Articles | Volume 13, issue 1
https://doi.org/10.5194/cp-13-73-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-73-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data
Andrea Catalina Gebhardt
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27576 Bremerhaven, Germany
Lieven Naudts
Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment (RBINS–OD Nature),
8400 Ostend, Belgium
Renard Centre of Marine Geology, Universiteit Gent, 9000 Ghent, Belgium
Lies De Mol
Renard Centre of Marine Geology, Universiteit Gent, 9000 Ghent, Belgium
Jan Klerkx
International Bureau for Environmental Studies (IBES), 1090 Brussels, Belgium
Kanatbek Abdrakhmatov
Kyrgyz Institute of Seismology, Bishkek,
Kyrgyzstan
Edward R. Sobel
Institut für Erd- und Umweltwissenschaften, International Universität Potsdam, 14476 Potsdam, Germany
Marc De Batist
Renard Centre of Marine Geology, Universiteit Gent, 9000 Ghent, Belgium
Related authors
Carolina Franco, Antonio Maldonado, Christian Ohlendorf, A. Catalina Gebhardt, María Eugenia de Porras, Amalia Nuevo-Delaunay, César Méndez, and Bernd Zolitschka
Clim. Past, 20, 817–839, https://doi.org/10.5194/cp-20-817-2024, https://doi.org/10.5194/cp-20-817-2024, 2024
Short summary
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles
Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, https://doi.org/10.5194/cp-9-1933-2013, 2013
M. A. Sauerbrey, O. Juschus, A. C. Gebhardt, V. Wennrich, N. R. Nowaczyk, and M. Melles
Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, https://doi.org/10.5194/cp-9-1949-2013, 2013
Carolina Franco, Antonio Maldonado, Christian Ohlendorf, A. Catalina Gebhardt, María Eugenia de Porras, Amalia Nuevo-Delaunay, César Méndez, and Bernd Zolitschka
Clim. Past, 20, 817–839, https://doi.org/10.5194/cp-20-817-2024, https://doi.org/10.5194/cp-20-817-2024, 2024
Short summary
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
Morgan Vervoort, Katleen Wils, Kris Vanneste, Roberto Urrutia, Mario Pino, Catherine Kissel, Marc De Batist, and Maarten Van Daele
EGUsphere, https://doi.org/10.5194/egusphere-2024-8, https://doi.org/10.5194/egusphere-2024-8, 2024
Short summary
Short summary
This study identified a prehistoric earthquake around 4400 years ago near the city of Coyhaique (Aysén Region, Chilean Patagonia) and illustrates the potential seismic hazard in the region. We found deposits in lakes and a fjord that can be related to subaquatic and onshore landslides, all with a similar age, indicating that they were most likely caused by an earthquake. Through modelling we found that this was a magnitude 5.6 to 6.8 earthquake on a fault near the city of Coyhaique.
Thomas W. Wong Hearing, Stijn Dewaele, Stijn Albers, Julie De Weirdt, and Marc De Batist
Geosci. Commun., 7, 17–33, https://doi.org/10.5194/gc-7-17-2024, https://doi.org/10.5194/gc-7-17-2024, 2024
Short summary
Short summary
Field skills training is an integral part of geoscience education, but long field courses away from home can be barriers to accessing that education and mean that students do not get regular field skills practice. We built the Rock Garden, an on-campus field course at Ghent University, Belgium, to make our field skills training more accessible. Here, we present preliminary data that suggest on-campus field skills training provision can increase students' confidence during real-world fieldwork.
Arnaud Beckers, Aurelia Hubert-Ferrari, Christian Beck, George Papatheodorou, Marc de Batist, Dimitris Sakellariou, Efthymios Tripsanas, and Alain Demoulin
Nat. Hazards Earth Syst. Sci., 18, 1411–1425, https://doi.org/10.5194/nhess-18-1411-2018, https://doi.org/10.5194/nhess-18-1411-2018, 2018
Short summary
Short summary
Coastal and submarine landslides occur on average every 30–50 years at the western tip of the Gulf of Corinth. These landslides trigger tsunamis and thus represent a significant hazard. We realized an inventory of the submarine landslide deposits in the western Gulf. Six large events are identified in the last 130 000 years. Such sliding events likely generated large tsunami waves in the whole Gulf of Corinth, possibly larger than those reported in historical sources.
Chiyuki Narama, Mirlan Daiyrov, Murataly Duishonakunov, Takeo Tadono, Hayato Sato, Andreas Kääb, Jinro Ukita, and Kanatbek Abdrakhmatov
Nat. Hazards Earth Syst. Sci., 18, 983–995, https://doi.org/10.5194/nhess-18-983-2018, https://doi.org/10.5194/nhess-18-983-2018, 2018
Short summary
Short summary
Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock, as well as destroying property and crops. Due to their subsurface outlet, we refer to these short-lived glacial lakes as being of the
tunnel-type, a type that drastically grows and drains over a few months.
A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles
Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, https://doi.org/10.5194/cp-9-1933-2013, 2013
M. A. Sauerbrey, O. Juschus, A. C. Gebhardt, V. Wennrich, N. R. Nowaczyk, and M. Melles
Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, https://doi.org/10.5194/cp-9-1949-2013, 2013
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Pleistocene
Climate changes during the Late Glacial in southern Europe: new insights based on pollen and brGDGTs of Lake Matese in Italy
Late Pleistocene glacial chronologies and paleoclimate in the northern Rocky Mountains
Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation
Younger Dryas ice margin retreat in Greenland: new evidence from southwestern Greenland
Pleistocene glacial history of the New Zealand subantarctic islands
Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands
Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia's arid margin interpreted from speleothem records (23–15 ka)
Constant wind regimes during the Last Glacial Maximum and early Holocene: evidence from Little Llangothlin Lagoon, New England Tablelands, eastern Australia
Late Pleistocene–Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia)
Sediment sequence and site formation processes at the Arbreda Cave, NE Iberian Peninsula, and implications on human occupation and climate change during the Last Glacial
Past freeze and thaw cycling in the margin of the El'gygytgyn crater deduced from a 141 m long permafrost record
Geochronological reconsideration of the eastern European key loess section at Stayky in Ukraine
Pre-LGM Northern Hemisphere ice sheet topography
Heinrich event 4 characterized by terrestrial proxies in southwestern Europe
Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans
Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling
Depositional dynamics in the El'gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive
Coarsely crystalline cryogenic cave carbonate – a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe
Hydrological variability in the Northern Levant: a 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary sequence
Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Sabine Wulf, Oona Appelt, Marion Blache, Boris Vannière, Lucas Dugerdil, Bruno Paura, Salomé Ansanay-Alex, Amy Cromartie, Laurent Charlet, Stephane Guédron, Jacques-Louis de Beaulieu, and Sébastien Joannin
Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023, https://doi.org/10.5194/cp-19-493-2023, 2023
Short summary
Short summary
Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the Late Glacial, a warm Bølling–Allerød and a marked cold Younger Dryas in Italy, showing no latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no latitudinal differences are recorded during the Bølling–Allerød, whereas 40–42° N appears as a key junction point between wetter conditions in southern Italy and drier conditions in northern Italy during the Younger Dryas.
Brendon J. Quirk, Elizabeth Huss, Benjamin J. C. Laabs, Eric Leonard, Joseph Licciardi, Mitchell A. Plummer, and Marc W. Caffee
Clim. Past, 18, 293–312, https://doi.org/10.5194/cp-18-293-2022, https://doi.org/10.5194/cp-18-293-2022, 2022
Short summary
Short summary
Glaciers in the northern Rocky Mountains began retreating 17 000 to 18 000 years ago, after the end of the most recent global ice volume maxima. Climate in the region during this time was likely 10 to 8.5° colder than modern with less than or equal to present amounts of precipitation. Glaciers across the Rockies began retreating at different times but eventually exhibited similar patterns of retreat, suggesting a common mechanism influencing deglaciation.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Kseniia Ashastina, Lutz Schirrmeister, Margret Fuchs, and Frank Kienast
Clim. Past, 13, 795–818, https://doi.org/10.5194/cp-13-795-2017, https://doi.org/10.5194/cp-13-795-2017, 2017
Short summary
Short summary
We present the first detailed description and sedimentological analyses of an 80 m permafrost sequence exposed in a mega-thaw slump near Batagay in the Yana Highlands, Russia, and attempt to deduce its genesis. First dating results (14C, OSL) show that the sequence represents a continental climate record spanning from the Middle Pleistocene to the Holocene. We suggest that the characteristics of the studied deposits are a result of various seasonally controlled climatically induced processes.
Pauline C. Treble, Andy Baker, Linda K. Ayliffe, Timothy J. Cohen, John C. Hellstrom, Michael K. Gagan, Silvia Frisia, Russell N. Drysdale, Alan D. Griffiths, and Andrea Borsato
Clim. Past, 13, 667–687, https://doi.org/10.5194/cp-13-667-2017, https://doi.org/10.5194/cp-13-667-2017, 2017
Short summary
Short summary
Little is known about the climate of southern Australia during the Last Glacial Maximum and deglaciation owing to sparse records for this region. We present the first high-resolution data, derived from speleothems that grew 23–5 ka. It appears that recharge to the Flinders Ranges was higher than today, particularly during 18.9–15.8 ka, argued to be due to the enhanced availability of tropical moisture. An abrupt shift to aridity is recorded at 15.8 ka, associated with restored westerly airflow.
James Shulmeister, Justine Kemp, Kathryn E. Fitzsimmons, and Allen Gontz
Clim. Past, 12, 1435–1444, https://doi.org/10.5194/cp-12-1435-2016, https://doi.org/10.5194/cp-12-1435-2016, 2016
Short summary
Short summary
This paper highlights that small dunes (lunettes) formed on the eastern side of a lake in the Australian sub-tropics at the height of the last ice age (about 21,000 years ago) and in the early part of the current interglacial (9–6,000 years ago). This means that it was fairly wet at these times and also that there were strong westerly winds to form the dunes. Today strong westerly winds occur in winter, and we infer that the same was also true at those times, suggesting no change in circulation.
D. Y. Demezhko and A. A. Gornostaeva
Clim. Past, 11, 647–652, https://doi.org/10.5194/cp-11-647-2015, https://doi.org/10.5194/cp-11-647-2015, 2015
M. Kehl, E. Eckmeier, S. O. Franz, F. Lehmkuhl, J. Soler, N. Soler, K. Reicherter, and G.-C. Weniger
Clim. Past, 10, 1673–1692, https://doi.org/10.5194/cp-10-1673-2014, https://doi.org/10.5194/cp-10-1673-2014, 2014
G. Schwamborn, H. Meyer, L. Schirrmeister, and G. Fedorov
Clim. Past, 10, 1109–1123, https://doi.org/10.5194/cp-10-1109-2014, https://doi.org/10.5194/cp-10-1109-2014, 2014
A. Kadereit and G. A. Wagner
Clim. Past, 10, 783–796, https://doi.org/10.5194/cp-10-783-2014, https://doi.org/10.5194/cp-10-783-2014, 2014
J. Kleman, J. Fastook, K. Ebert, J. Nilsson, and R. Caballero
Clim. Past, 9, 2365–2378, https://doi.org/10.5194/cp-9-2365-2013, https://doi.org/10.5194/cp-9-2365-2013, 2013
J. M. López-García, H.-A. Blain, M. Bennàsar, M. Sanz, and J. Daura
Clim. Past, 9, 1053–1064, https://doi.org/10.5194/cp-9-1053-2013, https://doi.org/10.5194/cp-9-1053-2013, 2013
M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers
Clim. Past, 9, 267–287, https://doi.org/10.5194/cp-9-267-2013, https://doi.org/10.5194/cp-9-267-2013, 2013
D. Mottaghy, G. Schwamborn, and V. Rath
Clim. Past, 9, 119–133, https://doi.org/10.5194/cp-9-119-2013, https://doi.org/10.5194/cp-9-119-2013, 2013
G. Schwamborn, G. Fedorov, N. Ostanin, L. Schirrmeister, A. Andreev, and the El'gygytgyn Scientific Party
Clim. Past, 8, 1897–1911, https://doi.org/10.5194/cp-8-1897-2012, https://doi.org/10.5194/cp-8-1897-2012, 2012
K. Žák, D. K. Richter, M. Filippi, R. Živor, M. Deininger, A. Mangini, and D. Scholz
Clim. Past, 8, 1821–1837, https://doi.org/10.5194/cp-8-1821-2012, https://doi.org/10.5194/cp-8-1821-2012, 2012
F. Gasse, L. Vidal, A.-L. Develle, and E. Van Campo
Clim. Past, 7, 1261–1284, https://doi.org/10.5194/cp-7-1261-2011, https://doi.org/10.5194/cp-7-1261-2011, 2011
Cited articles
Abdrakhmatov, K. Y., Delvaux, D., and Djanuzakov, K. D.: Active tectonics and seismic hazard of the Issyk-Kul basin in the Kyrgyz Tian-Shan, in: Lake Issyk-Kul: Its Natural Environment, edited by: Klerkx, J. and Imanackunov, B., Kluwer Academic Publishers, Dordrecht, 101–123, 2002.
Aizen, E. M., Aizen, V. B., Melack, J. M., Nakamura, T., and Ohta, T.: Precipitation and atmospheric circulation patterns at mid-latitudes of Asia, Int. J. Climatol., 21, 535–556, 2001.
Aizen, V. B., Aizen, E. M., and Melack, J. M.: Climate, snow cover, glaciers, and runoff in the Tien Shan, Central Asia, Water Resour. Bull., 31, 1113–1129, 1995.
Aizen, V. B., Aizen, E. M., Melack, J. M., and Dozier, J.: Climatic and hydrologic changes in the Tien Shan, Central Asia, J. Climate, 10, 1393–1404, 1997.
Aizen, V. B., Aizen, E. M., Joswiak, D. R., Fujita, K., Takeuchi, N., and Nikitin, S. A.: Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet), Ann. Glaciol., 43, 49–60, 2006.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, in: NOAA Technical Memorandum NESDIS NGDC-24, 19 pp., 2009.
Anselmetti, F. S., Ariztegui, D., Hodell, D. A., Hillesheim, M. B., Brenner, M., Gilli, A., McKenzie, J. A., and Mueller, A. D.: Late Quaternary climate-induced lake level variations in Lake Petén Itzá, Guatemala, inferred from seismic stratigraphic analysis, Palaeogeogr. Palaeocl., 230, 52–69, 2006.
Anselmetti, F. S., Ariztegui, D., De Batist, M., Gebhardt, A. C., Haberzettl, T., Niessen, F., Ohlendorf, C., and Zolitschka, B.: Environmental history of southern Patagonia unravelled by the seismic stratigraphy of Laguna Potrok Aike, Sedimentology, 56, 873–892, 2009.
Bartov, Y., Stein, M., Enzel, Y., Agnon, A., and Reches, Z. E.: Lake levels and sequence stratigraphy of Lake Lisan, the Late Pleistocene precursor of the Dead Sea, Quaternary Res., 57, 9–21, 2002.
Bondarev, L. G. and Sevastyanov, D. V.: Relief of shores and lake bottom, in: Leningrad, Nauka, Istoria ozer Sevan, Issyk-Kul, Balkhash, Zaisan I Aral (The history of Sevan, Issyk-Kul, Balkhash, Zaisan and Aral Lakes), Leningrad, 78–86, 1991.
Bowman, D., Korjenkov, A., and Porat, N.: Late-Pleistocene seismites from Lake Issyk-Kul, the Tien Shan range, Kyrghyzstan, Sediment. Geol., 163, 211–228, 2004.
Burgette, R. J.: Uplift in response to tectonic convergence: The Kyrgyz Tien Shan and Cascadia subduction zone, Department of Geological Sciences, University of Oregon, USA, Oregon, USA, 262 pp., 2008.
Cheng, H., Zhang, P. Z., Spötl, C., Edwards, R. L., Cai, Y. J., Zhang, D. Z., Sang, W. C., Tan, M., and An, Z. S.: The climatic cyclicity in semiarid-arid central Asia over the past 500 000 years, Geophys. Res. Lett., 39, 351–364, 2012.
Cukur, D., Krastel, S., Schmincke, H. U., Sumita, M., Tomonaga, Y., and Çağatay, M. N.: Water level changes in Lake Van, Turkey, during the past ca. 600 ka: climatic, volcanic and tectonic controls, J. Paleolimnol., 52, 201–214, 2014.
De Batist, M., Imbo, Y., Vermeesch, P. M., Klerkx, J., Giralt, S., Delvaux, D., Lignier, V., Beck, C., Kalugin, I., and Abdrakhmatov, K. Y.: Bathymetry and sedimentary environments of Lake Issyk-Kul, Kyrgyz Republic (Central Asia): a large, high-altitude, tectonic lake, edited by: Klerkx, J. and Imanackunov, B., Lake Issyk-Kul: Its Natural Environment, Kluwer Academic Publishers, Dordrecht, 101–123, 2002.
De Mol, L.: Reconstructie van meerspiegelschommelingen in het Issyk-Kul Meer (Kirgizie') op basis van de geomorfologische en seismostratigrafische analyse van rivierdelta's, Vakgroep Geologie en Bodemkunde, University of Gent, Gent, 2006.
Degens, E. T., Wong, H. K., Kempe, S., and Kurtman, F.: A geological study of Lake Van, Eastern Turkey, Geol. Rundsch., 73, 701–734, 1984.
Delvaux, D., Abdrakhmatov, K., and Strom, A. L.: Landslides and surface breaks of the 1911 Ms 8.2 Kemin earthquake, Kyrgyzstan, Russ. Geol. Geophys+, 42, 1165–1177, 2001.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods, Science, 349, aaa4019-1–aaa4019-9 https://doi.org/10.1126/science.aaa4019, 2015.
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., and Chappell, J.: Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites, Earth Planet. Sc. Lett., 163, 327–342, 1998.
Fortuna, A. B.: Spore and pollen complexes and stratigraphy of the Paleogene and Neogene sediments of the northern Tien Shan (in Russian), Institute of Seismology of the Academy of Sciences of the Kyrgyz SSR. Dushanbe, Tajikistan, Dushanbe, Tajikistan, 1983.
Gebhardt, A. C., Ohlendorf, C., Niessen, F., De Batist, M., Anselmetti, F. S., Ariztegui, D., Kliem, P., Wastegård, S., and Zolitschka, B.: Seismic evidence of up to 200 m lake-level change in Southern Patagonia since Marine Isotope Stage 4, Sedimentology, 59, 1087–1100, 2012.
Giralt, S., Riera, S., Leroy, S., Buchaca, T., Klerkx, J., De Batist, M., Beck, C., Bobrov, V., Catalan, J., Gavshin, V., Julia, R., Kalugin, I., Kipfer, R., Lignier, V., Lombardi, S., Matychenkov, V., Peters, F., Podsetchine, V., Romanovsky, V. V., Shukonikov, F., and Voltattorni, N.: 1000-years of environmental history of Lake Issyk- Kul, in: Dying and Dead Seas: Climatic Versus Anthropic Causes, edited by: Nihoul, J. C. J., Zavialov, P. O., and Micklin, P. P., Kluwer Academic Publishers, 253–285, 2004.
Gómez-Paccard, M., Larrasoaña, J. C., Giralt, S., and Roberts, A. P.: First paleomagnetic results of mid- to late Holocene sediments from Lake Issyk-Kul (Kyrgyzstan): Implications for paleosecular variation in central Asia, Geochem. Geosys., 13, Q03019, https://doi.org/10.1029/2011GC004015, 2012.
Goryachev, A. V.: Mesozoic-Cenozoic structure, history, tectonic development, and seismicity of the regions of Lake Issyk-Kul (in Russian), Moscow, 1959.
Grosswald, M. G., Kuhle, M., and Fastook, J. L.: Wurm glaciation of Lake Issyk-Kul area, Tien Shan Mts.: A case study in glacial history of Central Asia, Geojournal, 33, 1994.
Haq, B. U., Hardenbol, J., and Vail, P. R.: Chronology of fluctuating sea levels since the Triassic, Science, 235, 1156–1166, 1987.
Hodell, D. A., Anselmetti, F. S., Ariztegui, D., Brenner, M., Curtis, J. H., Gilli, A., Grzesik, D. A., Guilderson, T. J., Müller, A. D., Bush, M. B., Correa-Metrio, A., Escobar, J., and Kutterolf, S.: An 85-ka record of climate change in lowland Central America, Quaternary Sci. Rev., 27, 1152–1165, 2008.
Imbo, Y.: Study of the evolution of the Issyk Kul basin (Tien Shan, Kyrgyzstan) based on high-resolution reflection seismics (Studie van de evolutie van het Issyk-Kul bekken (Tien Shan, Kirgizië) gebaseerd op hoge-resolutie reflectieseismische profielen), University of Ghent, Ghent, 1998.
Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., Dove, D., Dowdeswell, J. A., England, J. H., Funder, S., Hogan, K., Ingólfsson, Ó., Jennings, A., Krog Larsen, N., Kirchner, N., Landvik, J. Y., Mayer, L., Mikkelsen, N., Möller, P., Niessen, F., Nilsson, J., O'Regan, M., Polyak, L., Nørgaard-Pedersen, N., and Stein, R.: Arctic Ocean glacial history, Quaternary Sci. Rev., 92, 40–67, 2014.
Knauf, I.: Geological Map of the USSR of 1:200000 Scales, Northern Tien-Shan Series, Sheet K-44-XIII, Russian Geological Research Institute (VSEGEI), Nedra, Moscow, 1965.
Kodyaev, T. V.: Morfometrical characteristics of Issyk-Kul Lake, Izv. Vses. Geogr. Obshch., 105, 48–57, 1973.
Koppes, M., Gillespie, A. R., Burke, R. M., Thompson, S. C., and Stone, J.: Late Quaternary glaciation in the Kyrgyz Tien Shan, Quaternary Sci. Rev., 27, 846–866, 2008.
Korotaev, V. M.: Beregovaya zona ozero Issyk-Kul (Coastal zone of Lake Issyk-Kul), Frunze, 151, 1967.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, 2014.
Larrasoaña, J. C., Gómez-Paccard, M., Giralt, S., and Roberts, A. P.: Rapid locking of tectonic magnetic fabrics in weakly deformed mudrocks, Tectonophysics, 507, 16–25, 2011.
Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J., Gleixner, G., Hettler-Riedel, S., Stebich, M., Schnetger, B., Schwalb, A., and Schwarz, A.: Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years, Holocene, 24, 970–984, 2014.
Lezzar, K. E., Tiercelin, J. J., De Batist, M., Cohen, A., Bandora, T., Van Rensbergen, P., Mifundu, W., and Klerkx, J.: New seismic stratigraphy and Late Tertiary history of the North Tanganyika Basin, East African Rift system, deduced from multifold reflection and high-resolution data and piston core evidence, Basin Res., 8, 1–28, 1996.
Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örcen, S., Heumann, G., Franz, S. O., Ülgen, U. B., and Niessen, F.: “PALEOVAN”, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives, Quaternary Sci. Rev., 28, 1555–1567, 2009.
Lyons, R. P., Scholz, C. A., Cohen, A. S., King, J. W., Brown, E. T., Ivory, S. J., Johnson, T. C., Deino, A. L., Reinthal, P. N., McGlue, M. M., and Blome, M. W.: Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity, P. Natl. Acad. Sci. USA, 112, 15568–15573, 2015.
Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Landgraf, A., Kohn, B., and Stuart, F.: Thermochronologic insight into late Cenozoic deformation in the basement-cored Terskey Range, Kyrgyz Tien Shan, Tectonics, 32, 487–500, 2013.
Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Kohn, B., and Stuart, F. M.: Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan, Tectonics, 33, 135–165, 2014.
Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Wack, M., Gilder, S. A., Mulch, A., Fortuna, A. B., Hynek, S., and Apayarov, F.: The sedimentary record of the Issyk Kul basin, Kyrgyzstan: climatic and tectonic inferences, Basin Res., 28, 57–80, https://doi.org/10.1111/bre.12098, 2016.
Machlus, M., Enzel, Y., Goldstein, S. L., Marco, S., and Stein, M.: Reconstructing low levels of Lake Lisan by correlating fan-delta and lacustrine deposits, Quatern. Int., 73–74, 137–144, 2000.
Markov, K. K.: Razrez noveishikh otlozhenii Issyk-Kulgskoi vpadiny (Sequence of the latest deposits of the Issyk-Kul basin), Moscow University Publishing House, Moscow, 1971.
Merkel, B. J. and Kulenbekov, Z.: Investigation of the natural uranium content in the Issyk-Kul Lake, Kyrgyzstan, Freiberg Online Geology 33, 3–45, 2012.
Moernaut, J., Verschuren, D., Charlet, F., Kristen, I., Fagot, M., and De Batist, M.: The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: Hydrological stability and change in equatorial East Africa over the last 140 kyr, Earth Planet. Sc. Lett., 290, 214–223, 2010.
Molnar, P. and Tapponier, P.: Cenozoic tectonics of Asia: effects of a continental collision, Science, 189, 419–426, 1975.
Naudts, L.: Seismisch-stratigrafische interpretatie van een complex deltasysteem in het Issyk-Kul Meer, Kyrghyzstan, Vakgroep Geologie en Bodemkunde, University of Gent, Gent, 133 pp., 2002.
Oberhänsli, H. and Molnar, P.: Climate Evolution in Central Asia during the Past Few Million Years: A Case Study from Issyk Kul, Sci. Dril., 13, 51–57, https://doi.org/10.2204/iodp.sd.13.09.2011, 2012.
Ricketts, R. D., Johnson, T. C., Brown, E. T., Rasmussen, K. A., and Romanovsky, V. V.: The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes, Palaeogeogr. Palaeocl., 176, 207–227, 2001.
Romanovsky, V. V.: The Natural Complex of Lake Issyk-Kul, Academy Nauk Kyrgyzstan (in Russian), Frunze Ilim, 1990.
Romanovsky, V. V.: Water level variations and water balance of Lake Issyk-Kul, in: Lake Issyk-Kul: Its Natural Environment, edited by: Klerkx, J. and Imanackunov, B., Kluwer Academic Publishers, Dordecht, 45–57, 2002.
Scholz, C. A.: East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins, P. Natl. Acad. Sci. USA, 104, 16416–16421, 2007.
Scholz, C. A., Karp, T., Brooks, K. M., Milkereit, B., Amoako, P. Y. O., and Arko, J. A.: Pronounced central uplift identified in the Bosumtwi impact structure, Ghana, using multichannel seismic reflection data, Geology, 30, 939–942, 2002.
Schramm, A., Stein, M., and Goldstein, S. L.: Calibration of the 14C time scale to 50 kyr by 234U/230Th dating of sediments from Lake Lisan (the paleo-Dead Sea), Earth Planet. Sc. Lett., 175, 27–40, 2000.
Shanahan, T. M., Overpeck, J. T., Wheeler, C. W., Beck, J. W., Pigati, J. S., Talbot, M. R., Scholz, C. A., Peck, J., and King, J. W.: Paleoclimatic variations in West Africa from a record of late Pleistocene and Holocene lake level stands of Lake Bosumtwi, Ghana, Palaeogeogr. Palaeocl., 242, 287–302, 2006.
Stavinsky, S., Romanovski, V., Tarasov, S., Imankulov, B., Zepker, I., Meskheteli, A., and Kuznetsov, D.: Results of complex profiling of Lake Issyk-Kul, Unpubl. Report, Ministry of Geology, Bishkek, 1984.
Stockhecke, M., Sturm, M., Brunner, I., Schmincke, H.-U., Sumita, M., Kipfer, R., Cukur, D., Kwiecien, O., Anselmetti, F. S., and Ariztegui, D.: Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years, Sedimentology, 61, 1830–1861, 2014.
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, Ó., Jakobsson, M., Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M. J., Spielhagen, R. F., and Stein, R.: Late Quaternary ice sheet history of northern Eurasia, Quaternary Sci. Rev., 23, 1229–1271, 2004.
Trofimov, A. K.: Quaternary deposits of Issyk-Kul Basin in connection to its tectonics, Izvestia A.S. Kirghyzkoy SSR N1, 1990.
Turchinskiy, V. P.: Geological map of the USSR of 1:200 000 scales, Northern Tien Shan series, Sheet K-43-XVIII, Russ. Geol. Res. Inst., Nedra, Moscow, 1970.
Vail, P. R., Todd, R. G., and Sangree, J. B.: Seismic stratigraphy and global changes of sea level, Part five: chronostratigraphic significance of seismic reflections, Seismic Stratigraphy – Applications to Hydrocarbon Exploration, edited by: Payton, C. E., American Association of Petroleum Geologists Memoir 26, Tulsa, OK, 99–116, 1977.
Vermeesch, P., Poort, J., Duchkov, A. D., Klerkx, J., and De Batist, M.: Lake Issyk Kul' (Tien Shan): Unusually low heat flow in an active intermontane Basin, Russ. Geol. Geophys., 45, 616–625, 2004.
Wack, M. R., Gilder, S. A., Macaulay, E. A., Sobel, E. R., Charreau, J., and Mikolaichuk, A.: Cenozoic magnetostratigraphy and magnetic properties of the southern Issyk-Kul basin, Kyrgyzstan, Tectonophysics, 629, 14–26, 2014.
Zabirov, R. D.: Location and morphology of the Lake, Ozero Issyk-Kul (Lake Issyk-Kul), Frunze, 12–20, 1978.
Zech, R.: A late Pleistocene glacial chronology from the Kitschi-Kurumdu Valley, Tien Shan (Kyrgyzstan), based on 10Be surface exposure dating, Quaternary Res., 77, 281–288, 2012.
Zech, W., Zech, R., Zech, M., Leiber, K., Dippold, M., Frechen, M., Bussert, R., and Andreev, A. A.: Obliquity forcing of Quaternary glaciation and environmental changes in NE Siberia, Quatern. Int., 234, 133–145, 2011.
Short summary
Seismic profiles from the western and eastern deltas of Lake Issyk-Kul were used to identify lake-level changes of up to 400 m. Seven stratigraphic sequences were identified, each containing a series of delta lobes that were formed during former lake-level stillstands. Lake-level fluctuations point to significant changes in the strength and position of the Siberian High and the mid-latitude Westerlies. Their interplay is responsible for the amount of moisture that reaches this area.
Seismic profiles from the western and eastern deltas of Lake Issyk-Kul were used to identify...