Articles | Volume 13, issue 4
https://doi.org/10.5194/cp-13-317-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-317-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Freshening of the Labrador Sea as a trigger for Little Ice Age development
Montserrat Alonso-Garcia
CORRESPONDING AUTHOR
College of Marine Science, University of South Florida, St. Petersburg, FL, USA
Instituto Português do Mar e da Atmosfera (IPMA), Div. de Geologia e Georecursos Marinhos, Lisbon, Portugal
Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
Helga (Kikki) F. Kleiven
University of Bergen and Bjerknes Centre for Climate Research, Postboks 7803, 5020 Bergen, Norway
Jerry F. McManus
Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000, USA
Paola Moffa-Sanchez
School of Earth and Ocean Sciences, Cardiff University, Park Place, CF10 3YE, Cardiff, UK
Wallace S. Broecker
Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000, USA
Benjamin P. Flower
College of Marine Science, University of South Florida, St. Petersburg, FL, USA
deceased
Related authors
Dulce Oliveira, Stéphanie Desprat, Qiuzhen Yin, Coralie Zorzi, Zhipeng Wu, Krishnamurthy Anupama, Srinivasan Prasad, Montserrat Alonso-García, and Philippe Martinez
EGUsphere, https://doi.org/10.5194/egusphere-2024-3341, https://doi.org/10.5194/egusphere-2024-3341, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present an unprecedented record of Indian summer monsoon (ISM)-induced vegetation changes for MIS 11, a key interglacial. Site U1446 pollen data and models show that ISM-vegetation shifts stem from an interplay of dominant forcings based on boundary conditions. Insolation is the main driver during MIS 11c interglacial conditions, akin to future scenarios, while ice volume and CO₂ prevail in the glacial inception. Superimposed changes are marked by prominent forest contractions and expansions.
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Dulce Oliveira, Stéphanie Desprat, Qiuzhen Yin, Coralie Zorzi, Zhipeng Wu, Krishnamurthy Anupama, Srinivasan Prasad, Montserrat Alonso-García, and Philippe Martinez
EGUsphere, https://doi.org/10.5194/egusphere-2024-3341, https://doi.org/10.5194/egusphere-2024-3341, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We present an unprecedented record of Indian summer monsoon (ISM)-induced vegetation changes for MIS 11, a key interglacial. Site U1446 pollen data and models show that ISM-vegetation shifts stem from an interplay of dominant forcings based on boundary conditions. Insolation is the main driver during MIS 11c interglacial conditions, akin to future scenarios, while ice volume and CO₂ prevail in the glacial inception. Superimposed changes are marked by prominent forest contractions and expansions.
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Anastasia G. Yanchilina, Celine Grall, William B. F. Ryan, Jerry F. McManus, and Candace O. Major
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-30, https://doi.org/10.5194/cp-2019-30, 2019
Manuscript not accepted for further review
Short summary
Short summary
This paper is about regional sea level during Marine Isotope Stage 3 (MIS 3) with broader implications for eustatic sea level during MIS 3. There is no current good constraint. We provide evidence that regional sea level in the northeast Mediterranean had to remain low, below 80 mbsl from seismic and geochemical observations. This has implications for understanding eustatic sea level fluctuations during MIS 3, modelling glacio-isostatic adjustment, and ice sheet/terrestrial interactions.
Marijke W. de Bar, Dave J. Stolwijk, Jerry F. McManus, Jaap S. Sinninghe Damsté, and Stefan Schouten
Clim. Past, 14, 1783–1803, https://doi.org/10.5194/cp-14-1783-2018, https://doi.org/10.5194/cp-14-1783-2018, 2018
Short summary
Short summary
We present a past sea surface temperature and paleoproductivity record over the last 150 000 years for ODP Site 1234 (Chilean margin). We tested the applicability of long-chain diol proxies for the reconstrucion of SST (LDI), past upwelling conditions (diol index), and nutrient concentrations (NDI). The LDI likely reflects past temperature changes, but the diol index and NDI are perhaps more indicative of Proboscia diatom productivity rather than upwelling and/or nutrient conditions.
James W. B. Rae and Wally Broecker
Biogeosciences, 15, 3779–3794, https://doi.org/10.5194/bg-15-3779-2018, https://doi.org/10.5194/bg-15-3779-2018, 2018
Short summary
Short summary
The deep ocean is the major store of heat and carbon in Earth's surface environment and thus has a major impact on climate. Waters that fill the deep ocean come from the North Atlantic and the Southern Ocean, but there is debate on their relative importance. Here we reconcile previous estimates using deep sea phosphate and oxygen data. We show that although a large volume of deep water comes from the south, this does not spend enough time in the southern surface to fully exchange heat and CO2.
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
D. J. R. Thornalley, M. Blaschek, F. J. Davies, S. Praetorius, D. W. Oppo, J. F. McManus, I. R. Hall, H. Kleiven, H. Renssen, and I. N. McCave
Clim. Past, 9, 2073–2084, https://doi.org/10.5194/cp-9-2073-2013, https://doi.org/10.5194/cp-9-2073-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Centennial-Decadal
A reconstruction of warm-water inflow to Upernavik Isstrøm since 1925 CE and its relation to glacier retreat
The climate of the Common Era off the Iberian Peninsula
Variability in terrigenous sediment supply offshore of the Río de la Plata (Uruguay) recording the continental climatic history over the past 1200 years
Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation
The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia
The Impact of the Little Ice Age on Coccolithophores in the Central Mediterranea Sea
Flor Vermassen, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen
Clim. Past, 15, 1171–1186, https://doi.org/10.5194/cp-15-1171-2019, https://doi.org/10.5194/cp-15-1171-2019, 2019
Short summary
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
Fátima Abrantes, Teresa Rodrigues, Marta Rufino, Emília Salgueiro, Dulce Oliveira, Sandra Gomes, Paulo Oliveira, Ana Costa, Mário Mil-Homens, Teresa Drago, and Filipa Naughton
Clim. Past, 13, 1901–1918, https://doi.org/10.5194/cp-13-1901-2017, https://doi.org/10.5194/cp-13-1901-2017, 2017
Short summary
Short summary
Reconstructions of the last 2000-year climatic conditions along the Iberian Margin, a vulnerable region regarding current global warming, reveal a long-term cooling in sea surface temperature (SST) ending with the 19th century and centennial-scale variability that exposes warm SSTs throughout the first 1300 years followed by the colder Little Ice Age. The Industrial Era starts by 1800 CE, with an SST rise and a second increase in SST at ca. 1970 CE, particularly marked in the southern region.
Laura Perez, Felipe García-Rodríguez, and Till J. J. Hanebuth
Clim. Past, 12, 623–634, https://doi.org/10.5194/cp-12-623-2016, https://doi.org/10.5194/cp-12-623-2016, 2016
Short summary
Short summary
The observed changes in the presented proxy records indicate variations in both the continental runoff and the marine influence, related to regional climatic variability. Therefore, we put forward the suggestion that global atmospheric changes (related to changes in SAMS and SACZ intensity) have made an impact on the hydrodynamics and, consequently, on the local sedimentation regime and the inner Uruguayan continental shelf over the past 1200 cal yr BP (AD 750–2000).
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
R. Salvatteci, D. Gutiérrez, D. Field, A. Sifeddine, L. Ortlieb, I. Bouloubassi, M. Boussafir, H. Boucher, and F. Cetin
Clim. Past, 10, 715–731, https://doi.org/10.5194/cp-10-715-2014, https://doi.org/10.5194/cp-10-715-2014, 2014
A. Incarbona, P. Ziveri, E. Di Stefano, F. Lirer, G. Mortyn, B. Patti, N. Pelosi, M. Sprovieri, G. Tranchida, M. Vallefuoco, S. Albertazzi, L. G. Bellucci, A. Bonanno, S. Bonomo, P. Censi, L. Ferraro, S. Giuliani, S. Mazzola, and R. Sprovieri
Clim. Past, 6, 795–805, https://doi.org/10.5194/cp-6-795-2010, https://doi.org/10.5194/cp-6-795-2010, 2010
Cited articles
Alonso-Garcia, M., Andrews, J. T., Belt, S. T., Cabedo-Sanz, P., Darby, D., and Jaeger, J.: A comparison between multiproxy and historical data (AD 1990–1840) of drift ice conditions on the East Greenland shelf ( ∼ 66° N), The Holocene, 23, 1672–1683, 2013.
Alonso-Garcia, M., Kleiven, H. F., McManus, J. F., Moffa-Sanchez, P., Broecker, W. S., and Flower, B. P.: Ice-rafing history in the Labrador Sea during the last millennium. Dataset #874286 (DOI registration in progress), https://doi.pangaea.de/10.1594/PANGAEA.874286, 2017.
Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjork, A. A., Andersen, T. J., Kuijpers, A., Norgaard-Pedersen, N., Kjaer, K. H., Schjoth, F., Weckstrom, K., and Ahlstrom, A. P.: Rapid response of Helheim Glacier in Greenland to climate variability over the past century, Nat. Geosci., 5, 37–41, 2012.
Andrews, J. T.: Icebergs and iceberg rafted detritus (IRD) in the North Atlantic: Facts and assumptions, Oceanography, 13, 100–108, 2000.
Andrews, J. T., Belt, S. T., Olafsdottir, S., Massé, G., and Vare, L. L.: Sea ice and marine climate variability for NW Iceland/Denmark Strait over the last 2000 cal. yr BP, The Holocene, 19, 775–784, 2009.
Andrews, J. T., Bigg, G. R., and Wilton, D. J.: Holocene ice-rafting and sediment transport from the glaciated margin of East Greenland (67–70° N) to the N Iceland shelves: detecting and modelling changing sediment sources, Quaternary Sci. Rev., 91, 204–217, 2014.
Atwood, A. R., Wu, E., Frierson, D. M. W., Battisti, D. S., and Sachs, J. P.: Quantifying Climate Forcings and Feedbacks over the Last Millennium in the CMIP5–PMIP3 Models, J. Climate, 29, 1161–1178, 2016.
Bailey, I., Foster, G. L., Wilson, P. A., Jovane, L., Storey, C. D., Trueman, C. N., and Becker, J.: Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum, Earth Planet. Sc. Lett., 341–344, 222-233, 2012.
Barriopedro, D., García-Herrera, R., and Huth, R.: Solar modulation of Northern Hemisphere winter blocking, J. Geophys. Res.-Atmos., 113, D14118, https://doi.org/10.1029/2008JD009789, 2008.
Bischof, J. F. and Darby, D. A.: Mid- to Late Pleistocene Ice Drift in the Western Arctic Ocean: Evidence for a Different Circulation in the Past, Science, 277, 74–78, 1997.
Blindheim, J. and Malmberg, S. A.: The mean sea level pressure gradient across the Denmark Strait as an indicator of conditions in the North Icelandic Irminger current, in: The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling, Geophys. Monogr. Ser., AGU, Washington, DC, 2005.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates, Science, 278, 1257–1266, 1997.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar Influence on North Atlantic Climate During the Holocene, Science, 294, 2130–2136, 2001.
Bond, G. C. and Lotti, R.: Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation, Science, 267, 1005–1010, 1995.
Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A., and Funk, A.: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning, Geophys. Res. Lett., 33, L21S01, https://doi.org/10.1029/2006GL026906, 2006.
Born, A. and Stocker, T. F.: Two Stable Equilibria of the Atlantic Subpolar Gyre, J. Phys. Oceanogr., 44, 246–264, 2014.
Born, A., Nisancioglu, K., and Braconnot, P.: Sea ice induced changes in ocean circulation during the Eemian, Clim. Dynam., 35, 1361–1371, 2010.
Born, A., Stocker, T. F., and Sandø, A. B.: Transport of salt and freshwater in the Atlantic Subpolar Gyre, Ocean Dynam., 66, 1051–1064, 2016.
Born, A. and Stocker, T. F.: Two Stable Equilibria of the Atlantic Subpolar Gyre, J. Phys. Oceanogr., 44, 246–264, 2014.
Bradley, R. S., Briffa, K. R., Cole, J., Hughes, M. K., and Osborn, T. J.: The climate of the last millennium, in: Paleoclimate, global change and the future, Springer, 2003.
Copard, K., Colin, C., Henderson, G. M., Scholten, J., Douville, E., Sicre, M. A., and Frank, N.: Late Holocene intermediate water variability in the northeastern Atlantic as recorded by deep-sea corals, Earth Planet. Sc. Lett., 313–314, 34–44, 2012.
Darby, D. A., Ortiz, J. D., Grosch, C. E., and Lund, S. P.: 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift, Nat. Geosci., 5, 897–900, 2012.
Dickson, R. R., Meincke, J., Malmberg, S.-A., and Lee, A. J.: The “great salinity anomaly” in the Northern North Atlantic 1968–1982, Prog. Oceanogr., 20, 103–151, 1988.
Dokken, T. and Ninnemann, U.: Cruise Report R/V G.O. Sars, UoB Cruise No: GS06-144, 2006.
Dugmore, A. J., McGovern, T. H., Vésteinsson, O., Arneborg, J., Streeter, R., and Keller, C.: Cultural adaptation, compounding vulnerabilities and conjunctures in Norse Greenland, P. Natl. Acad. Sci. USA, 109, 3658–3663, 2012.
Fillon, R. H., Miller, G. H., and Andrews, J. T.: Terrigenous sand in Labrador Sea hemipelagic sediments and paleoglacial events on Baffin Island over the last 100, 00 years, Boreas, 10, 107–124, 1981.
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008.
Grönvold, K., Óskarsson, N., Johnsen, S. J., Clausen, H. B., Hammer, C. U., Bond, G., and Bard, E.: Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments, Earth Planet. Sc. Lett., 135, 149–155, 1995.
Hakkinen, S. and Rhines, P. B.: Decline of Subpolar North Atlantic Circulation During the 1990s, Science, 304, 555–559, 2004.
Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Atmospheric blocking and Atlantic multidecadal ocean variability, Science, 334, 655–659, 2011.
Hatun, H., Sando, A. B., Drange, H., Hansen, B., and Valdimarsson, H.: Influence of the Atlantic Subpolar Gyre on the Thermohaline Circulation, Science, 309, 1841–1844, 2005.
Henriksen, N., Higgins, A. K., Kalsbeek, F., and Pulvertaft, T. C. R.: Greenland from Archaean to Quaternary. Descriptive text to the 1995 Geological map of Greenland, 1 : 2 500 000. 2nd edition, Geol. Surv. Den. Greenl., 18, 126 pp. + map, 2009.
Hilmer, M. and Jung, T.: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic Sea ice export, Geophys. Res. Lett., 27, 989-992, 2000.
Hughen, K. A., Baillie, M. G., Bard, E., Beck, J. W., Bertrand, C. J., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., and Damon, P. E.: Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP, Radiocarbon, 46, 1059–1086, 2004.
Jennings, A., Thordarson, T., Zalzal, K., Stoner, J., Hayward, C., Geirsdóttir, Á., and Miller, G.: Holocene tephra from Iceland and Alaska in SE Greenland shelf sediments, Geological Society, London, Special Publications, 398, SP398, 396, 2014.
Jennings, A. E. and Weiner, N. J.: Environmental change in eastern Greenland during the last 1300 years: evidence from foraminifera and lithofacies in Nansen Fjord, 68° N, The Holocene, 6, 179–191, 1996.
Jiang, H., Ren, J., Knudsen, K., Eiríksson, J., and Ran, L.: Summer sea-surface temperatures and climate events on the North Icelandic shelf through the last 3000 years, Chin. Sci. Bull., 52, 789–796, 2007.
Joughin, I., Howat, I., Alley, R. B., Ekstrom, G., Fahnestock, M., Moon, T., Nettles, M., Truffer, M., and Tsai, V. C.: Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland, J. Geophys. Res.-Earth, 113, F01004, https://doi.org/10.1029/2007jf000837, 2008.
Kobashi, T., Severinghaus, J., Barnola, J.-M., Kawamura, K., Carter, T., and Nakaegawa, T.: Persistent multi-decadal Greenland temperature fluctuation through the last millennium, Clim. Change, 100, 733–756, 2010.
Kuijpers, A., Mikkelsen, N., Ribeiro, S., and Seidenkrantz, M.-S.: Impact of medieval fjord hydrography and climate on the western and eastern settlements in Norse Greenland, Journal of the North Atlantic, 6, 1–13, 2014.
Lacasse, C.: Influence of climate variability on the atmospheric transport of Icelandic tephra in the subpolar North Atlantic, Global Planet. Change, 29, 31–55, 2001.
Lehner, F., Born, A., Raible, C. C., and Stocker, T. F.: Amplified Inception of European Little Ice Age by Sea Ice–Ocean–Atmosphere Feedbacks, J. Clim., 26, 7586–7602, 2013.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1: Temperature, edited by: Levitus, S., A. Mishonov Technical Ed., NOAA Atlas NESDIS 73, 40 pp., 2013.
Manabe, S. and Stouffer, R. J.: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean, Nature, 378, 165–167, 1995.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256–1260, 2009.
Massé, G., Rowland, S. J., Sicre, M.-A., Jacob, J., Jansen, E., and Belt, S. T.: Abrupt climate changes for Iceland during the last millennium: Evidence from high resolution sea ice reconstructions, Earth Planet. Sc. Lett., 269, 565–569, 2008.
McManus, J. F., Major, C., Flower, B. P., and Fronval, T.: Variability in sea-surface conditions in the North Atlantic-Arctic gateways during the last 140 000 years, in: Proceedings of the Ocean Drilling Program. Scientific results, College Station, TX, edited by: Thiede, J., Myhre, A. M., Firth, J. V., Johnson, G. L., and Ruddiman, W. F., Ocean Drilling Program, v. 151, 1996.
Meeker, L. D. and Mayewski, P. A.: A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia, The Holocene, 12, 257–266, 2002.
Miettinen, A., Divine, D. V., Husum, K., Koç, N., and Jennings, A.: Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly, Paleoceanography, 30, 1657–1674, 2015.
Miller, G. H., Geirsdóttir, Á., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Moffa-Sanchez, P., Born, A., Hall, I. R., Thornalley, D. J. R., and Barker, S.: Solar forcing of North Atlantic surface temperature and salinity over the past millennium, Nat. Geosci., 7, 275–278, 2014a.
Moffa-Sanchez, P., Hall, I. R., Barker, S., Thornalley, D. J. R., and Yashayaev, I.: Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age, Paleoceanography, 29, 2013PA002523, https://doi.org/10.1002/2013pa002523, 2014b.
Mokeddem, Z. and McManus, J. F.: Persistent climatic and oceanographic oscillations in the subpolar North Atlantic during the MIS 6 glaciation and MIS 5 interglacial, Paleoceanography, 31, 778, https://doi.org/10.1002/2015PA002813, 2016.
Mokeddem, Z., McManus, J. F., and Oppo, D. W.: Oceanographic dynamics and the end of the last interglacial in the subpolar North Atlantic, P. Natl. Acad. Sci. USA, 111, 11263–11268, 2014.
Moreno-Chamarro, E., Zanchettin, D., Lohmann, K., and Jungclaus, J. H.: Internally generated decadal cold events in the northern North Atlantic and their possible implications for the demise of the Norse settlements in Greenland, Geophys. Res. Lett., 42, 908–915, 2015.
Moreno-Chamarro, E., Zanchettin, D., Lohmann, K., and Jungclaus, J. H.: An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes, Clim. Dynam., 48, 727–744, https://doi.org/10.1007/s00382-016-3106-7, 2017.
Moros, M., McManus, J. F., Rasmussen, T., Kuijpers, A., Dokken, T., Snowball, I., Nielsen, T., and Jansen, E.: Quartz content and the quartz-to-plagioclase ratio determined by X-ray diffraction: a proxy for ice rafting in the northern North Atlantic?, Earth Planet. Sc. Lett., 218, 389–401, 2004.
Moros, M., Andrews, J. T., Eberl, D. D., and Jansen, E.: Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes, Paleoceanography, 21, PA2017, https://doi.org/10.1029/2005PA001214, 2006.
Moros, M., Jansen, E., Oppo, D. W., Giraudeau, J., and Kuijpers, A.: Reconstruction of the late-Holocene changes in the Sub-Arctic Front position at the Reykjanes Ridge, north Atlantic, The Holocene, 22, 877–886, 2012.
Mugford, R. I. and Dowdeswell, J. A.: Modeling iceberg-rafted sedimentation in high-latitude fjord environments, J. Geophys. Res.-Earth, 115, F03024, https://doi.org/10.1029/2009jf001564, 2010.
Murray, T., Scharrer, K., James, T. D., Dye, S. R., Hanna, E., Booth, A. D., Selmes, N., Luckman, A., Hughes, A. L. C., Cook, S., and Huybrechts, P.: Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes, J. Geophys. Res.-Earth, 115, F03026, https://doi.org/10.1029/2009jf001522, 2010.
Mysak, L. A.: Patterns of Arctic Circulation, Science, 293, 1269–1270, 2001.
Nyland, B. F., Jansen, E., Elderfield, H., and Andersson, C.: Neogloboquadrina pachyderma (dex. and sin.) Mg/Ca and δ18O records from the Norwegian Sea, Geochem. Geophy. Geosy., 7, Q10P17, https://doi.org/10.1029/2005GC001055, 2006.
Ogilvie, A. E. J. and Jónsson, T.: “Little Ice Age” Research: A Perspective from Iceland, Clim. Change, 48, 9–52, 2001.
Ogilvie, A. E. J., Barlow, L. K., and Jennings, A. E.: North Atlantic climate c.ad 1000: Millennial reflections on the Viking discoveries of Iceland, Greenland and North America, Weather, 55, 34–45, 2000.
PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, 2013.
Petersen, H. I., Øverland, J. A., Solbakk, T., Bojesen-Koefoed, J. A., and Bjerager, M.: Unusual resinite-rich coals found in northeastern Greenland and along the Norwegian coast: Petrographic and geochemical composition, Int. J. Coal Geol., 109–110, 58–76, 2013.
Polar Regions Atlas: Washington, DC, Foreign Assessment Center, Central Intelligence Agency, 1978.
Reeh, N., Thomsen, H. H., Higgins, A. K., and Weidick, A.: Sea ice and the stability of north and northeast Greenland floating glaciers, Ann. Glaciol., 33, 474–480, 2001.
Rhein, M., Fischer, J., Smethie, W., Smythe-Wright, D., Weiss, R., Mertens, C., Min, D.-H., Fleischmann, U., and Putzka, A.: Labrador Sea Water: Pathways, CFC inventory, and formation rates, J. Phys. Oceanogr., 32, 648–665, 2002.
Rignot, E. and Kanagaratnam, P.: Changes in the Velocity Structure of the Greenland Ice Sheet, Science, 311, 986–990, 2006.
Rigor, I. G., Wallace, J. M., and Colony, R. L.: Response of Sea Ice to the Arctic Oscillation, J. Clim., 15, 2648–2663, 2002.
Ruddiman, W. F.: Late Quaternary deposition of ice rafted sand in the subpolar North Atlantic (lat 40° to 65° N), Geol. Soc. Am. Bull., 88, 1813–1827, 1977.
Sarafanov, A.: On the effect of the North Atlantic Oscillation on temperature and salinity of the subpolar North Atlantic intermediate and deep waters, ICES Journal of Marine Science: Journal du Conseil, 66, 1448–1454, 2009.
Schmitz, W. J. and McCartney, M.: On the North Atlantic Circulation, Rev. Geophys., 31, 29–49, 1993.
Sejrup, H. P., Lehman, S. J., Haflidason, H., Noone, D., Muscheler, R., Berstad, I. M., and Andrews, J. T.: Response of Norwegian Sea temperature to solar forcing since 1000 A.D, J. Geophys. Res., 115, C12034, https://doi.org/10.1029/2010jc006264, 2010.
Shabbar, A., Huang, J., and Higuchi, K.: The relationship between the wintertime North Atlantic Oscillation and blocking episodes in the North Atlantic, Int. J. Climatol., 21, 355–369, 2001.
Sicre, M.-A., Jacob, J., Ezat, U., Rousse, S., Kissel, C., Yiou, P., Eiríksson, J., Knudsen, K. L., Jansen, E., and Turon, J.-L.: Decadal variability of sea surface temperatures off North Iceland over the last 2000 years, Earth Planet. Sc. Lett., 268, 137–142, 2008.
Sicre, M. A., Weckström, K., Seidenkrantz, M. S., Kuijpers, A., Benetti, M., Masse, G., Ezat, U., Schmidt, S., Bouloubassi, I., Olsen, J., Khodri, M., and Mignot, J.: Labrador current variability over the last 2000 years, Earth Planet. Sci. Lett., 400, 26–32, 2014.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Buntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schupbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.: Timing and climate forcing of volcanic eruptions for the past 2,500 years, Nature, 523, 543–549, 2015.
Steinhilber, F., Beer, J., and Fröhlich, C.: Total solar irradiance during the Holocene, Geophys. Res. Lett., 36, L19704, https://doi.org/19710.11029/12009GL040142, 2009.
Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G., Griffies, S., Hallberg, R., Jenkins, A., Joughin, I., Motyka, R., Pfeffer, W. T., Price, S. F., Rignot, E., Scambos, T., Truffer, M., and Vieli, A.: Challenges to Understanding the Dynamic Response of Greenland's Marine Terminating Glaciers to Oceanic and Atmospheric Forcing, B. Am. Meteorol. Soc., 94, 1131–1144, 2013.
Stuiver, M. and Reimer, P. J.: Extended 14 C data base and revised CALIB 3.0 14 C age calibration program, Radiocarbon, 35, 215–230, 1993.
Talley, L. D.: Shallow, intermediate, and deep overturning components of the global heat budget, J. Phys. Oceanogr., 33, 530–560, 2003.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic, Nature, 457, 711–714, 2009.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30, 3109–3123, 2011.
Wanner, H., Mercolli, L., Grosjean, M., and Ritz, S. P.: Holocene climate variability and change; a data-based review, J. Geol. Soc., 172, 254–263, 2015.
Yang, Q., Dixon, T. H., Myers, P. G., Bonin, J., Chambers, D., and van den Broeke, M. R.: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation, Nat. Commun., 7, 10525, https://doi.org/10.1038/ncomms10525, 2016.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity, edited by: Levitus, S., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 74, 39 pp., 2013.
Short summary
This study focuses on understanding climatic and oceanographic variations that took place during the last 1000 years. We studied sediment samples from the Labrador Sea, looking for evidence of events of freshwater and iceberg discharges to this region. The importance of this study is to evaluate when these events happened and their consequences. The freshening of the Labrador Sea region may have played a major role in promoting cooling during the 15th to 19th centuries.
This study focuses on understanding climatic and oceanographic variations that took place during...