H.-S. Mii, S.-Y. Lee, and L. Lo
Clim. Past, 10, 1211–1219, https://doi.org/10.5194/cp-10-1211-2014, https://doi.org/10.5194/cp-10-1211-2014, 2014
C. van den Bogaard, B. J. L. Jensen, N. J. G. Pearce, D. G. Froese, M. V. Portnyagin, V. V. Ponomareva, and V. Wennrich
Clim. Past, 10, 1041–1062, https://doi.org/10.5194/cp-10-1041-2014, https://doi.org/10.5194/cp-10-1041-2014, 2014
B. Wagner, M. J. Leng, T. Wilke, A. Böhm, K. Panagiotopoulos, H. Vogel, J. H. Lacey, G. Zanchetta, and R. Sulpizio
Clim. Past, 10, 261–267, https://doi.org/10.5194/cp-10-261-2014, https://doi.org/10.5194/cp-10-261-2014, 2014
Cited articles
Asmerom, Y., Polyak, V., and Burns, S.: Variable winter moisture in the
southwestern United States linked to rapid glacial climate shifts, Nat.
Geosci., 3, 114–117, 2010.
Baker, A., Ito, E., Smart, P., and McEwan, R.: Elevated and variable values
of 13C in speleothems in a British cave system, Chem. Geol., 136,
263–270, 1997.
Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner,
L. C., Wolff, E., and Ziegler, M.: 800,000 years of abrupt climate
variability, Science, 334, 347–351, 2011.
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C.
J.: Sea-land oxygen isotopic relationships from planktonic foraminifera and
speleothems in the Eastern Mediterranean region and their implication for
paleo-rainfall during interglacials intervals, Geochim. Cosmochim. Ac., 67,
3181–3199, 2003.
Barnston, A. G. and Livezey, R. E.: Classification, seasonality, and
persistence of low-frequency atmospheric circulation patterns, Mon. Weather
Rev., 115, 1083–1126, 1987.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–318, 1991.
Boch, R., Cheng, H., Spötl, C., Edwards, R. L., Wang, X., and Häuselmann,
Ph.: NALPS: a precisely dated European climate record 120–60 ka, Clim. Past,
7, 1247–1259, https://doi.org/10.5194/cp-7-1247-2011, 2011.
Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L., Ridley,
H. E., Kennett, D. J., Prufer, K. M., Aquino, V. V., Asmerom, Y., Polyak, V.
J., Cheng, H., Kurths, J., and Marwan, N.: COnstructing Proxy Records from
Age models (COPRA), Clim. Past, 8, 1765–1779,
https://doi.org/10.5194/cp-8-1765-2012, 2012.
Breitenbach, S. F. M., Lechleitner, F. A., Meyer, H., Diengdo, G., Mattey,
D., and Marwan, N.: Cave ventilation and rainfall signals in dripwater in a
monsoonal setting – a monitoring study from NE India, Chem. Geol., 402,
111–124, 2015.
Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based),
available at:
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based,
last access: 21 May 2018.
Chabaud, L., Sánchez Goñi, M. F., Desprat, S., and Rossignol, L.:
Land-sea climatic variability in the eastern North Atlantic subtropical
region over the last 14,200 years: Atmospheric and oceanic processes at
different timescales, Holocene, 24, 787–797, 2014.
Chabaux, F., Riotte, J., and Dequincey, O.: U–Th–Ra fractionations during
weathering and river transport, Rev. Mineral. Geochem., 52, 533–576, 2003.
Collister, C. and Mattey, D.: Controls on water drop volume at speleothem
drip sites: An experimental study, J. Hydrol., 358, 259–267, 2008.
Combourieu Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C.,
Kotthoff, U., and Marret, F.: Rapid climatic variability in the west
Mediterranean during the last 25 000 years from high resolution pollen data,
Clim. Past, 5, 503–521, https://doi.org/10.5194/cp-5-503-2009, 2009.
Cortesi, N., Gonzalez-Hidalgo, J. C., Trigo, R. M., and Ramos, A. M.: Weather
types and spatial variability of precipitation in the Iberian Peninsula, Int.
J. Climatol., 34, 2661–2677, 2014.
Couchoud, I, Genty, D., Hoffman, D., Drysdale, R., and Blamart, D.:
Millennial-scale climate variability during the Last Interglacial recorded in
a speleothem from south-western France, Quaternary Sci. Rev., 28, 3263–3274,
2009.
Daniau, A.-L., Sánchez Goñi, M.F., Beaufort, L., Laggoun-Defarge, F.,
Loutre, M.-F., and Duprat, J.: Dansgaard-Oeschger climatic variability
revealed by fire emissions in southwestern Iberia, Quaternary Sci. Rev., 26,
1369–1383, 2007.
Darfeuil, S., Ménot, G., Giraud, X., Rostek, F., Tachikawa, K., Garcia,
M., and Bard, É.: Sea surface temperature reconstructions over the last
70 kyr off Portugal: Biomarker data and regional modeling, Paleocean, 31,
40–65, 2016.
de Abreu, L., Shackleton, N. J., Schönfeld, J., Hall, M., and Chapman,
M.: Millennial-scale oceanic climate variability off the Western Iberian
margin during the last two glacial periods, Mar. Geol., 196, 1–20, 2003.
Deines, P.: The isotopic composition of reduced organic carbon, in: Handbook
of Environmental Isotope Geochemistry, The Terrestrial Environment, Part A,
edited by: Fritz, P. and Fontes, J., Elseveier, New York, 331–406, 1980.
Denniston, R. F., González, L. A., Asmerom, Y., Baker, R. G., Reagan, M.
K., and Bettis, E. A. III.: Evidence for increased cool season moisture
during the middle, Holocene, Geology, 27, 815–818, 1999.
Denniston, R. F., Wyrwoll, K.-H., Polyak, Brown, J. Asmerom, Y., Wanamaker,
A. Jr., LaPointe, Z., Ellerbroek, R., Barthelmes, M., Cleary, D., Cugley, J.,
Woods, D., and Humphreys, W.: A Stalagmite Record of Holocene
Indonesian-Australian Summer Monsoon Variability from the Australian Tropics,
Quaternary Sci. Rev., 78, 155–168, 2013.
Desprat, S., Fernanda Sánchez Goñi, M., T. J.-L., Duprat, J., Malaizé, B., and Peypouquet, J.-P.: Climatic
variability of Marine Isotope Stage 7: direct land-sea-ice correlation from a
multiproxy analysis of a north-western Iberian margin deep-sea core,
Quaternary Sci. Rev., 25, 1010–1026, 2006.
Desprat, S., Sánchez Goñi, M.F., Naughton, F., Turon, J.-L., Duprat,
J., Malaizé, B., Cortijo, E., and Peypouquet, J.-P.: Climate variability
of the last five isotopic interglacials: Direct land-sea-ice correlation from
the multiproxy analysis of North-Western Iberian margin deep-sea cores,
edited by: Sirocko, F., Claussen, M., Sánchez Goñi, M. F., and Litt, T.,
in: Developments in Quaternary Sciences, Elsevier, 375–386, 2007.
Dorale, J. A., and Liu, Z.: Limitations of Hendy Test criteria in judging the
paleoclimatic suitability of speleothems and the need for replication, J.
Cave Karst. Stud., 71, 73–80, 2009.
Dreybodt, W.: Evolution of the isotopic composition of carbon and oxygen in a
calcite precipitating solution and the related
isotopic composition of calcite in stalagmites, Geochim. Cosmochim. Ac., 72,
4712–4724, 2008.
Deutscher Wetter Dienst (DWD): Global Precipitation Climatology Center
data, available at: http://gpcc.dwd.de, last access: 28 March 2016.
Eynaud, F., de Abreu, L, Voelker, A., Schönfeld, J., Salgueiro, E.,
Turon, J.-L., Penaud, A., Toucanne, S., Naughton, F., Sánchez Goñi,
M.F., Malaizé, and Cacho, I.: Position of the Polar Front along the
western Iberian margin during key cold episodes of the last 45 ka, Geochem.
Geophy. Geosy., 10, Q07U05, https://doi.org/10.1029/2009GC002398, 2009.
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey,
D., McDermott, F., and Edinburgh Ion Microprobe Facility (EIMF): Modification
and preservation of environmental signals in speleothems, Earth Sci. Rev.,
75, 105–153, 2006.
Fankhauser, A., McDermott, F., and Fleitmann, D.: Episodic speleothem
deposition tracks the terrestrial impact of millennial-scale last glacial
climate variability in SW Ireland, Quaternary Sci. Rev., 152, 104–117, 2016.
Fletcher, W. J., Sánchez Goñi, M. F., Allen, J. R. M., Cheddadi, R.,
Combourieu-Nebout, N., Huntley, B., Lawson, I., Londiex, L., Magri, D.,
Margari, v., Müller, U. C., Naughton, F., Novenko, E., Roucoux, K., and
Tzedakis, P. C.: Millennial scale variability during the last glacial in
vegetation records from Europe, Quaternary Sci. Rev., 29, 2839–2864, 2010.
Florineth, D. and Schlüchter, S.: Alpine Evidence for Atmospheric
Circulation Patterns in Europe during the Last Glacial Maximum, Quaternary
Res., 54, 295–308, 2000.
Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting,
I. G., Leuenberger, M., Langenfelds, R. L., Michel, E., and Steele, L. P. A.:
1000-year high precision record of 13C in atmospheric
CO2, Tellus B, 51, 170–193, 1999.
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J.,
Van-Exter, S.: Precise dating of Dansgaard-Oeschger climate oscillations in
western Europe from stalagmite data, Nature, 421, 833–837, 2003.
Genty, D., Comboruieu-Nebout, N., Peyron, O., Blamart, D., Wainer, K.,
Mansuri, F., Ghaleb, B., Isabello, L., Dormoy, I., von Grafenstein, U.,
Bonelli, S., Landais, A., and Brauer, A.: Isotopic characterization of rapid
climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France)
and correlation with Atlantic and Mediterranean pollen records, Quaternary
Sci. Rev., 29, 2799–2820, 2010.
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, Ch., Bakalowicz, M.,
Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., and Bourges, F.: Timing and
dynamics of the last deglaciation from European and North African
δ13C stalagmite profiles – comparison with Chinese and South
Hemisphere stalagmites, Quaternary Sci. Rev., 25, 2118–2142, 2006.
Gimeno, L., Nieto, R., Trigo, R. M., Vicente-Serrano, S. M., and
López-Moreno, J. I.: Where does the Iberian Peninsula moisture come from?
An answer based on a Lagrangian approach, J. Hydrometeorol., 11, 421–436,
2010.
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu., L.,
Drumond, A., Durán-Quesada, A. M., and Nieto, R.: Oceanic and terrestrial
sources of continental precipitation, Rev. Geophys., 50, 1–41, 2012.
Gómez-Orellana, L., Ramil-Rego, P., and Sobrino, C. M.: The Würm in
NW Iberia, a pollen record from Area Longa (Galicia), Quaternary Res., 67,
438–452, 2008.
Grootes, P. M.: Climate Change in Continental Isotopic Records, edited by:
Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S., American Geophysical
Union, Washington, DC, 37–46, 1993.
Hellstrom, J. and McCulloch, M.: Multi-proxy constraints on the climatic
significance of trace element records from a New Zealand speleothem, Earth
Planet Sc. Lett., 179, 287–297, 2000.
Hendy, C.: The isotopic geochemistry of speleothems – I. The calculation of
the effects of different modes of formation on the isotopic composition of
speleothems and their applicability as palaeoclimatic indicators, Geochim.
Cosmochim. Ac., 35, 801–824, 1971.
Herbert, T. D., Schuffert, J. D., Heusser, L., Lyle, M., Mix, A., Ravelo, A.
C., Stott, L. D., and Herguera, J. C.: Collapse of the California current
during glacial maxima linked to climate change on land, Science, 293, 71–76,
2001.
Hodell, D., Crowhurst, S., Skinner, L., Tzedakis, P. C., Margari, V.,
Channell, J. E. T., Kamenov, G., Maclachlan, S., and Rothwell, G.: Response
of Iberian margin sediments to orbital and suborbital forcing over the past
420 ka, Paleoceanography, 28, 185–199, 2013.
Hodge, E. J., Richards, D. A., Smart, P. L., Andreo, B., Hoffman, D. L.,
Mattey, D. P., and Gonzales-Ramon, A.: Effective precipitation in southern
Spain (∼266 to 46 ka) based on a speleothem stable carbon isotope
record, Quaternary Res., 69, 447–457, 2008.
IAEA/WMO: Global
Network of Isotopes in Precipitation, The GNIP Database, available at:
http://www.iaea.org/water, last access: 2015.
IPMA: Instituto Português do Mar e da Atmosfer, available at:
http://www.meteo.pt/en/oclima/clima.normais/015/, last access: 2018.
Justino, F. and Peltier, W. R.: The glacial North Atlantic Oscillation,
Geophys. Res. Lett., 32, L21803, https://doi.org/10.1029/2005GL023822, 2008.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
1997.
Kuhlemann, J., Rohling, E. J., Krumrei, I., Kubik, P., Ivy-Ochs, S., and
Kucera, M.: Regional synthesis of Mediterranean atmospheric circulation
during the Last Glacial Maximum, Science, 321, 1338–1340, 2008.
Lachniet, M. S.: Climatic and environmental controls on speleothem oxygen
isotope values, Quaternary Sci. Rev., 28, 412–432, 2009.
Lechleitner, F. A., Breitenbach, S. F. M., Cheng, H., and Plessen, B.:
Climatic and in-cave influences on δ18O and
δ13C in a stalagmite from northeastern India through the last
deglaciation, Quaternary Res., 88, 458–471, 2017.
Li, Z.-H., Driese, S. G., and Cheng, H.: A multiple cave deposit assessment
of suitability of speleothem isotopes for reconstructing palaeo-vegetation
and palaeo-temperature, Sedimentology, 61, 749–766, 2014.
Lorenzo, M. N., Iglesias, I., Taboada, J. J., and Gomez-Gesteira, M.:
Relationship between monthly rainfall in northwest Iberian Peninsula and
North Atlantic sea surface temperature, Int. J. Climatol., 30, 980–990,
2010.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.:
Orbital and millennial-scale features of atmospheric CH4 over the
past 800,000 years, Nature, 453, 383–386, 2008.
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards,
R.L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm track
changes during the Last Glacial Maximum recorded by Alpine speleothems, Nat.
Commun., 6, https://doi.org/10.1038/ncomms7344, 2016.
Margari, V., Skinner, L. C., Tzedakis, P. C., Ganopolski, A., Vautravers, M.,
and Shackleton, N. J.: The nature of millennial-scale climate variability
during the past two glacial periods, Nat. Geosci., 3, 127–131,
https://doi.org/10.1038/ngeo740, 2010.
Margari, V., Skinner, L. C., Hodell, D. A., Martrat, B., Toucanne, S.,
Grimalt, J. O., Gibbard, P. L., Lunkka, J. P., and Tzedakis, P. C.:
Land-ocean changes on orbital and millennial time scales and the penultimate
glaciation, Geology, 42, 183–186, 2014.
Martin-Vide, J. and Lopez-Bustins, J.-A.: The Western Mediterranean
Oscillation and rainfall in the Iberian Peninsula, Int. J. Climatol., 26,
1455–1475, 2006.
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M
.A., and Stocker, T. F.: Four climate cycles of recurring deep and surface
water destabilizations on the Iberian margin, Science, 317, 502–507, 2007.
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0.5-Million-Year Record of
Millennial-Scale Climate Variability in the North Atlantic, Science, 283,
971–975, 1999.
Mickler, P. J., Banner, J. L., Stern, L., Asmerom, Y., Edwards, R. L., and
Ito, E.: Stable isotope variations in modern tropical speleothems: Evaluation
equilibrium vs. kinetic isotope effects, Geochim. Cosmochim. Ac., 68,
4381–4393, 2004.
Moreno, A., Cacho, I., Canals, M., Prins, M. A., Sánchez Goñi, M. F.,
Grimalt, J. O., and Weltje, G. J: Saharan dust transport and high-latitude
glacial climate variability: the Alboran Sea record, Quaternary Res., 58,
318–328, 2002.
Moreno, A., Gonzalez-Samperiz, P., Morellon, M., Valero-Garces, B. L., and
Fletcher, W. J.: Northern Iberian abrupt climate change dynamics during the
last glacial cycle: a view from lacustrine sediments, Quaternary Sci. Rev.,
36, 139–153, 2012.
Moreno, A., Sancho, C., Bartolumé, M., Oliva-Rucia, B., Delgado-Huertas,
A., José, Estrela, M., Corell, D., López-Moreno, J. I., and Cacho,
I.: Climate controls on rainfall isotopes and their effects on cave drip
water and speleothem growth: the case of Molinos cave (Teruel, NE Spain),
Clim. Dynam., 43, 221–241, 2014.
Moseley, G. E., Spötl, C., Scensson, A., Cheng, H., Brandstatter, S., and
Edwards, R. L.: Multi-speleothem record reveals tightly coupled climate
between central Europe and Greenland during Marine Isotope Stage 3, Geology,
42, 1043–1946, 2014.
Mühlinghaus, C., Scholz, D., and Mangini, A.: Modelling stalagmite growth
and δ13C as a function of drip interval and temperature,
Geochim. Cosmochim. Ac., 71, 2780–2790, 2007.
Naughton, F., Sánchez Goñi, M. F., Desprat, S., Turon, J.-L., Duprat,
J., Malaizé, B., Joli, C., Cortijo, E., Drago, T., and Freitas, M. C.:
Present-day and past (last 25,000 years) marine pollen signal off western
Iberia, Mar. Micropaleontol., 62, 91–114, 2007.
Naughton, F., Sánchez Goñi, M. F., Kageyama, M., Bard, E., Duprat,
J., Cortijo, E., Desprat, S., Malaizé, B., Joly, C., Rostek, F., and
Turon, J.-L.: Wet to dry climatic trend in north-western Iberia within
Heinrich events, Earth Planet Sc. Lett., 284, 329–342, 2009.
North Greenland Ice Core Project members: High-resolution record of Northern
Hemisphere climate extending into the last interglacial period, Nature, 431,
147–151, 2004.
Olsen, J., Anderson, N. J., and Knudsen, M. F.: Variability of the North
Atlantic Oscillation over the past 5,200 years, Nat. Geosci., 5, 808–812,
2012.
Oster, J. L., Ibarra, D. L., Harris, C. H., and Maher, K.: Influence of
eolian deposition and rainfall amounts on the U-isotopic composition of soil
water and soil minerals, Geochim. Cosmochim. Ac., 88, 146–166, 2012.
Paredes, D., Trigo, R. M., Garcia-Herrera, R., and Franco Trigo, I.:
Understanding precipitation changes in Iberia in early spring: weather typing
and storm-tracking approaches, J. Hydrometeorol., 7, 101–113, 2006.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M.,
Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz,
C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the
420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436,
1999.
Plagnes, V., Causse, C., Genty, D., Paterne, M., and Blamart, D.: A
discontinuous climatic record from 187 to 74 ka from a speleothem of the
Clamouse Cave (south of France), Earth Planet Sc. Lett., 201, 87–103, 2002.
Polyak, V. J., Asmerom, Y., Burns, S. J., and Lachniet, M. S.: Climatic
backdrop to the terminal Pleistocene extinction of North American mammals,
Geology, 40, 1023–1026, 2012.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. L., Fischer, H.
Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T.,
Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: redefining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28,
2014.
Rey Benayas, J. M. and Scheiner, S. M.: Plant diversity, biogeography and
environment in Iberia: Patterns and possible causal factors, J. Veg. Sci.,
13, 245–258, 2002.
Rodó, X., Baert, E., and Comin, F. A.: Variations in seasonal rainfall in
Southern Europe during the present century: relationships with the North
Atlantic Oscillation and the El Niño-Southern Oscillation, Clim. Dynam.,
13, 275–284, 1997.
Rodrigues, T., Grimalt, J. O., Abrantes, F., Naughton, F., and Flores, J.-A.:
The last glacial-interglacial transition (LGIT) in the western mid-latitudes
of the North Atlantic: Abrupt sea surface temperature change and sea level
implications, Quaternary Sci. Rev., 29, 1853–1862, 2010.
Roucoux, K. H., de Abreu, L., Shackleton, N. J., and Tzedakis, P. C.: The
response of NW Iberian vegetation to North Atlantic climate oscillations
during the last 65 kyr, Quaternary Sci. Rev., 24, 1637–1653, 2005.
Roucoux, K. H., Tzedakis, P. C., de Abreu, L., and Shackleton, N. J.: Climate
and vegetation changes 180,000 to 345,000 years ago recorded in a deep-sea
core off Portugal, Earth Planet Sc. Lett., 249, 307–325, 2006.
Rousseau, D. D., Kukla, G., and McManus, J.: What is what in the ice and the
ocean?, Quaternary Sci. Rev., 25, 2025–2030, 2006.
Rozanski, K. L., Araguas-Araguas, L., and Gonfiantini, R.: Climate Change in
Continental Isotopic Records, edited by: Swart, P. K., Lohmann, K. C.,
McKenzie, J., and Savin, S., American Geophysical Union, Washington, DC,
1–36, 1993.
Saltzman, M. and Thomas, E.: Carbon Isotope Stratigraphy, The Geologic Time
Scale, 1, 207–232, 2012.
Sánchez Goñi, M. F., Turon, J. L., Eynaud, F., and Gendreau, S.:
European climatic response to millennial-scale changes in the
atmosphere-ocean system during the Last Glacial Period, Quaternary Res., 54,
394–403, 2000.
Sánchez Goñi, M. F., Cacho, I., Turon, J.-L., Guiot, J., Sierro, F.
J., Peypouquet, J.-P., Grimalt, J. O., and Shackleton, N. J.: Synchroneity
between marine and terrestrial responses to millennial scale climatic
variability during the last glacial period in the Mediterranean region, Clim.
Dynam., 19, 95–105, 2002.
Sánchez Goñi, M. F., Landais, A., Fletcher, W. J., Naughton, F.,
Desprat, S., and Duprat, J.: Contrasting impacts of Dansgaard-Oeschger events
over a western European latitudinal transect modulated by orbital precession,
Quaternary Sci. Rev., 27, 1136–1151, 2008.
Sánchez Goñi, M. F., Bard, E., Landais, A., Rossignol, L., and
d'Errico, F.: Air-sea temperature decoupling in western Europe during the
last interglacial-glacial transition, Nat. Geosci., 6, 837–841, 2013.
Sánchez Goñi, M. F., Rodrigues, T., Hodell, D. A., Polanco-Martinez,
J. M., Alonso-Garcia, M., Hernandez-Almeida, I., Desprat, S., and Ferretti,
P.: Tropically-driven climate shifts in southwestern Europe during MIS 19, a
low eccentricity interglacial, Geophys. Res. Abst., 18, EGU2016-3940, 2016.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and
Rudolf, B.: GPCC's new land surface precipitation climatology based on
quality-controlled in situ data and its role in quantifying the global water
cycle, Theor. Appl. Climatol., 115, 15–40, 2013.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and
Rudolf, B.: GPCC's new land surface precipitation climatology based on
quality-controlled in situ data and its role in quantifying the global water
cycle, Theor. Appl. Climatol., 115, 1–15, 2014.
Schrag, D. P, Hampt, G., and Murray, D. W.: Pore fluid constraints on the
temperature and oxygen isotopic composition of the glacial ocean, Science,
272, 1930–1932, 1996.
Spötl, C., Mangini, A., and Richards, D. A.: Chronology and
paleoenvironment of Marine Isotope Stage 3 from two high-elevation
speleothems, Austrian Alps, Quaternary Sci. Rev., 25, 1127–1136, 2006.
Stoll, H. M., Moreno, A., Mendez-Vincente, A., Gonzalez-Lemos, S.,
Jimenez-Sánchez, M., Dominguez-Cuesta, M. J., Edwards, R. L., Cheng, H.,
and Wang, X.: Paleoclimate and growth rates of speleothems in the
northwestern Iberian Peninsula over the last two glacial cycles, Quaternary
Res., 80, 284–290, 2013.
Thatcher, D. L., Wanamaker, A. D., Jr., Denniston, R. F., Asmerom, Y.,
Ummenhofer, C. C., Polyak, V. J., Hasiuk, F., Haws, J. A., and Gillikin, D.
P.: Changes in hydroclimate in Iberia in the last 1200 years: insights from
speleothem records from western Portugal, Geological Society of America
North-Central Meeting Abstracts with Programs, Ames, Iowa, 2018.
Trigo, R. M., Osborn, T. J., and Corte-Real, J. M.: The North Atlantic
Oscillation influence on Europe: climate impacts and associated physical
mechanisms, Clim. Res., 20, 9–17, 2002.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Grank,
D. C.: Persistent positive North Atlantic Oscillation mode dominated the
Medieval Climate Anomaly, Science, 324, 78–80, 2009.
Tzedakis, P. C., Roucoux, K. H., de Abreu, L., and Shackleton, N. J.: The
duration of forest stages in southern Europe and interglacial climate
variability, Science, 306, 2231–2235, 2004.
Vaks, A., Gutareva, O. S., Breitenbach, S. F. M., Avirmed, E., Mason, A. J.,
Thomas, A. L., Osinev, A. V., Kononov, A. M., and Henderson, G. M.:
Speleothems reveal 500,000-year history of Siberian permafrost, Science, 340,
183–186, 2013.
Vandenberghe, J., French, H. M., Gorbunov, A., Marchenko, S., Velichko, A.
A., Jin, H., Cui, Z., Zhang, T., and Wan, X.: The Last Permafrost Maximum
(LPM) map of the Northern Hemisphere: permafrost extent and mean annual air
temperatures, 25–17 ka BP, Boreas, 43, 652–666, 2014.
Vegas, J., Ruiz-Zapata, B., Ortiz, J. E., Galan, L., Torres, T.,
Garcia-Cortes, A., Gil-Garcia, M. J., Perez-Gonzalez, A., and
Gallardo-Millan, J. L.: Identification of arid phases during the last
50 cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de
Calatrava Volcanic Field, Spain), J. Quaternary Sci., 25, 1051–1062, 2010.
Voelker, A. H. L., Rodrigues, T., Billups, K., Oppo, D., McManus, J., Stein,
R., Hefter, J., and Grimalt, J. O.: Variations in mid-latitude North Atlantic
surface water properties during the mid-Brunhes (MIS 9–14) and their
implications for the thermohaline circulation, Clim. Past, 6, 531–552,
https://doi.org/10.5194/cp-6-531-2010, 2010.
Voelker, A. H. L. and de Abreu, L.: A review of abrupt climate change events
in the northeastern Atlantic Ocean (Iberian Margin): Latitudinal,
Longitudinal, and Vertical Gradients. Abrupt Climate Change: Mechanisms,
Patterns, and Impacts, edited by: Rashid, H., Polyak, L., and
Mosley-Thompson, E., Geoph. Monog. Series, 193, 15–37, 2011.
von Fischer, J. C., Tieszen, L. L., and Schimel, D. S.: Climate controls on
C3 vs. C4 productivity in North American grasslands from carbon
isotope composition of soil organic matter, Glob. Change Biol., 14, 1–15,
2008.
Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar-Matthews, M., Vonhof,
H., Dublyansky, Y., Pons-Branchu, E., Thomas, L., van Calsteren, P., Quinif,
Y., and Caillon, N.: Speleothem record of the last 180 ka in Villars cave
(SW France): Investigation of a large δ18O shift between MIS6
and MIS5, Quaternary Sci. Rev., 30, 130–146, 2011.
Wassenburg, J. A., Immenhauser, A., Richter, D. K., Niedermayr, A.,
Riechelmann, S., Fietzke, J., Scholz, D., Jochum, K. P., Fohlmeister, J.,
Schröder-Ritzrau, Sabaoui, A., Riechelmann, D. F. C., Schneider, L., and
Esper, J.: Moroccan speleothem and tree ring records suggest a variable
positive state of the North Atlantic Oscillation during the Medieval Warm
Period, Earth Planet. Sc. Lett., 375, 291–302, 2013.
Zhou, J., Lundstrom, C. C., Fouke, B., Panno, S., Hackley, K., and Curry, B.:
Geochemistry of speleothem records from southern Illinois: Development of
(234U)/(238U) as a proxy for paleoprecipitation, Chem.
Geol., 221, 1–20, 2005.
Short summary
The sediment deposited off the coast of Portugal includes the remains of marine organisms and pollen washed to sea from Iberia. Analysis of both the pollen and the ocean sediments has revealed that the type and density of vegetation on land changed in concert with shifts in ocean temperature over centuries to tens of millennia. Proxies for climate in Portuguese stalagmites from the last two glacial periods show precipitation was reduced when sea surface temperatures fell.
The sediment deposited off the coast of Portugal includes the remains of marine organisms and...