Articles | Volume 14, issue 8
https://doi.org/10.5194/cp-14-1229-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-14-1229-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka)
Carlye D. Peterson
CORRESPONDING AUTHOR
Department of Earth Sciences, University of California Riverside, Riverside, California, USA
Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
Lorraine E. Lisiecki
Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
Related authors
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Taehee Lee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie, and Charles Lawrence
Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, https://doi.org/10.5194/cp-19-1993-2023, 2023
Short summary
Short summary
Understanding of past climate change depends, in part, on how accurately we can estimate the ages of events recorded in geologic archives. Here we present a new software package, called BIGMACS, to improve age estimates for paleoclimate data from ocean sediment cores. BIGMACS creates multiproxy age estimates that reduce age uncertainty by probabilistically combining information from direct age estimates, such as radiocarbon dates, and the alignment of regional paleoclimate time series.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Millenial/D-O
Rejuvenating the ocean: mean ocean radiocarbon, CO2 release, and radiocarbon budget closure across the last deglaciation
Deglacial records of terrigenous organic matter accumulation off the Yukon and Amur rivers based on lignin phenols and long-chain n-alkanes
δ13C decreases in the upper western South Atlantic during Heinrich Stadials 3 and 2
Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean
Marine productivity response to Heinrich events: a model-data comparison
Ventilation changes in the western North Pacific since the last glacial period
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Mengli Cao, Jens Hefter, Ralf Tiedemann, Lester Lembke-Jene, Vera D. Meyer, and Gesine Mollenhauer
Clim. Past, 19, 159–178, https://doi.org/10.5194/cp-19-159-2023, https://doi.org/10.5194/cp-19-159-2023, 2023
Short summary
Short summary
We use sediment records of lignin to reconstruct deglacial vegetation change and permafrost mobilization, which occurred earlier in the Yukon than in the Amur river basin. Sea ice extent or surface temperatures of adjacent oceans might have had a strong influence on the timing of permafrost mobilization. In contrast to previous evidence, our records imply that during glacial peaks of permafrost decomposition, lipids and lignin might have been delivered to the ocean by identical processes.
Marília C. Campos, Cristiano M. Chiessi, Ines Voigt, Alberto R. Piola, Henning Kuhnert, and Stefan Mulitza
Clim. Past, 13, 345–358, https://doi.org/10.5194/cp-13-345-2017, https://doi.org/10.5194/cp-13-345-2017, 2017
Short summary
Short summary
Our new planktonic foraminiferal stable carbon isotopic data from the western South Atlantic show major decreases during abrupt climate change events of the last glacial. These anomalies are likely related to periods of a sluggish Atlantic meridional overturning circulation and increase (decrease) in atmospheric CO2 (stable carbon isotopic ratios). We hypothesize that strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump are responsible for these decreases.
M. Sarnthein, B. Schneider, and P. M. Grootes
Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, https://doi.org/10.5194/cp-9-2595-2013, 2013
V. Mariotti, L. Bopp, A. Tagliabue, M. Kageyama, and D. Swingedouw
Clim. Past, 8, 1581–1598, https://doi.org/10.5194/cp-8-1581-2012, https://doi.org/10.5194/cp-8-1581-2012, 2012
Y. Okazaki, T. Sagawa, H. Asahi, K. Horikawa, and J. Onodera
Clim. Past, 8, 17–24, https://doi.org/10.5194/cp-8-17-2012, https://doi.org/10.5194/cp-8-17-2012, 2012
Cited articles
Allen, K. A., Sikes, E. L., Hönisch, B., Elmore, A. C., Guilderson,
T. P.,
Rosenthal, Y., and Anderson, R. F.: Southwest Pacific deep water carbonate
chemistry linked to high southern latitude climate and atmospheric
CO2
during the last glacial termination, Quaternary Sci. Rev., 122,
180–191, 2015. a, b
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the
glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159–190, 2000. a
Archer, D. E., Martin, P. A., Milovich, J., Brovkin, V., Plattner, G.-K., and
Ashendel, C.: Model sensitivity in the effect of Antarctic sea ice and
stratification on atmospheric pCO2, Paleoceanography,
18, 1012, https://doi.org/10.1029/2002PA000760,
2003. a
Arz, H. W., Pätzold, J., and Wefer, G.: Stable oxygen and carbon isotope
ratios of benthic foraminifera from sediment core GeoB3104-1, PANGAEA,
https://doi.org/10.1594/PANGAEA.54790, 1999. a
Aydin, M., Campbell, J., Fudge, T., Cuffey, K., Nicewonger, M., Verhulst, K.,
and Saltzman, E.: Changes in atmospheric carbonyl sulfide over the last
54,000 years inferred from measurements in Antarctic ice cores, J.
Geophys. Res.-Atmos., 121, 1943–1954, https://doi.org/10.1002/2015JD024235, 2016. a
Bickert, T., Wefer, G., and Müller, P. J.: Stable isotopes and
sedimentology of core GeoB1117-2, PANGAEA, https://doi.org/10.1594/PANGAEA.58780, 2001. a
Bickert, T., Wefer, G., and Müller, P. J.: Stable isotopes and
sedimentology of core GeoB1101-4, PANGAEA, https://doi.org/10.1594/PANGAEA.103621, 2003a. a
Bickert, T., Wefer, G., and Müller, P. J.: Stable isotopes and
sedimentology of core GeoB1112-3, PANGAEA, https://doi.org/10.1594/PANGAEA.103625, 2003b. a
Bickert, T., Wefer, G., and Müller, P. J.: Stable isotopes and
sedimentology of core GeoB1214-1, PANGAEA, https://doi.org/10.1594/PANGAEA.103635, 2003c. a
Bickert, T., Wefer, G., and Müller, P. J.: Stable isotopes and
sedimentology of core GeoB1041, PANGAEA, https://doi.org/10.1594/PANGAEA.58771, 2009a. a, b
Bickert, T., Wefer, G., and Müller, P. J.: Stable isotopes and
sedimentology of core GeoB1211, PANGAEA, https://doi.org/10.1594/PANGAEA.58782, 2009b. a
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011. a
Bostock, H. C., Opdyke, B. N., Gagan, M. K., and Fifield, L. K.:
Stable isotopes from sediment core FR01/97-12, Tasman Sea, PANGAEA,
https://doi.org/10.1594/PANGAEA.832096, 2004. a
Boyle, E. A.: Cadmium and δ13C paleochemical ocean
distributions during
the stage 2 Glacial Maximum, Annu. Rev. Earth Pl. Sc.,
20, 245–287, 1992. a
Broecker, W. S.: Ocean chemistry during glacial time, Geochim.
Cosmochim. Ac., 46, 1689–1705, 1982. a
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of
glacial
atmospheric CO2 in response to changes in oceanic circulation and marine
biogeochemistry, Paleoceanography, 22, PA4202, https://doi.org/10.1029/2006PA001380, 2007. a, b
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial
CO2 cycle as a succession of key physical and biogeochemical
processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012,
2012. a
Buchanan, P. J., Matear, R. J., Lenton, A., Phipps, S. J., Chase, Z., and
Etheridge, D. M.: The simulated climate of the Last Glacial Maximum and
insights into the global marine carbon cycle, Clim. Past, 12, 2271–2295,
https://doi.org/10.5194/cp-12-2271-2016, 2016. a, b, c
Burke, A. and Robinson, L. F.: The Southern Ocean's role in carbon exchange
during the last deglaciation, Science, 335, 557–561, 2012. a
Chen, M.-T.: Carbon and oxygen isotopes from benthic foraminifera of sediment
core MD97-2151, PANGAEA, available at: https://doi.pangaea.de/10.1594/PANGAEA.114672, 2003. a
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G.,
Lourantou, A., Harrison, S. P., Prentice, I., Kelley, D., and Koven, C.: Large inert
carbon pool in the terrestrial biosphere during the Last Glacial Maximum,
Nat. Geosci., 5, 74–79, 2012. a
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth,
B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The last glacial
maximum, Science, 325, 710–714, 2009. a
Cortijo, E., Scott, L., Keigwin, L. D., Chapman, M. R., Paillard,
D.,
and Labeyrie, L. D.: (Fig. 3a) Stable oxygen isotope ratios of benthic
foraminifera of sediment core SU90-03, PANGAEA,
https://doi.org/10.1594/PANGAEA.857320, 1999. a
Crosta, X. and Shemesh, A.: Reconciling down core anticorrelation of diatom
carbon and nitrogen isotopic ratios from the Southern Ocean,
Paleoceanography, 17, 10-1–10-8, https://doi.org/10.1029/2000PA000565, 2002. a
Curry, W. B.: Stable isotope analysis on sediment core RC13-228, PANGAEA,
https://doi.org/10.1594/PANGAEA.139596, 2004. a
Curry, W. B. and Lohmann, G.: Carbon isotopic changes in benthic foraminifera
from the western South Atlantic: Reconstruction of glacial abyssal
circulation
patterns, Quaternary Res., 18, 218–235, 1982a. a
Curry, W. B. and Lohmann, G. P.: Stable carbon and oxygen isotope ratios
of Planulina wuellerstorfi from sediments of the Vema Channel, PANGAEA,
https://doi.org/10.1594/PANGAEA.726254, 1982b. a
Curry, W. B. and Lohmann, G. P.: (Table 1) Stable carbon and oxygen
isotope ratios of Planulina wuellerstorfi from sediment core EN066-38PG,
PANGAEA, https://doi.org/10.1594/PANGAEA.726019, 1983a. a
Curry, W. B. and Lohmann, G. P.: (Table 1) Stable carbon and oxygen
isotope ratios of Planulina wuellerstorfi from sediment core EN066-16PG,
PANGAEA, https://doi.org/10.1594/PANGAEA.726013, 1983b. a
Curry, W. B. and Lohmann, G. P.: (Table 1) Stable carbon and oxygen
isotope ratios of Planulina wuellerstorfi from sediment core EN066-21PG,
PANGAEA, https://doi.org/10.1594/PANGAEA.726014, 1983c. a
Curry, W. B. and Lohmann, G. P.: (Table 1) Stable carbon and oxygen
isotope ratios of Planulina wuellerstorfi from sediment core EN066-26PG,
PANGAEA, https://doi.org/10.1594/PANGAEA.726015, 1983d. a
Curry, W. B. and Lohmann, G. P.: (Table 1) Stable carbon and oxygen
isotope ratios of Planulina wuellerstorfi from sediment core EN066-36PG,
PANGAEA, https://doi.org/10.1594/PANGAEA.726018, 1983e. a
Curry, W. B. and Lohmann, G. P.: (Table 1) Stable carbon and oxygen
isotope ratios of Planulina wuellerstorfi from sediment core EN066-44PG,
PANGAEA, https://doi.org/10.1594/PANGAEA.726020, 1983f. a
Curry, W. B. and Lohmann, G. P.: (Table 1) Stable carbon and oxygen
isotope ratios of Planulina wuellerstorfi from sediment core EN066-32PG,
PANGAEA, https://doi.org/10.1594/PANGAEA.726017, 1983g. a
Curry, W. B. and Oppo, D. W.: Stable isotope record of foraminifera from
sediment core EW9209-1JPC, PANGAEA, https://doi.org/10.1594/PANGAEA.730044, 1997. a
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the
distribution of δ13C of ΣCO2 in the western
Atlantic Ocean, Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021,
2005 (data available at: https://www.ncdc.noaa.gov/paleo/study/8673,
last access: 8 August 2018). a, b, c, d, e, f, g
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides spp.
from sediment core BT4, PANGAEA, https://doi.org/10.1594/PANGAEA.52328, 1988a. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides spp.
from sediment core CHN82-24, PANGAEA, https://doi.org/10.1594/PANGAEA.52327, 1988b. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core KNR110-0082GGC, PANGAEA,
https://doi.org/10.1594/PANGAEA.357162, 1988c. a, b
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core KNR110-0050GGC, PANGAEA,
https://doi.org/10.1594/PANGAEA.357156, 1988d. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core KNR110-0055GGC, PANGAEA,
https://doi.org/10.1594/PANGAEA.357157, 1988e. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core KNR110-0058GGC, PANGAEA,
https://doi.org/10.1594/PANGAEA.357158, 1988f. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core KNR110-0066GGC, PANGAEA,
https://doi.org/10.1594/PANGAEA.357159, 1988g. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core KNR110-0071GGC, PANGAEA,
https://doi.org/10.1594/PANGAEA.357160, 1988h. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core KNR110-0091GGC, PANGAEA,
https://doi.org/10.1594/PANGAEA.357163, 1988i. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
Stable carbon and oxygen isotope ratios of benthic foraminifera, PANGAEA,
https://doi.org/10.1594/PANGAEA.726195, 1988j. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides spp.
from sediment core V22-197, PANGAEA, https://doi.org/10.1594/PANGAEA.52291, 1988k. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core V25-59, PANGAEA,
https://doi.org/10.1594/PANGAEA.52290, 1988l. a
Curry, W. B., Duplessy, J.-C., Labeyrie, L. D., and Shackleton,
N. J.:
(Appendix 1) Stable carbon and oxygen isotope ratios of Cibicidoides
wuellerstorfi from sediment core V30-49, PANGAEA,
https://doi.org/10.1594/PANGAEA.52280, 1988m. a
Curry, W. B., Marchitto, T. M., McManus, J. F., Oppo, D. W., and Laarkamp, K.
L.: Millennial-scale changes ventilation of the thermocline, intermediate and
deep waters of the Glacial North Atlantic, Geophysical Monograph, 112,
59–76, https://doi.org/10.1029/GM112p0059, 1999 (data available at:
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/curry1999/cibs_103ggc_all_calendar.txt,
last access: 13 August 2018). a
Davies-Barnard, T., Ridgwell, A., Singarayer, J., and Valdes, P.: Quantifying
the influence of the terrestrial biosphere on glacial–interglacial climate
dynamics, Clim. Past, 13, 1381–1401,
https://doi.org/10.5194/cp-13-1381-2017, 2017. a, b, c, d
Demenocal, P. B., Oppo, D. W., Fairbanks, R. G., and Prell, W. L.:
Pleistocene δ13C variability of North Atlantic intermediate
water,
Paleoceanography, 7, 229–250, https://doi.org/10.1029/92PA00420, 1992 (data available at: https://www.ncdc.noaa.gov/paleo-search/study/2554, last access: 7 August 2018). a
Dorschel, B., Hebbeln, D., Rüggeberg, A., Dullo, W. C., and
Freiwald, A.: (Appendix 3) Stable isotopes of sediment core GeoB6718-2,
PANGAEA, https://doi.org/10.1594/PANGAEA.134554, 2005. a
Duplessy, J.-C.: (Table 6) Stable carbon and oxygen isotope ratios of
Cibicides species from sediment core CH73-139, PANGAEA,
https://doi.org/10.1594/PANGAEA.726215, 1982. a
Duplessy, J.-C.: Stable isotope of sediment core NA87-22, PANGAEA,
https://doi.org/10.1594/PANGAEA.54411, 1997. a
Flower, B. P., Oppo, D. W., McManus, J., Venz, K., Hodell, D., and Cullen,
J.: North Atlantic intermediate to deep water circulation and chemical
stratification during the past 1 Myr, Paleoceanography, 15, 388–403, https://doi.org/10.1029/1999PA000430, 2000. a, b, c, d
Fraçnois, R., Altabet, M. A., Yu, E.-F., Sigman, D. M., Bacon, M. P.,
Frank, M., Bohrmann, G., Bareille, G., and Labeyrie, L. D.: Contribution of
Southern Ocean surface-water stratification to low atmospheric CO2
concentrations during the last glacial period, Nature, 389, 929–935, 1997. a
Freudenthal, T., Meggers, H., Henderiks, J., Kuhlmann, H., Moreno,
A., and Wefer, G.: Age model, stable isotope record, CaCO3 and TOC of
sediment core GeoB4240-2, PANGAEA, https://doi.org/10.1594/PANGAEA.57859, 2002a. a
Freudenthal, T., Meggers, H., Henderiks, J., Kuhlmann, H., Moreno,
A., and Wefer, G.: Age model, stable isotope record, CaCO3 and TOC of
sediment core GeoB4216-1, PANGAEA, https://doi.org/10.1594/PANGAEA.57856, 2002b. a
Fronval, T. and Jansen, E.: Eemian and early Weichselian (140–60 ka)
paleoceanography and paleoclimate in the Nordic seas with comparisons to
Holocene conditions, Paleoceanography, 12, 443–462, https://doi.org/10.1029/97PA00322, 1997 (data available at: https://www.ncdc.noaa.gov/paleo/study/2524, last access: 7 August 2018). a
Gildor, H., Tziperman, E., and Toggweiler, J.: Sea ice switch mechanism and
glacial-interglacial CO2 variations, Global Biogeochem. Cy., 16, 6-1–6-14, https://doi.org/10.1029/2001GB001446, 2002. a
Gloege, L., McKinley, G. A., Mouw, C. B., and Ciochetto, A. B.: Global
evaluation of particulate organic carbon flux parameterizations and
implications for atmospheric pCO2, Global Biogeochem. Cy., 31,
1192–1215, 2017. a
Gottschalk, J., Vázquez Riveiros, N., Waelbroeck, C., Skinner, L. C.,
Michel, E., Duplessy, J.-C., Hodell, D., and Mackensen, A.: Carbon isotope
offsets between benthic foraminifer species of the genus Cibicides
(Cibicidoides) in the glacial sub-Antarctic Atlantic, Paleoceanography, 31,
1583–1602, 2016. a, b, c, d
Gu, S., Liu, Z., Zhang, J., Rempfer, J., Joos, F., and Oppo, D. W.: Coherent
response of Antarctic Intermediate Water and Atlantic Meridional Overturning
Circulation during the last deglaciation: reconciling contrasting neodymium
isotope reconstructions from the tropical Atlantic, Paleoceanography, 32,
1036–1053, 2017. a
Hertzberg, J. E., Lund, D. C., Schmittner, A., and Skrivanek, A. L.: Evidence
for a biological pump driver of atmospheric CO2 rise during Heinrich Stadial
1, Geophys. Res. Lett., 43, 12242–12251, https://doi.org/10.1002/2016GL070723, 2016. a, b
Hesse, T., Butzin, M., Bickert, T., and Lohmann, G.: A model-data comparison
of
δ13C in the glacial Atlantic Ocean, Paleoceanography, 26, PA3220, https://doi.org/10.1029/2010PA002085, 2011. a, b
Hodell, D. A., Charles, C. D., Curtis, J. H., Mortyn, P. G.,
Ninnemann, U. S., and Venz, K. A.: (Table T1) Stable oxygen and carbon
isotope ratios of Cibicidoides and carbonate concentrations of the sediment
in ODP Hole 177-1088B in the Southern Ocean, PANGAEA,
https://doi.org/10.1594/PANGAEA.218111, 2003a. a
Hodell, D. A., Venz, K. A., Charles, C. D., and Ninnemann, U. S.: Pleistocene
vertical carbon isotope and carbonate gradients in the South Atlantic sector
of the Southern Ocean, Geochem. Geophy. Geosy., 4, 1–19,
https://doi.org/10.1029/2002GC000367, 2003b (data available at: https://www.ncdc.noaa.gov/paleo/study/6408, last access: 4 August 2018). a, b, c, d, e, f, g, h
Hodell, D. A., Channell, J. E., Curtis, J. H., Romero, O. E., and Röhl,
U.:
Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at
the end of the middle Pleistocene transition (∼640 ka)?, Paleoceanography,
23, PA4218, https://doi.org/10.1029/2008PA001591, 2008 (data available at: https://www.ncdc.noaa.gov/paleo/study/10250, last access: 8 August 2018). a, b
Hodell, D. A., Evans, H. F., Channell, J. E., and Curtis, J. H.: Phase
relationships of North Atlantic ice-rafted debris and surface-deep climate
proxies during the last glacial period, Quaternary Sci. Rev., 29,
3875–3886, 2010. a
Hoffman, J. and Lund, D.: Refining the stable isotope budget for Antarctic
Bottom Water: New foraminiferal data from the abyssal southwest Atlantic,
Paleoceanography, 27, PA1213, https://doi.org/10.1029/2011PA002216, 2012. a, b
Holbourn, A., Kuhnt, W., Kawamura, H., Jian, Z., Grootes, P. M.,
Erlenkeuser, H., and Xu, J.: (Figure 2) Stable Isotopes on benthic
foraminifera of sediment core MD01-2378, PANGAEA,
https://doi.org/10.1594/PANGAEA.263755, 2005. a
Hoogakker, B. A. A., Smith, R. S., Singarayer, J. S., Marchant, R., Prentice,
I. C., Allen, J. R. M., Anderson, R. S., Bhagwat, S. A., Behling, H.,
Borisova, O., Bush, M., Correa-Metrio, A., de Vernal, A., Finch, J. M.,
Fréchette, B., Lozano-Garcia, S., Gosling, W. D., Granoszewski, W.,
Grimm, E. C., Grüger, E., Hanselman, J., Harrison, S. P., Hill, T. R.,
Huntley, B., Jiménez-Moreno, G., Kershaw, P., Ledru, M.-P., Magri, D.,
McKenzie, M., Müller, U., Nakagawa, T., Novenko, E., Penny, D., Sadori,
L., Scott, L., Stevenson, J., Valdes, P. J., Vandergoes, M., Velichko, A.,
Whitlock, C., and Tzedakis, C.: Terrestrial biosphere changes over the last
120 kyr, Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016,
2016. a, b
Hüls, M.: Stable isotope analysis on sediment core M35003-4, PANGAEA,
https://doi.org/10.1594/PANGAEA.55754, 1999. a
Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla,
G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B.,
Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E.,
Shackleton, N. J., and Toggweiler, J. R.: On the structure and origin
of major glaciation cycles 1. Linear responses to Milankovitch forcing,
Paleoceanography, 7, 701–738, https://doi.org/10.1029/92PA02253, 1992 (data available at: https://www.ncdc.noaa.gov/paleo-search/study/2511, last access: 8 August 2018). a
Jansen, E. and Veum, T.: Stable isotope analysis of foraminifera from
sediment core V23-81 (Table 2), PANGAEA, https://doi.org/10.1594/PANGAEA.106768, 1990. a
Joos, F., Gerber, S., Prentice, I., Otto-Bliesner, B. L., and Valdes, P. J.:
Transient simulations of Holocene atmospheric carbon dioxide and terrestrial
carbon since the Last Glacial Maximum, Global Biogeochem. Cy., 18, GB2002, https://doi.org/10.1029/2003GB002156,
2004. a, b, c, d
Jung, S. J. A. and Sarnthein, M.: Stable isotope data of sediment cores
GIK17049-6, PANGAEA, https://doi.org/10.1594/PANGAEA.112908, 2003a. a
Jung, S. J. A. and Sarnthein, M.: Stable isotope data of sediment cores
GIK17050-1, PANGAEA, https://doi.org/10.1594/PANGAEA.112909, 2003b. a
Jung, S. J. A. and Sarnthein, M.: Stable isotope data of sediment cores
GIK23414-9, PANGAEA, https://doi.org/10.1594/PANGAEA.112911, 2003c. a
Jung, S. J. A. and Sarnthein, M.: Stable isotope data of sediment cores
GIK23416-4, PANGAEA, https://doi.org/10.1594/PANGAEA.112913, 2003d. a
Jung, S. J. A. and Sarnthein, M.: Stable isotope data of sediment cores
GIK23417-1, PANGAEA, https://doi.org/10.1594/PANGAEA.112914, 2003e. a
Jung, S. J. A. and Sarnthein, M.: Stable isotope data of sediment cores
GIK23418-8, PANGAEA, https://doi.org/10.1594/PANGAEA.112915, 2003f. a
Jung, S. J. A. and Sarnthein, M.: Stable isotope data of sediment cores
GIK23419-8, PANGAEA, https://doi.org/10.1594/PANGAEA.112916, 2003g. a
Kallel, N., Labeyrie, L. D., Juillet-Leclerc, A., and Duplessy, J.-C.: A deep
hydrological front between intermediate and deep-wafpr, masses in the glacial
Indian Ocean, Nature, 333, 651–655, 1988. a
Kerr, J., Rickaby, R., Yu, J., Elderfield, H., and Sadekov, A. Y.: The effect
of ocean alkalinity and carbon transfer on deep-sea carbonate ion
concentration during the past five glacial cycles, Earth Planet.
Sc. Lett., 471, 42–53, 2017. a
Khider, D., Ahn, S., Lisiecki, L., Lawrence, C., and Kienast, M.: The Role of
Uncertainty in Estimating Lead/Lag Relationships in Marine Sedimentary
Archives: A Case Study From the Tropical Pacific, Paleoceanography, 32,
1275–1290, 2017. a
Kohfeld, K. E. and Chase, Z.: Temporal evolution of mechanisms controlling
ocean carbon uptake during the last glacial cycle, Earth Planet.
Sc. Lett., 472, 206–215, 2017. a
Kohfeld, K. E. and Ridgwell, A.: Glacial-interglacial variability in
atmospheric CO2, Surface Ocean/Lower Atmosphere Processes, Geoph.
Monog. Series, 37, https://doi.org/10.1029/2008GM000845, 2009. a
Köhler, P. and Fischer, H.: Simulating changes in the terrestrial
biosphere
during the last glacial/interglacial transition, Global Planet. Change,
43, 33–55, 2004. a
Köhler, P., Fischer, H., and Schmitt, J.: Atmospheric
δ13CO2 and its
relation to pCO2 and deep ocean δ13C during the late Pleistocene,
Paleoceanography, 25, PA1213, https://doi.org/10.1029/2008PA001703, 2010. a, b, c, d
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., and Fischer,
H.: A 156 kyr smoothed history of the atmospheric greenhouse gases
CO2, CH4, and N2O and their radiative forcing, Earth
Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, 2017. a, b, c, d
Labeyrie, L.: Quaternary paleoceanography: unpublished stable isotope
records,
IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series,
36, available at: https://www.ncdc.noaa.gov/paleo/study/2510 (last
access: 8 August 2018), 1996. a
Lacerra, M., Lund, D., Yu, J., and Schmittner, A.: Carbon storage in the
mid-depth Atlantic during millennial-scale climate events,
Paleoceanography, 32, 780–795, https://doi.org/10.1002/2016PA003081,
2017. a
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P.
Natl. Acad. Sci. USA, 111, 15296–15303, 2014. a
Landais, A., Lathiere, J., Barkan, E., and Luz, B.: Reconsidering the change
in
global biosphere productivity between the Last Glacial Maximum and present
day from the triple oxygen isotopic composition of air trapped in ice cores,
Global Biogeochem. Cy., 21, GB1025, https://doi.org/10.1029/2006GB002739, 2007. a
Lin, L., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: Probabilistic
sequence alignment of stratigraphic records, Paleoceanography, 29, 976–989,
2014. a
Lisiecki, L.: Atlantic overturning responses to obliquity and precession over
the last 3 Myr, Paleoceanography, 29, 71–86, 2014. a
Lisiecki, L. E. and Lisiecki, P. A.: Application of dynamic programming to
the
correlation of paleoclimate records, Paleoceanogr. Paleocl.,
17, 1-1–1-12, https://doi.org/10.1029/2001PA000733, 2002. a
Lund, D. C., Adkins, J., and Ferrari, R.: Abyssal Atlantic circulation during
the
Last Glacial Maximum: Constraining the ratio between transport and vertical
mixing, Paleoceanography, 26, PA1213, https://doi.org/10.1029/2010PA001938, 2011a. a, b
Lund, D. C., Tessin, A., Hoffman, J., and Schmittner, A.: Southwest Atlantic
water
mass evolution during the last deglaciation, Paleoceanography, 30, 477–494, https://doi.org/10.1002/2014PA002657,
2015 (data available at: https://www.ncdc.noaa.gov/paleo/study/19521, last access: 8 August 2018). a, b, c, d, e, f, g, h, i, j, k, l, m, n
Lutze, G. and Thiel, H.: Epibenthic foraminifera from elevated microhabitats;
Cibicidoides wuellerstorfi and Planulina ariminensis, J. Foramin. Res., 19, 153–158, 1989. a
Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. G.:
The
influence of air-sea exchange on the isotopic composition of oceanic carbon:
Observations and modeling, Global Biogeochem. Cy., 9, 653–665, 1995. a
Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R.,
Herguera, J. C., Hirschi, J. J.-M., Ivanova, E. V., Kissel, C., Marchal, O.,
Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U.,
Peeters, F., Yu, E.-F., and Zahn, R.: Atlantic meridional overturning
circulation during the Last Glacial
Maximum, Science, 316, 66–69, 2007. a
Mackensen, A.: On the use of benthic foraminiferal δ13C in
palaeoceanography: constraints from primary proxy relationships, Geological
Society, London, Special Publications, 303, 121–133, 2008. a
Mackensen, A., Rudolph, M., and Kuhn, G.: Late Pleistocene deep-water
circulation in the subantarctic eastern Atlantic, Global Planet. Change, 30, 197–229, 2001a.
Mackensen, A., Rudolph, M., and Kuhn, G.: Stable isotopes (Cibicidoides) of
sediment core PS2498-1, PANGAEA, https://doi.org/10.1594/PANGAEA.80802, 2001b. a
Marchal, O. and Curry, W. B.: On the abyssal circulation in the glacial
Atlantic, J. Phys. Oceanogr., 38, 2014–2037, 2008. a
Marchitto, T. M. and Broecker, W. S.: Deep water mass geometry in the glacial
Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca,
Geochem. Geophy. Geosy., 7, Q12003, https://doi.org/10.1029/2006GC001323, 2006. a, b
Marchitto, T. M., Lynch-Stieglitz, J., and Hemming, S. R.: Trace
element
ratios of Cibicidoides wuellerstorfi from sediment core RC13-114 (Appendix
A), PANGAEA, https://doi.org/10.1594/PANGAEA.712938, 2005. a
Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L.,
Cuffey,
K. M., Fudge, T., Severinghaus, J. P., Ahn, J., Kalk, M. L., McConnell, J. R., Sowers, T., Taylor, K. C., White, J. W. C., and Brook, E. J.:
Centennial-scale changes in the global carbon cycle during the last
deglaciation, Nature, 514, 616–619, 2014. a, b, c, d
Marinov, I., Follows, M., Gnanadesikan, A., Sarmiento, J. L., and Slater,
R. D.: How does ocean biology affect atmospheric pCO2? Theory and models,
J. Geophys. Res.-Oceans, 113, C07032, https://doi.org/10.1029/2007JC004598, 2008a. a
Marinov, I., Gnanadesikan, A., Sarmiento, J. L., Toggweiler, J., Follows, M.,
and Mignone, B.: Impact of oceanic circulation on biological carbon storage
in the ocean and atmospheric pCO2, Global Biogeochem. Cy.,
22, GB3007, https://doi.org/10.1029/2007GB002958,
2008b. a
Martínez-Garcia, A., Rosell-Melé, A., Geibert, W., Gersonde, R.,
Masqué, P., Gaspari, V., and Barbante, C.: Links between iron supply,
marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma,
Paleoceanography, 24, PA1207, https://doi.org/10.1029/2008PA001657, 2009. a, b
McIntyre, K., Ravelo, A. C., and Delaney, M. L.: Pliocene-Pleistocene
stable oxygen isotope record of Cibicidoides wuellerstorfi from the North
Atlantic, PANGAEA, https://doi.org/10.1594/PANGAEA.698997, 1999. a
McManus, J., François, R., Gherardi, J.-M., Keigwin, L., and Brown-Leger,
S.: Collapse and rapid resumption of Atlantic meridional circulation linked
to deglacial climate changes, Nature, 428, 834–837, 2004. a
Menviel, L., Joos, F., and Ritz, S.: Simulating atmospheric CO2,
13C and the
marine carbon cycle during the Last Glacial–Interglacial cycle: possible
role for a deepening of the mean remineralization depth and an increase in
the oceanic nutrient inventory, Quaternary Sci. Rev., 56, 46–68, 2012. a
Millo, C., Sarnthein, M., Voelker, A. H. L., and Erlenkeuser, H.:
Stable carbon and oxygen isotope ratios of foraminifera and ages
determination of sediment core GIK23519-5, PANGAEA,
https://doi.org/10.1594/PANGAEA.271549, 2006. a
Mix, A. C., Pisias, N. G., Zahn, R., Rugh, W. D., Lopez, C., and
Nelson, K.: (Table 1) Stable isotope ratios of Cibicides wuellerstorfi in
sediment core V19-27 in the eastern Pacific, PANGAEA,
https://doi.org/10.1594/PANGAEA.51844, 1991. a
Mix, A. C., Pisias, N. G., Rugh, W., Wilson, J., Morey, A., and Hagelberg,
T.:
Benthic foraminifer stable isotope record from Site 849 (0–5 Ma): Local and
global climate changes, Proceedings of the Ocean Drilling Program, Scientific
Results, available at: https://www.ncdc.noaa.gov/paleo/study/2533 (last access: 8 August 2018), 1995. a
Mulitza, S.: Stable isotope analyses of sediment core GeoB9508-5,
PANGAEA,
https://doi.org/10.1594/PANGAEA.726776, 2009. a
Ohkushi, K. I., Suzuki, A., Kawahata, H., and Gupta, L. P.:
Glacial–interglacial deep-water changes in the NW Pacific inferred from
single foraminiferal δ18O and δ13C, Mar. Micropaleontol., 48, 281–290, https://doi.org/10.1016/S0377-8398(03)00023-9, 2003. a
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M.,
Rickaby, R. E. M., Edwards, N. R., and Elderfield, H.: A synthesis of marine
sediment core δ13C data over the last 150 000 years, Clim.
Past, 6, 645–673, https://doi.org/10.5194/cp-6-645-2010, 2010. a, b
Oppo, D. W. and Fairbanks, R. G.: (Appendix 1) Stable carbon and oxygen
isotope ratios of benthic foraminifera in sediment core V30-40, PANGAEA,
https://doi.org/10.1594/PANGAEA.701355,
1987. a
Oppo, D. W. and Fairbanks, R. G.: (Table 3) Stable isotope ratios of
Cibicidoides wuellerstorfi from sediment core V28-127, PANGAEA,
https://doi.org/10.1594/PANGAEA.52404, 1990. a
Oppo, D. W. and Horowitz, M.: Glacial deep water geometry: South Atlantic
benthic foraminiferal Cd/Ca and δ13C evidence, Paleoceanography, 15,
147–160, https://doi.org/10.1029/1999PA000436, 2000 (data available at: https://www.ncdc.noaa.gov/paleo/study/2592, last access: 8 August 2018). a, b, c, d
Oppo, D. W. and Lehman, S. J.: Suborbital timescale variability of North
Atlantic Deep Water during the past 200,000 years, Paleoceanogr.
Paleocl., 10, 901–910, https://doi.org/10.1029/95PA02089, 1995 (data available at: https://www.ncdc.noaa.gov/paleo-search/study/21450, last access: 4 August 2018). a
Oppo, D. W., McManus, J. F., and Cullen, J. L.: (Table 2) Stable
oxygen
and carbon isotope ratios of Cibicidoides wuellerstorfi of ODP Site 162-980,
PANGAEA, https://doi.org/10.1594/PANGAEA.742852, 2006. a
Pahnke, K. and Zahn, R.: Southern Hemisphere water mass conversion linked
with
North Atlantic climate variability, Science, 307, 1741–1746, 2005. a
Paillard, D. and Parrenin, F.: The Antarctic ice sheet and the triggering of
deglaciations, Earth Planet. Sc. Lett., 227, 263–271, 2004. a
Peacock, S., Lane, E., and Restrepo, J. M.: A possible sequence of events for
the generalized glacial-interglacial cycle, Global Biogeochem. Cy., 20,
GB2010,
https://doi.org/10.1029/2005GB002448,
2006. a
Rau, A., Roger, J., Lutjeharms, J., Giraudeau, J., Lee-Thorp, J.,
Chen, M.-T., and Waelbroeck, C.: Stable carbon and oxygen isotope ratios
of foraminifera of sediment core MD96-2080, PANGAEA,
https://doi.org/10.1594/PANGAEA.113000, 2002. a
Raymo, M. E., Oppo, D. W., Flower, B. P., Hodell, D., McManus, J. F., Venz,
K.,
Kleiven, K., and McIntyre, K.: Stability of North Atlantic water masses in
face of pronounced climate variability during the Pleistocene,
Paleoceanography, 19, PA2008, https://doi.org/10.1029/2003PA000921, 2004. a, b
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M.,
Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J.,
Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal
BP, Radiocarbon, 55, 1869–1887, 2013. a
Richter, T.: Stable isotope data of sediment core GEOFAR KF13, PANGAEA,
https://doi.org/10.1594/PANGAEA.66317, 2001. a
Ruddiman, W. F. and Ellis, E. C.: Effect of per-capita land use changes on
Holocene forest clearance and CO2 emissions, Quaternary Sci. Rev., 28,
3011–3015, 2009. a
Sarnthein, M.: Stable isotope analysis on planktic foraminifera on
sediment
core GIK12328-4 and GIK12328-5, PANGAEA, https://doi.org/10.1594/PANGAEA.52049, 1994a. a
Sarnthein, M.: Stable isotope analysis on planktic foraminifera on
sediment
core profile GIK12347-1/-2, PANGAEA, https://doi.org/10.1594/PANGAEA.54364, 1994b. a
Sarnthein, M.: Stable isotope analysis on planktic foraminifera on
sediment
core profile GIK12379-1/-3, PANGAEA, https://doi.org/10.1594/PANGAEA.54365, 1994c. a
Sarnthein, M.: Stable isotope analysis on sediment core GIK12392-1,
PANGAEA,
https://doi.org/10.1594/PANGAEA.54366, 1994d. a
Sarnthein, M.: Stable isotope analysis on sediment core GIK13521-1,
PANGAEA,
https://doi.org/10.1594/PANGAEA.54368, 1994e. a
Sarnthein, M.: Stable isotope analysis on sediment core GIK15612-2,
PANGAEA,
https://doi.org/10.1594/PANGAEA.54369, 1994f. a
Sarnthein, M.: Stable isotope analysis on sediment core GIK15666-6,
PANGAEA,
https://doi.org/10.1594/PANGAEA.54381, 1994g. a
Sarnthein, M.: Stable isotope analysis on planktic foraminifera on
sediment
core profile GIK15672-1/-2, PANGAEA, https://doi.org/10.1594/PANGAEA.54370, 1994h. a
Sarnthein, M.: Stable isotope analysis on sediment core GIK16004-1,
PANGAEA,
https://doi.org/10.1594/PANGAEA.54371, 1994i. a
Sarnthein, M.: Stable isotope analysis on sediment core GIK16006-1,
PANGAEA,
https://doi.org/10.1594/PANGAEA.54372, 1994j. a
Sarnthein, M.: Stable isotope analysis on sediment core GIK16030-1,
PANGAEA,
https://doi.org/10.1594/PANGAEA.54374, 1994k. a
Sarnthein, M.: Stable isotope analysis on planktic foraminifera on
sediment
core profile GIK16415-1/-2, PANGAEA, https://doi.org/10.1594/PANGAEA.54377, 1994l. a
Sarnthein, M.: Stable isotope analysis on sediment core V29-135, PANGAEA,
https://doi.org/10.1594/PANGAEA.54408, 1997. a
Sarnthein, M.: Stable istope analysis on planktic foraminifera on sediment
core GIK15669-1, PANGAEA, https://doi.org/10.1594/PANGAEA.134932, 2004a. a
Sarnthein, M.: Table 1. Epibenthic d13C averages for time slices 1-8
listed
for 95 Atlantic deep sea cores and 20 surface sediment samples, PANGAEA,
https://doi.org/10.1594/PANGAEA.134784, 2004b. a, b, c
Sarnthein, M. and Tiedemann, R.: (Table 3) Stable oxygen and carbon
isotope ratios of foraminifera from ODP Site 108-658, PANGAEA,
https://doi.org/10.1594/PANGAEA.746217, 1989. a
Sarnthein, M., Winn, K., Jung, S. J., Duplessy, J.-C., Labeyrie, L.,
Erlenkeuser, H., and Ganssen, G.: Changes in east Atlantic deepwater
circulation over the last 30,000 years: Eight time slice reconstructions,
Paleoceanography, 9, 209–267, https://doi.org/10.1029/93PA03301, 1994 (data available at: https://doi.org/10.1594/PANGAEA.134784). a, b
Schmiedl, G. and Leuschner, D. C.: Stable isotopes, diversity and
composition of foraminifera in sediment core GeoB3004-1, PANGAEA,
https://doi.org/10.1594/PANGAEA.315174, 2005. a
Schmiedl, G. and Mackensen, A.: Benthic foraminifera analysis of two
sediments cores from the northern Cape Basin in the eastern South Atlantic
Ocean, PANGAEA, https://doi.org/10.1594/PANGAEA.728744, 1997. a
Schmittner, A. and Lund, D. C.: Early deglacial Atlantic overturning decline
and its role in atmospheric CO2 rise inferred from carbon isotopes
(δ13C), Clim. Past, 11, 135–152,
https://doi.org/10.5194/cp-11-135-2015, 2015. a
Schmittner, A. and Somes, C. J.: Complementary constraints from carbon
(13C)
and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological
pump, Paleoceanography, 31, 669–693, 2016. a
Schmittner, A., Bostock, H. C., Cartapanis, O., Curry, W. B., Filipsson,
H. L.,
Galbraith, E. D., Gottschalk, J., Herguera, J. C., Hoogakker, B., Jaccard,
S., Lisiecki, L. E., Lund, D. C., Martìnez-Mèndez, G.,
Lynch-Stieglitz, J., Mackensen, A., Michel, E., Mix, A. C., Oppo, D. W.,
Peterson, C. D., Repschläger, J., Sikes, E. L., Spero, H. J., and
Waelboreck, C.: Calibration of the Carbon Isotope Composition
(δ13C) of
Benthic Foraminifera, Paleoceanography, 32, 512–530, 2017. a, b, c, d, e, f
Schönfeld, J., Zahn, R., and de Abreu, L.: Stable isotope ratios
on
benthic foraminifera of sediment core MD95-2040, PANGAEA,
https://doi.org/10.1594/PANGAEA.59933,
2003a. a
Schönfeld, J., Zahn, R., and de Abreu, L.: (Fig. 2) Stable carbon
isotope ratios of Cibicidoides wuellerstorfi in sediment core MD95-2039,
PANGAEA, https://doi.org/10.1594/PANGAEA.82018,
2003b. a
Schweizer, M., Pawlowski, J., Kouwenhoven, T., and van der Zwaan, B.:
Molecular
phylogeny of common cibicidids and related Rotaliida (Foraminifera) based on
small subunit rDNA sequences, J. Foramin. Res., 39,
300–315, 2009. a
Shackleton, N., Le, J., Mix, A., and Hall, M.: Carbon isotope records from
Pacific surface waters and atmospheric carbon dioxide, Quaternary Sci. Rev., 11, 387–400, 1992. a
Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J.,
Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V.,
and Jouzel, J.: Stable carbon cycle–climate relationship during the late
Pleistocene, Science, 310, 1313–1317, 2005. a
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric
carbon dioxide, Nature, 407, 859–869, 2000. a
Sikes, E. L., Allen, K. A., and Lund, D. C.: Enhanced δ13C and
δ18O Differences Between the South Atlantic and South Pacific During
the Last Glaciation: The Deep Gateway Hypothesis, Paleoceanography, 32,
1000–1017, 2017. a
Sirocko, F., Garbe-Schönberg, C.-D., and Devey, C. W.: Stable
isotope data and sedimentology of core Orgon4-KS8, PANGAEA,
https://doi.org/10.1594/PANGAEA.52392,
2000a. a
Sirocko, F., Garbe-Schönberg, C.-D., and Devey, C. W.: Stable
isotope data and sedimentology of core SO42-74KL, PANGAEA,
https://doi.org/10.1594/PANGAEA.52389,
2000b. a
Skinner, L. C. and Shackleton, N. J.: Age determination and stable
carbon
oxygen isotopes of sediment core MD99-2334, PANGAEA, https://doi.org/10.1594/PANGAEA.738036,
2004. a
Skinner, L. C., Primeau, F., Freeman, E., de la Fuente, M., Goodwin, P.,
Gottschalk, J., Huang, E., McCave, I., Noble, T., and Scrivner, A.:
Radiocarbon constraints on the glacial ocean circulation and its impact on
atmospheric CO2, Nat. Commun., 8, 16010, https://doi.org/10.1038/ncomms16010, 2017. a
Sortor, R. N. and Lund, D. C.: No evidence for a deglacial intermediate water
Δ14C anomaly in the SW Atlantic, Earth Planet. Sc. Lett.,
310, 65–72, 2011. a
Stott, L. D., Neumann, M., and Hammond, D.: Intermediate water ventilation on
the northeastern Pacific margin during the late Pleistocene inferred from
benthic foraminiferal δ13C, Paleoceanography, 15, 161–169,
https://doi.org/10.1029/1999PA000375, 2000 (data available at: https://www.ncdc.noaa.gov/paleo/study/2546, last access: 8 August 2018). a
Talley, L. D.: Closure of the global overturning circulation through the
Indian, Pacific, and Southern Oceans: Schematics and transports,
Oceanography, 26, 80–97, 2013. a
Thornalley, D. J., Elderfield, H., and McCave, I. N.: Intermediate and deep
water paleoceanography of the northern North Atlantic over the past 21,000
years, Paleoceanography, 25, PA1211, https://doi.org/10.1029/2009PA001833, 2010. a, b
Tian, J., Wang, P., Cheng, X., and Li, Q.: Age model and
Plio-Pleistocene benthic stable oxygen isotope ratios of ODP Site 184-1143 in
the Sourh China Sea, PANGAEA, https://doi.org/10.1594/PANGAEA.700904, 2002. a
Tjallingii, R.: Stable isotope record of Cibicidoides wuellerstorfi of
sediment core GeoB7920-2, PANGAEA, https://doi.org/10.1594/PANGAEA.705109, 2008. a
Toggweiler, J., Russell, J. L., and Carson, S.: Midlatitude westerlies,
atmospheric CO2, and climate change during the ice ages, Paleoceanography,
21, PA2005, https://doi.org/10.1029/2005PA001154, 2006. a
Vecsei, A. and Berger, W. H.: Increase of atmospheric CO2 during
deglaciation:
constraints on the coral reef hypothesis from patterns of deposition, Global
Biogeochem. Cy., 18, GB1035, https://doi.org/10.1029/2003GB002147, 2004. a
Venz, K. A., Hodell, D. A., Stanton, C., and Warnke, D. A.: A 1.0 Myr record
of Glacial North Atlantic Intermediate Water variability from ODP site 982 in
the northeast Atlantic, Paleoceanography, 14, 42–52,
https://doi.org/10.1029/1998PA900013, 1999 (data available at:
https://www.ncdc.noaa.gov/paleo/study/2550, last access:
8 August 2018). a
Waelbroeck, C., Skinner, L., Labeyrie, L., Duplessy, J.-C., Michel, E.,
Vazquez Riveiros, N., Gherardi, J.-M., and Dewilde, F.: The timing of
deglacial circulation changes in the Atlantic, Paleoceanography, 26, PA3213, https://doi.org/10.1029/2010PA002007, 2011. a, b
Wagner, M. and Hendy, I. L.: Trace metal evidence for a poorly ventilated
glacial Southern Ocean, Quaternary Sci. Rev., 170, 109–120, 2017. a
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J. O., Grootes,
P. M., Heilig, S., Ivanova, E. V., Kienast, M., Pelejero, C., and
Pflaumann, U.: Isotope data of sediment core GIK17961-2, PANGAEA,
https://doi.org/10.1594/PANGAEA.54714, 1999.
a
Weinelt, M.: Stable isotopes of sediment core GIK23415-9, PANGAEA,
https://doi.org/10.1594/PANGAEA.143867, 2004. a
Weinelt, M. and Sarnthein, M.: Stable isotope analysis on sediment core
GIK11944-2, PANGAEA, https://doi.org/10.1594/PANGAEA.97104, 2003. a
Winn, K. and Sarnthein, M.: Stable isotopes of sediment core GIK17055,
PANGAEA,
https://doi.org/10.1594/PANGAEA.323484, 1991. a
Woodruff, F. and Savin, S. M.: δ13C values of Miocene Pacific
benthic
foraminifera: Correlations with sea level and biological productivity,
Geology, 13, 119–122, 1985. a
Yu, J., Anderson, R., and Rohling, E.: Deep ocean carbonate chemistry and
glacial-interglacial atmospheric CO2 changes, Oceanography, 27,
16–25,
2014. a
Zahn, R., Winn, K., and Sarnthein, M.: Benthic foraminiferal
δ13C and
accumulation rates of organic carbon: Uvigerina peregrina group and
Cibicidoides wuellerstorfi, Paleoceanography, 1, 27–42, 1986. a
Zarriess, M. and Mackensen, A.: Stable isotope ratios of epibenthic
foraminifer Cibicidoides wuellerstorfi from sediment profile GeoB9526,
PANGAEA,
https://doi.org/10.1594/PANGAEA.756414, 2011. a
Zhang, J., Wang, P., Li, Q., Cheng, X., Jin, H., and Zhang, S.: Western
equatorial Pacific productivity and carbonate dissolution over the last
550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A, Mar.
Micropaleontol., 64, 121–140, 2007. a
Short summary
Our study presents an analysis of a four-dimensional compilation of globally distributed carbon isotope time series that span 20 to 6 thousand years ago. We explore carbon cycle connections between the deep ocean, atmosphere, and land-based carbon storage on thousand-year time scales to provide useful constraints for global carbon cycle reconstructions. Additionally, these carbon isotope time series are suitable for comparison with deglacial simulations from isotope-enabled Earth system models.
Our study presents an analysis of a four-dimensional compilation of globally distributed carbon...