Articles | Volume 14, issue 8
https://doi.org/10.5194/cp-14-1229-2018
https://doi.org/10.5194/cp-14-1229-2018
Research article
 | 
16 Aug 2018
Research article |  | 16 Aug 2018

Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka)

Carlye D. Peterson and Lorraine E. Lisiecki

Related authors

Lower oceanic δ13C during the last interglacial period compared to the Holocene
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021,https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Variable C∕P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020,https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Millenial/D-O
Rejuvenating the ocean: mean ocean radiocarbon, CO2 release, and radiocarbon budget closure across the last deglaciation
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023,https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Deglacial records of terrigenous organic matter accumulation off the Yukon and Amur rivers based on lignin phenols and long-chain n-alkanes
Mengli Cao, Jens Hefter, Ralf Tiedemann, Lester Lembke-Jene, Vera D. Meyer, and Gesine Mollenhauer
Clim. Past, 19, 159–178, https://doi.org/10.5194/cp-19-159-2023,https://doi.org/10.5194/cp-19-159-2023, 2023
Short summary
δ13C decreases in the upper western South Atlantic during Heinrich Stadials 3 and 2
Marília C. Campos, Cristiano M. Chiessi, Ines Voigt, Alberto R. Piola, Henning Kuhnert, and Stefan Mulitza
Clim. Past, 13, 345–358, https://doi.org/10.5194/cp-13-345-2017,https://doi.org/10.5194/cp-13-345-2017, 2017
Short summary
Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean
M. Sarnthein, B. Schneider, and P. M. Grootes
Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013,https://doi.org/10.5194/cp-9-2595-2013, 2013
Marine productivity response to Heinrich events: a model-data comparison
V. Mariotti, L. Bopp, A. Tagliabue, M. Kageyama, and D. Swingedouw
Clim. Past, 8, 1581–1598, https://doi.org/10.5194/cp-8-1581-2012,https://doi.org/10.5194/cp-8-1581-2012, 2012

Cited articles

Allen, K. A., Sikes, E. L., Hönisch, B., Elmore, A. C., Guilderson, T. P., Rosenthal, Y., and Anderson, R. F.: Southwest Pacific deep water carbonate chemistry linked to high southern latitude climate and atmospheric CO2 during the last glacial termination, Quaternary Sci. Rev., 122, 180–191, 2015. a, b
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159–190, 2000. a
Archer, D. E., Martin, P. A., Milovich, J., Brovkin, V., Plattner, G.-K., and Ashendel, C.: Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2, Paleoceanography, 18, 1012, https://doi.org/10.1029/2002PA000760, 2003. a
Arz, H. W., Pätzold, J., and Wefer, G.: Stable oxygen and carbon isotope ratios of benthic foraminifera from sediment core GeoB3104-1, PANGAEA, https://doi.org/10.1594/PANGAEA.54790, 1999. a
Aydin, M., Campbell, J., Fudge, T., Cuffey, K., Nicewonger, M., Verhulst, K., and Saltzman, E.: Changes in atmospheric carbonyl sulfide over the last 54,000 years inferred from measurements in Antarctic ice cores, J. Geophys. Res.-Atmos., 121, 1943–1954, https://doi.org/10.1002/2015JD024235, 2016. a
Download
Short summary
Our study presents an analysis of a four-dimensional compilation of globally distributed carbon isotope time series that span 20 to 6 thousand years ago. We explore carbon cycle connections between the deep ocean, atmosphere, and land-based carbon storage on thousand-year time scales to provide useful constraints for global carbon cycle reconstructions. Additionally, these carbon isotope time series are suitable for comparison with deglacial simulations from isotope-enabled Earth system models.