Articles | Volume 14, issue 9
https://doi.org/10.5194/cp-14-1299-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1299-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wet avalanches: long-term evolution in the Western Alps under climate and human forcing
Laurent Fouinat
CORRESPONDING AUTHOR
EDYTEM, University Savoie Mont Blanc, CNRS, 73376 Le Bourget-du-Lac CEDEX, France
Pierre Sabatier
EDYTEM, University Savoie Mont Blanc, CNRS, 73376 Le Bourget-du-Lac CEDEX, France
Fernand David
CEREGE, University Aix-Marseille, 13545 Aix-en-Provence, France
Xavier Montet
University of Geneva Department of Radiology and Medical Informatics Genève, 1211 Geneva, Switzerland
Philippe Schoeneich
IUGA, University Grenoble Alpes, 38100 Grenoble, France
Eric Chaumillon
LIENSs University of La Rochelle, 17 000 La Rochelle, France
Jérôme Poulenard
EDYTEM, University Savoie Mont Blanc, CNRS, 73376 Le Bourget-du-Lac CEDEX, France
Fabien Arnaud
EDYTEM, University Savoie Mont Blanc, CNRS, 73376 Le Bourget-du-Lac CEDEX, France
Related authors
Laurent Fouinat, Pierre Sabatier, Jérôme Poulenard, Jean-Louis Reyss, Xavier Montet, and Fabien Arnaud
Earth Surf. Dynam., 5, 199–209, https://doi.org/10.5194/esurf-5-199-2017, https://doi.org/10.5194/esurf-5-199-2017, 2017
Short summary
Short summary
This study focuses on the creation of a novel CT scan methodology at the crossroads between medical imagery and earth sciences. Using specific density signatures, pebbles and/or organic matter characterizing wet avalanche deposits can be quantified in lake sediments. Starting from AD 1880, we were able to identify eight periods of higher avalanche activity from sediment cores. The use of CT scans, alongside existing approaches, opens up new possibilities in a wide variety of geoscience studies.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-262, https://doi.org/10.5194/nhess-2022-262, 2023
Preprint under review for NHESS
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaching in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet on the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700 years record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Hege Kilhavn, Isabelle Couchoud, Russell N. Drysdale, Carlos Rossi, John Hellstrom, Fabien Arnaud, and Henri Wong
Clim. Past, 18, 2321–2344, https://doi.org/10.5194/cp-18-2321-2022, https://doi.org/10.5194/cp-18-2321-2022, 2022
Short summary
Short summary
The analysis of stable carbon and oxygen isotopic ratios, trace element ratios, and growth rate from a Spanish speleothem provides quantitative information on past hydrological conditions during the early Holocene in south-western Europe. Our data show that the cave site experienced increased effective recharge during the 8.2 ka event. Additionally, the oxygen isotopes indicate a change in the isotopic composition of the moisture source, associated with the meltwater flux to the North Atlantic.
Anthony Foucher, Pierre-Alexis Chaboche, Pierre Sabatier, and Olivier Evrard
Earth Syst. Sci. Data, 13, 4951–4966, https://doi.org/10.5194/essd-13-4951-2021, https://doi.org/10.5194/essd-13-4951-2021, 2021
Short summary
Short summary
Sediment archives provide a powerful and unique tool for reconstructing the trajectory and the resilience of terrestrial and aquatic ecosystems facing major environmental changes. Establishing an age depth–model is the first prerequisite of any paleo-investigation. This study synthesizes the distribution of two radionuclides classically used to this aim, providing a worldwide reference to help the scientific community reach a consensus for dating recent sedimentary archives.
Pierre Véquaud, Sylvie Derenne, Alexandre Thibault, Christelle Anquetil, Giuliano Bonanomi, Sylvie Collin, Sergio Contreras, Andrew T. Nottingham, Pierre Sabatier, Norma Salinas, Wesley P. Scott, Josef P. Werne, and Arnaud Huguet
Biogeosciences, 18, 3937–3959, https://doi.org/10.5194/bg-18-3937-2021, https://doi.org/10.5194/bg-18-3937-2021, 2021
Short summary
Short summary
A better understanding of past climate variations is essential to apprehend future climatic changes. The aim of this study is to investigate the applicability of specific organic compounds of bacterial origin, 3-hydroxy fatty acids (3-OH FAs), as temperature and pH proxies at the global level using an extended soil dataset. We show the major potential of 3-OH FAs as such proxies in terrestrial environments through the different models presented and their application for palaeoreconstruction.
Pierre Sabatier, Marie Nicolle, Christine Piot, Christophe Colin, Maxime Debret, Didier Swingedouw, Yves Perrette, Marie-Charlotte Bellingery, Benjamin Chazeau, Anne-Lise Develle, Maxime Leblanc, Charlotte Skonieczny, Yoann Copard, Jean-Louis Reyss, Emmanuel Malet, Isabelle Jouffroy-Bapicot, Maëlle Kelner, Jérôme Poulenard, Julien Didier, Fabien Arnaud, and Boris Vannière
Clim. Past, 16, 283–298, https://doi.org/10.5194/cp-16-283-2020, https://doi.org/10.5194/cp-16-283-2020, 2020
Short summary
Short summary
High-resolution multiproxy analysis of sediment core from a high-elevation lake on Corsica allows us to reconstruct past African dust inputs to the western Mediterranean area over the last 3 millennia. Millennial variations of Saharan dust input have been correlated with the long-term southward migration of the Intertropical Convergence Zone, while short-term variations were associated with the North Atlantic Oscillation and total solar irradiance after and before 1070 cal BP, respectively.
Laurent Fouinat, Pierre Sabatier, Jérôme Poulenard, Jean-Louis Reyss, Xavier Montet, and Fabien Arnaud
Earth Surf. Dynam., 5, 199–209, https://doi.org/10.5194/esurf-5-199-2017, https://doi.org/10.5194/esurf-5-199-2017, 2017
Short summary
Short summary
This study focuses on the creation of a novel CT scan methodology at the crossroads between medical imagery and earth sciences. Using specific density signatures, pebbles and/or organic matter characterizing wet avalanche deposits can be quantified in lake sediments. Starting from AD 1880, we were able to identify eight periods of higher avalanche activity from sediment cores. The use of CT scans, alongside existing approaches, opens up new possibilities in a wide variety of geoscience studies.
Related subject area
Subject: Ice Dynamics | Archive: Terrestrial Archives | Timescale: Holocene
Glacier response to Holocene warmth inferred from in situ 10Be and 14C bedrock analyses in Steingletscher's forefield (central Swiss Alps)
In situ cosmogenic 10Be–14C–26Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size
Glacial history of Inglefield Land, north Greenland from combined in situ 10Be and 14C exposure dating
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Anne Sofie Søndergaard, Nicolaj Krog Larsen, Olivia Steinemann, Jesper Olsen, Svend Funder, David Lundbek Egholm, and Kurt Henrik Kjær
Clim. Past, 16, 1999–2015, https://doi.org/10.5194/cp-16-1999-2020, https://doi.org/10.5194/cp-16-1999-2020, 2020
Short summary
Short summary
We present new results that show how the north Greenland Ice Sheet responded to climate changes over the last 11 700 years. We find that the ice sheet was very sensitive to past climate changes. Combining our findings with recently published studies reveals distinct differences in sensitivity to past climate changes between northwest and north Greenland. This highlights the sensitivity to past and possible future climate changes of two of the most vulnerable areas of the Greenland Ice Sheet.
Cited articles
Ancey, C. and Bain, V.: Dynamics of glide avalanches and snow gliding: Glide avlanches and snow gliding, Rev. Geophys., 53, 745–784, https://doi.org/10.1002/2015RG000491, 2015.
Arnaud, F., Lignier, V., Revel, M., Desmet, M., Beck, C., Pourchet, M., Charlet, F., Trentesaux, A., and Tribovillard, N.: Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps), Terra Nova, 14, 225–232, 2002.
Baggi, S. and Schweizer, J.: Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland), Nat. Hazards, 50, 97–108, 2009.
Billeaud, I., Chaumillon, E., and Weber, O.: Evidence of a major environmental change recorded in a macrotidal bay (Marennes-Oléron Bay, France) by correlation between VHR seismic profiles and cores, Geo-Mar. Lett., 25, 1–10, 2005.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Blikra, L. H. and Nemec, W.: Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record, Sedimentology, 45, 909–959, https://doi.org/10.1046/j.1365-3091.1998.00200.x, 1998.
Bøe, A.-G., Dahl, S. O., Lie, Ø., and Nesje, A.: Holocene river floods in the upper Glomma catchment, southern Norway: a high-resolution multiproxy record from lacustrine sediments, Holocene, 16, 445–455, 2006.
Bolte, S. and Cordelieres, F. P.: A guided tour into subcellular colocalization analysis in light microscopy, J. Microsc.-Oxford, 224, 213–232, 2006.
Brisset, E., Guiter, F., Miramont, C., Troussier, T., Sabatier, P., Poher, Y., Cartier, R., Arnaud, F., Malet, E., and Anthony, E. J.: The overlooked human influence in historic and prehistoric floods in the European Alps, Geology, 45, 347–350, https://doi.org/10.1130/G38498.1, 2017.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J.: 2500 Years of European Climate Variability and Human Susceptibility, Science, 331, 578–582, https://doi.org/10.1126/science.1197175, 2011.
Castebrunet, H., Eckert, N., and Giraud, G.: Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps, Clim. Past, 8, 855–875, https://doi.org/10.5194/cp-8-855-2012, 2012.
Castebrunet, H., Eckert, N., Giraud, G., Durand, Y., and Morin, S.: Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods, The Cryosphere, 8, 1673–1697, https://doi.org/10.5194/tc-8-1673-2014, 2014.
Casty, C., Wanner, H., Luterbacher, J., Esper, J., and Böhm, R.: Temperature and precipitation variability in the European Alps since 1500, Int. J. Climatol., 25, 1855–1880, https://doi.org/10.1002/joc.1216, 2005.
Corona, C., Georges, R., Jérôme, L. S., Markus, S., and Pascal, P.: Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l'Oisans, France, CATENA, 83, 107–118, https://doi.org/10.1016/j.catena.2010.08.004, 2010.
Corona, C., Saez, J. L., Stoffel, M., Rovera, G., Edouard, J.-L., and Berger, F.: Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings, Holocene, 23, 292–304, https://doi.org/10.1177/0959683612460784, 2013.
Coûteaux, M.: Fluctuations glaciaires de la fin du Würm dans les Alpes françaises, établies par des analyses polliniques, Boreas, 12, 35–56, 1983.
Delunel, R., Hantz, D., Braucher, R., Bourlès, D. L., Schoeneich, P., and Deparis, J.: Surface exposure dating and geophysical prospecting of the Holocene Lauvitel rock slide (French Alps), Landslides, 7, 393–400, https://doi.org/10.1007/s10346-010-0221-0, 2010.
Eckert, N., Keylock, C. J., Castebrunet, H., Lavigne, A., and Naaim, M.: Temporal trends in avalanche activity in the French Alps and subregions: from occurrences and runout altitudes to unsteady return periods, J. Glaciol., 59, 93–114, https://doi.org/10.3189/2013JoG12J091, 2013.
Faegri, K., Kaland, P. E., and Krzywinski, K.: Textbook of pollen analysis, John Wiley & Sons Ltd., 1989.
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The international classification for seasonal snow on the ground, UNESCO/IHP, Paris, 2009.
Fouinat, L., Sabatier, P., Poulenard, J., Reyss, J.-L., Montet, X., and Arnaud, F.: A new CT scan methodology to characterize a small aggregation gravel clast contained in a soft sediment matrix, Earth Surf. Dynam., 5, 199–209, https://doi.org/10.5194/esurf-5-199-2017, 2017a.
Fouinat, L., Sabatier, P., Poulenard, J., Etienne, D., Crouzet, C., Develle, A.-L., Doyen, E., Malet, E., Reyss, J.-L., Sagot, C., Bonet, R., and Arnaud, F.: One thousand seven hundred years of interaction between glacial activity and flood frequency in proglacial Lake Muzelle (western French Alps), Quaternary Res., 87, 407–422, https://doi.org/10.1017/qua.2017.18, 2017b.
Fouinat, L., Sabatier, P., David, F., Montet, X., Schoeneich, P., Chaumillon, E., Poulenard, J., and Arnaud, F.: Extended age model, avalanche chronicle and pebble count of Lake Lauvitel sediment, https://doi.org/10.1594/PANGAEA.892911, 2018.
García-Hernández, C., Ruiz-Fernández, J., Sánchez-Posada, C., Pereira, S., Oliva, M., and Vieira, G.: Reforestation and land use change as drivers for a decrease of avalanche damage in mid-latitude mountains (NW Spain), Global Planet. Change, 153, 35–50, https://doi.org/10.1016/j.gloplacha.2017.05.001, 2017.
Giguet-Covex, C., Arnaud, F., Poulenard, J., Disnar, J.-R., Delhon, C., Francus, P., David, F., Enters, D., Rey, P.-J., and Delannoy, J.-J.: Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): The role of climate and human activities, Holocene, 21, 651–665, https://doi.org/10.1177/0959683610391320, 2011.
Giguet-Covex, C., Arnaud, F., Enters, D., Poulenard, J., Millet, L., Francus, P., David, F., Rey, P.-J., Wilhelm, B., and Delannoy, J.-J.: Frequency and intensity of high-altitude floods over the last 3.5 ka in northwestern French Alps (Lake Anterne), Quaternary Res., 77, 12–22, https://doi.org/10.1016/j.yqres.2011.11.003, 2012.
Gilli, A., Anselmetti, F. S., Glur, L., and Wirth, S. B.: Lake sediments as archives of recurrence rates and intensities of past flood events, in Dating torrential processes on fans and cones, Springer, 225–242, 2013.
Goeury, C.: Acquisition, gestion et représentation des données de l'analyse pollinique sur micro-ordinateur, Travaux de la section scientifique et technique, Institut français de Pondichéry, 25, 405–416, 1988.
Goldberg, E. D.: Geochronology with 210Pb, Radioactive Dating, International Atomic Energy Agency, Vienna, 121–131, 1963
Guyard, H., Chapron, E., St-Onge, G., Anselmetti, F. S., Arnaud, F., Magand, O., Francus, P., and Mélières, M.-A.: High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif), Quaternary Sci. Rev., 26, 2644–2660, https://doi.org/10.1016/j.quascirev.2007.07.007, 2007.
Irmler, R., Daut, G., and Mäusbacher, R.: A debris flow calendar derived from sediments of lake Lago di Braies (N. Italy), Geomorphology, 77, 69–78, https://doi.org/10.1016/j.geomorph.2006.01.013, 2006.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296, 1997.
Lazar, B. and Williams, M.: Climate change in western ski areas: Potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100, Cold Reg. Sci. Technol., 51, 219–228, 2008.
Le Roy, M., Nicolussi, K., Deline, P., Astrade, L., Edouard, J.-L., Miramont, C., and Arnaud, F.: Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif, Quaternary Sci. Rev., 108, 1–22, https://doi.org/10.1016/j.quascirev.2014.10.033, 2015.
Le Roy, M., Deline, P., Carcaillet, J., Schimmelpfennig, I., and Ermini, M.: 10Be exposure dating of the timing of Neoglacial glacier advances in the Ecrins-Pelvoux massif, southern French Alps, Quaternary Sci. Rev., 178, 118–138, https://doi.org/10.1016/j.quascirev.2017.10.010, 2017.
Luckman, B.: Drop stones resulting from snow-avalanche deposition on lake ice, J. Glaciol, 14, 186–188, 1975.
Luckman, B.: The geomorphic activity of snow avalanches, Geogr. Ann. A., 59, 31–48, 1977.
Martin, J.-P. and Germain, D.: Can we discriminate snow avalanches from other disturbances using the spatial patterns of tree-ring response? Case studies from the Presidential Range, White Mountains, New Hampshire, United States, Dendrochronologia, 37, 17–32, https://doi.org/10.1016/j.dendro.2015.12.004, 2016.
McCollister, C., Birkeland, K., Hansen, K., Aspinall, R., and Comey, R.: Exploring multi-scale spatial patterns in historical avalanche data, Jackson Hole Mountain Resort, Wyoming, Cold Reg. Sci. Technol., 37, 299–313, 2003.
Moore, J. R., Egloff, J., Nagelisen, J., Hunziker, M., Aerne, U., and Christen, M.: Sediment Transport and Bedrock Erosion by Wet Snow Avalanches in the Guggigraben, Matter Valley, Switzerland, Arct., Antarct., Alp. Res., 45, 350–362, https://doi.org/10.1657/1938-4246-45.3.350, 2013.
Mulder, T., Migeon, S., Savoye, B., and Faugères, J.-C.: Inversely graded turbidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents?, Geo-Mar. Lett., 21, 86–93, https://doi.org/10.1007/s003670100071, 2001.
Nakagawa, T., Edouard, J.-L., and de Beaulieu, J.-L.: A scanning electron microscopy (SEM) study of sediments from Lake Cristol, southern French Alps, with special reference to the identification of Pinus cembra and other Alpine Pinus species based on SEM pollen morphology, Rev. Palaeobot. Palyno., 108, 1–15, https://doi.org/10.1016/S0034-6667(99)00030-5, 2000.
Nesje, A., Bakke, J., Dahl, S. O., Lie, O., and Boe, A.-G.: A continuous, high-resolution 8500-yr snow-avalanche record from western Norway, Holocene, 17, 269–277, https://doi.org/10.1177/0959683607075855, 2007.
Passega, R.: Grain size representation by CM patterns as a geological tool, J. Sediment. Res., 34, 830–847, 1964.
Reardon, B., Pederson, G., Caruso, C., and Fagre, D.: Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, USA, Arct. Antarct. Alp. Res., 40, 148–160, 2008.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., and Friedrich, M.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., and Schmid, B.: Fiji: an open-source platform for biological-image analysis, Nat. Methods, 9, 676–682, 2012.
Simpkin, P. and Davis, A.: For seismic profiling in very shallow water, a novel receiver, Sea Technol., 34, 21–28, 1993.
Sletten, K., Blikra, L. H., Ballantyne, C., Nesje, A., and Dahl, S. O.: Holocene debris flows recognized in a lacustrine sedimentary succession: sedimentology, chronostratigraphy and cause of triggering, Holocene, 13, 907–920, 2003.
Solomina, O. N., Bradley, R. S., Jomelli, V., Geirsdottir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier fluctuations during the past 2000 years, Quaternary Sci. Rev., 149, 61–90, https://doi.org/10.1016/j.quascirev.2016.04.008, 2016.
Stoffel, M. and Bollschweiler, M.: Tree-ring analysis in natural hazards research – an overview, Nat. Hazards Earth Syst. Sci., 8, 187–202, https://doi.org/10.5194/nhess-8-187-2008, 2008.
Sturm, M. and Matter, A.: Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents, in Modern and Ancient Lake Sediments, Blackwell Publishing Ltd., 147–168, https://doi.org/10.1002/9781444303698.ch8, 1978.
Tessier, L., Beaulieu, J.-L. D., Couteaux, M., Edouard, J.-L., Ponel, P., Rolando, C., Thinon, M., Thomas, A., and Tobolski, K.: Holocene palaeoenvironments at the timberline in the French Alps – a multidisciplinary approach, Boreas, 22, 244–254, https://doi.org/10.1111/j.1502-3885.1993.tb00184.x, 1993.
Touflan, P., Talon, B., and Walsh, K.: Soil charcoal analysis: a reliable tool for spatially precise studies of past forest dynamics: a case study in the French southern Alps, Holocene, 20, 45–52, https://doi.org/10.1177/0959683609348900, 2010.
Valt, M. and Paola, C.: Climate change in Italian Alps: Analysis of snow precipitation, snow durations and avalanche activity, International Snow Science Workshop, 1247–1250, 2013.
Vasskog, K., Nesje, A., Storen, E. N., Waldmann, N., Chapron, E., and Ariztegui, D.: A Holocene record of snow-avalanche and flood activity reconstructed from a lacustrine sedimentary sequence in Oldevatnet, western Norway, Holocene, 21, 597–614, https://doi.org/10.1177/0959683610391316, 2011.
Vincent, C.: Solving the paradox of the end of the Little Ice Age in the Alps, Geophys. Res. Lett., 32, 9706, https://doi.org/10.1029/2005GL022552, 2005.
Wilhelm, B., Arnaud, F., Enters, D., Allignol, F., Legaz, A., Magand, O., Revillon, S., Giguet-Covex, C., and Malet, E.: Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record, Climatic Change, 113, 563–581, https://doi.org/10.1007/s10584-011-0376-2, 2012a.
Wilhelm, B., Arnaud, F., Sabatier, P., Crouzet, C., Brisset, E., Chaumillon, E., Disnar, J.-R., Guiter, F., Malet, E., Reyss, J.-L., Tachikawa, K., Bard, E., and Delannoy, J.-J.: 1400years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms, Quaternary Res., 78, 1–12, https://doi.org/10.1016/j.yqres.2012.03.003, 2012b.
Wilhelm, B., Sabatier, P., and Arnaud, F.: Is a regional flood signal reproducible from lake sediments?, Sedimentology, 62, 1103–1117, https://doi.org/10.1111/sed.12180, 2015.
Short summary
In the context of a warming climate, mountain environments are especially vulnerable to a change in the risk pattern. Our study focuses on the past evolution of wet avalanches, likely triggered by warmer temperatures destabilizing the snow cover. In the last 3300 years we observed an increase of wet avalanche occurrence related to human activities, intensifying pressure on forest cover, as well as favorable climate conditions such as warmer temperatures coinciding with retreating glacier phases.
In the context of a warming climate, mountain environments are especially vulnerable to a change...