Articles | Volume 13, issue 12
https://doi.org/10.5194/cp-13-1901-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-13-1901-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The climate of the Common Era off the Iberian Peninsula
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de
Gambelas, 8005-139 Faro, Portugal
Teresa Rodrigues
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de
Gambelas, 8005-139 Faro, Portugal
Marta Rufino
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de
Gambelas, 8005-139 Faro, Portugal
IFREMER – Centre Atlantique (French Research Institute for Exploitation
of the Sea), Département Ecologie et Modèles pour l'Halieutique
(EMH), Rue de l'Ile d'Yeu – BP 21105, 44311 Nantes CEDEX 3, France
Emília Salgueiro
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de
Gambelas, 8005-139 Faro, Portugal
Dulce Oliveira
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de
Gambelas, 8005-139 Faro, Portugal
Paléoclimatologie et paléoenvironnements marins, Université de Bordeaux, EPOC, UMR 5805, 33615 Pessac, France
Sandra Gomes
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
Paulo Oliveira
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
Ana Costa
Centro de Investigação em Biodiversidade e Recursos Genétics
(EnvArchCIBIO/InBIO) and Archaeosciences Laboratory (LARC/DGPC), Rua da Bica
do Marquês, 2, 1300-087 Lisbon, Portugal
Mário Mil-Homens
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
Teresa Drago
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
Instituto Dom Luiz, Universidade de Lisboa, 1749-016 Lisbon, Portugal
Filipa Naughton
Portuguese Institute for Sea and Atmosphere (IPMA), Divisão de
Geologia Marinha (DivGM), Rua Alferedo Magalhães Ramalho 6, 1495-006 Lisbon,
Portugal
CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de
Gambelas, 8005-139 Faro, Portugal
Related authors
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Short summary
Coccolithophores account for a major fraction of the carbonate produced in the world's oceans. However, their contribution in the subantarctic Southern Ocean remains undocumented. We quantitatively partition calcium carbonate fluxes amongst coccolithophore species in the Australian–New Zealand sector of the Southern Ocean. We provide new insights into the importance of species other than Emiliania huxleyi in the carbon cycle and assess their possible response to projected environmental change.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
Fátima Abrantes, Teresa Rodrigues, Marta Rufino, Emília Salgueiro, Dulce Oliveira, Sandra Gomes, Paulo Oliveira, Ana Costa, Mário Mil-Homens, Teresa Drago, and Filipa Naughton
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-39, https://doi.org/10.5194/cp-2017-39, 2017
Manuscript not accepted for further review
Short summary
Short summary
This work presents proxy reconstructions of the last 2000 yr climatic conditions along the eastern Margin of the Iberian Peninsula, a vulnerable region regarding current global warming. Sea Surface Temperature shows a long-term cooling ending with the 19th century, and centennial scale variability that exposes 1300 yr of warm conditions, up to the end of the Medieval Warm Period (MWP), followed by a 1 ºC colder Little Ice Age. The Industrial Era starts by 1800 CE with a rise to MWP values.
Diana Zúñiga, Celia Santos, María Froján, Emilia Salgueiro, Marta M. Rufino, Francisco De la Granda, Francisco G. Figueiras, Carmen G. Castro, and Fátima Abrantes
Biogeosciences, 14, 1165–1179, https://doi.org/10.5194/bg-14-1165-2017, https://doi.org/10.5194/bg-14-1165-2017, 2017
Short summary
Short summary
Diatoms are one of the most important primary producers in highly productive coastal regions. Their silicified valves are susceptible to escape from the upper water column and be preserved in the sediment record, and thus are frequently used to reconstruct environmental conditions in the past from sediment cores. Here, we assess how water column diatom’s community in the NW Iberian coastal upwelling system is seasonally transferred from the surface to the seafloor sediments.
Fatima Abrantes, Pedro Cermeno, Cristina Lopes, Oscar Romero, Lélia Matos, Jolanda Van Iperen, Marta Rufino, and Vitor Magalhães
Biogeosciences, 13, 4099–4109, https://doi.org/10.5194/bg-13-4099-2016, https://doi.org/10.5194/bg-13-4099-2016, 2016
Short summary
Short summary
Diatoms are the dominant primary producers of the most productive and best fishing areas of the modern ocean, the coastal upwelling systems. This turns them into important contributors to the biological pump and climate change. To help untangle their response to warming climate, we compare the worldwide diatom sedimentary abundance (SDA) to environmental variables and find that the capacity of diatoms to take up silicic acid sets an upper limit on global export production in these ocean regions.
Aline Martins Mega, Teresa Rodrigues, Emilia Salgueiro, Maria Padilha, Henning Kuhnert, and Antje H. L. Voelker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3185, https://doi.org/10.5194/egusphere-2024-3185, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our research explores climatic changes during the Early-Middle Pleistocene (1006–750 kilo years) on the southern Portuguese margin. We found that warm, subtropical gyre related conditions dominated. However, those conditions were occasionally interrupted by extreme cold events during the glacial periods. Our data shows that these cold events, linked to changes in the North Atlantic’s circulation, reached as far south as 36° N and significantly impacting marine ecosystems in the surface ocean.
Daniel Juncu, Xavier Ceamanos, Isabel F. Trigo, Sandra Gomes, and Sandra C. Freitas
Geosci. Instrum. Method. Data Syst., 11, 389–412, https://doi.org/10.5194/gi-11-389-2022, https://doi.org/10.5194/gi-11-389-2022, 2022
Short summary
Short summary
MDAL is a near real-time, satellite-based surface albedo product based on the geostationary Meteosat Second Generation mission. We propose an update to the processing algorithm that generates MDAL and evaluate the results of these changes through comparison with the pre-update, currently operational MDAL product as well as reference data using different satellite-based albedo products and in situ measurements. We find that the update provides a valuable improvement.
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Short summary
Coccolithophores account for a major fraction of the carbonate produced in the world's oceans. However, their contribution in the subantarctic Southern Ocean remains undocumented. We quantitatively partition calcium carbonate fluxes amongst coccolithophore species in the Australian–New Zealand sector of the Southern Ocean. We provide new insights into the importance of species other than Emiliania huxleyi in the carbon cycle and assess their possible response to projected environmental change.
Julien Schirrmacher, Mara Weinelt, Thomas Blanz, Nils Andersen, Emília Salgueiro, and Ralph R. Schneider
Clim. Past, 15, 617–634, https://doi.org/10.5194/cp-15-617-2019, https://doi.org/10.5194/cp-15-617-2019, 2019
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
Fátima Abrantes, Teresa Rodrigues, Marta Rufino, Emília Salgueiro, Dulce Oliveira, Sandra Gomes, Paulo Oliveira, Ana Costa, Mário Mil-Homens, Teresa Drago, and Filipa Naughton
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-39, https://doi.org/10.5194/cp-2017-39, 2017
Manuscript not accepted for further review
Short summary
Short summary
This work presents proxy reconstructions of the last 2000 yr climatic conditions along the eastern Margin of the Iberian Peninsula, a vulnerable region regarding current global warming. Sea Surface Temperature shows a long-term cooling ending with the 19th century, and centennial scale variability that exposes 1300 yr of warm conditions, up to the end of the Medieval Warm Period (MWP), followed by a 1 ºC colder Little Ice Age. The Industrial Era starts by 1800 CE with a rise to MWP values.
Diana Zúñiga, Celia Santos, María Froján, Emilia Salgueiro, Marta M. Rufino, Francisco De la Granda, Francisco G. Figueiras, Carmen G. Castro, and Fátima Abrantes
Biogeosciences, 14, 1165–1179, https://doi.org/10.5194/bg-14-1165-2017, https://doi.org/10.5194/bg-14-1165-2017, 2017
Short summary
Short summary
Diatoms are one of the most important primary producers in highly productive coastal regions. Their silicified valves are susceptible to escape from the upper water column and be preserved in the sediment record, and thus are frequently used to reconstruct environmental conditions in the past from sediment cores. Here, we assess how water column diatom’s community in the NW Iberian coastal upwelling system is seasonally transferred from the surface to the seafloor sediments.
Fatima Abrantes, Pedro Cermeno, Cristina Lopes, Oscar Romero, Lélia Matos, Jolanda Van Iperen, Marta Rufino, and Vitor Magalhães
Biogeosciences, 13, 4099–4109, https://doi.org/10.5194/bg-13-4099-2016, https://doi.org/10.5194/bg-13-4099-2016, 2016
Short summary
Short summary
Diatoms are the dominant primary producers of the most productive and best fishing areas of the modern ocean, the coastal upwelling systems. This turns them into important contributors to the biological pump and climate change. To help untangle their response to warming climate, we compare the worldwide diatom sedimentary abundance (SDA) to environmental variables and find that the capacity of diatoms to take up silicic acid sets an upper limit on global export production in these ocean regions.
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Centennial-Decadal
A reconstruction of warm-water inflow to Upernavik Isstrøm since 1925 CE and its relation to glacier retreat
Freshening of the Labrador Sea as a trigger for Little Ice Age development
Variability in terrigenous sediment supply offshore of the Río de la Plata (Uruguay) recording the continental climatic history over the past 1200 years
Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation
The response of the Peruvian Upwelling Ecosystem to centennial-scale global change during the last two millennia
The Impact of the Little Ice Age on Coccolithophores in the Central Mediterranea Sea
Flor Vermassen, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen
Clim. Past, 15, 1171–1186, https://doi.org/10.5194/cp-15-1171-2019, https://doi.org/10.5194/cp-15-1171-2019, 2019
Short summary
Short summary
By studying microfossils from sediments in Upernavik Fjord we investigate the role of ocean warming on the retreat of Upernavik Isstrøm during the past ~90 years. The reconstruction of Atlantic-derived waters shows a pattern similar to that of the Atlantic Multidecadal Oscillation, corroborating previous studies. The response of Upernavik Isstrøm to ocean forcing has been variable in the past, but the current retreat may be temporarily tempered by cooling bottom waters in the coming decade.
Montserrat Alonso-Garcia, Helga (Kikki) F. Kleiven, Jerry F. McManus, Paola Moffa-Sanchez, Wallace S. Broecker, and Benjamin P. Flower
Clim. Past, 13, 317–331, https://doi.org/10.5194/cp-13-317-2017, https://doi.org/10.5194/cp-13-317-2017, 2017
Short summary
Short summary
This study focuses on understanding climatic and oceanographic variations that took place during the last 1000 years. We studied sediment samples from the Labrador Sea, looking for evidence of events of freshwater and iceberg discharges to this region. The importance of this study is to evaluate when these events happened and their consequences. The freshening of the Labrador Sea region may have played a major role in promoting cooling during the 15th to 19th centuries.
Laura Perez, Felipe García-Rodríguez, and Till J. J. Hanebuth
Clim. Past, 12, 623–634, https://doi.org/10.5194/cp-12-623-2016, https://doi.org/10.5194/cp-12-623-2016, 2016
Short summary
Short summary
The observed changes in the presented proxy records indicate variations in both the continental runoff and the marine influence, related to regional climatic variability. Therefore, we put forward the suggestion that global atmospheric changes (related to changes in SAMS and SACZ intensity) have made an impact on the hydrodynamics and, consequently, on the local sedimentation regime and the inner Uruguayan continental shelf over the past 1200 cal yr BP (AD 750–2000).
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
R. Salvatteci, D. Gutiérrez, D. Field, A. Sifeddine, L. Ortlieb, I. Bouloubassi, M. Boussafir, H. Boucher, and F. Cetin
Clim. Past, 10, 715–731, https://doi.org/10.5194/cp-10-715-2014, https://doi.org/10.5194/cp-10-715-2014, 2014
A. Incarbona, P. Ziveri, E. Di Stefano, F. Lirer, G. Mortyn, B. Patti, N. Pelosi, M. Sprovieri, G. Tranchida, M. Vallefuoco, S. Albertazzi, L. G. Bellucci, A. Bonanno, S. Bonomo, P. Censi, L. Ferraro, S. Giuliani, S. Mazzola, and R. Sprovieri
Clim. Past, 6, 795–805, https://doi.org/10.5194/cp-6-795-2010, https://doi.org/10.5194/cp-6-795-2010, 2010
Cited articles
Abrantes, F., Lebreiro, S., Rodrigues, T., Gil, I., Bartels-Jónsdóttir, H., Oliveira, P., Kissel, C., and Grimalt, J. O.: Shallow-marine sediment cores record climate variability and earthquake activity off Lisbon (Portugal) for the last 2000 years, Quaternary Sci. Rev., 24, 2477–2494, https://doi.org/10.1016/j.quascirev.2004.04.009, 2005. 2005.
Abrantes, F., Rodrigues, T., Montanari, B., Santos, C., Witt, L., Lopes, C., and Voelker, A. H. L.: Climate of the last millennium at the southern pole of the North Atlantic Oscillation: an inner-shelf sediment record of flooding and upwelling, Clim. Res., 48, 261–280, 2011.
Ahmed, M., Anchukaitis, K. J., Asrat, A., Borgaonkar, H. P., Braida, M., Buckley, B. M., Buntgen, U., Chase, B. M., Christie, D. A., Cook, E. R., Curran, M. A. J., Diaz, H. F., Esper, J., Fan, Z.-X., Gaire, N. P., Ge, Q., Gergis, J., Gonzalez-Rouco, J. F., Goosse, H., Grab, S. W., Graham, N., Graham, R., Grosjean, M., Hanhijarvi, S. T., Kaufman, D. S., Kiefer, T., Kimura, K., Korhola, A. A., Krusic, P. J., Lara, A., Lezine, A.-M., Ljungqvist, F. C., Lorrey, A. M., Luterbacher, J., Masson-Delmotte, V., McCarroll, D., McConnell, J. R., McKay, N. P., Morales, M. S., Moy, A. D., Mulvaney, R., Mundo, I. A., Nakatsuka, T., Nash, D. J., Neukom, R., Nicholson, S. E., Oerter, H., Palmer, J. G., Phipps, S. J., Prieto, M. R., Rivera, A., Sano, M., Severi, M., Shanahan, T. M., Shao, X., Shi, F., Sigl, M., Smerdon, J. E., Solomina, O. N., Steig, E. J., Stenni, B., Thamban, M., Trouet, V., Turney, C. S. M., Umer, M., van Ommen, T., Verschuren, D., Viau, A. E., Villalba, R., Vinther, B. M., von Gunten, L., Wagner, S., Wahl, E. R., Wanner, H., Werner, J. P., White, J. W. C., Yasue, K., and Zorita, E.: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797, 2013.
Akima, H. and Gebhardt, A.: akima: Interpolation of Irregularly and Regularly Spaced Data, R package version 0.6-2, 2016.
Álvarez, M. C., Flores, J. A., Sierro, F. J., Diz, P., Francés, G., Pelejero, C., and Grimalt, J.: Millennial Surface water dynamics in the Ria de Vigo during the last 3000 years as revealed by coccoliths and molecular biomarkers, Paleogeogr. Paleocl., 218, 1–13, 2005.
Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J.: Comment on “Solar activity during the last 1000 years inferred from radionuclide records” by Muscheler et al. (2007), Quaternary Sci. Rev., 26, 2301–2308, 2007.
Barriendos, M.: Los riesgos climáticos a través de la historia: avances en el estudio de episodios atmosféricos extraordinarios, in: Riesgos naturales, edited by: Ayala-Carcedo, F. J. and Olcina, J., Ariel, Barcelona, 2002.
Barriendos, M. and Martin-Vide, J.: Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastland area, Climate Change, 38, 473–491, 1998.
Barriendos, M. and Rodrigo, F. S.: Study of historical flood events on Spanish rivers using documentary data, Hydrolog. Sci. J., 51, 765–783, 2006.
Benito, G. and Hudson, P.: Flood hazards: The context of fluvial Geomorphology, in: Geomorphological Hazards and Disaster Prevention, edited by: Alcántara-Ayala, I. and Goudie, A., Cambridge University Press 2010.
Benito, G., Sopeña, A., Sánchez-Moya, Y., Machado, M. A. J., and Pérez-González, A.: Palaeoflood record of the Tagus River (Central Spain) during the Late Pleistocene and Holocene, Quaternary Sci. Rev., 22, 1737–1756, 2003.
Benito, G., Díez-Herrero, A., and Fernández de Villalta, M.: Flood Response to Solar Activity in the Tagus Basin (Central Spain) over the Last Millennium, Climatic Change, 66, 27–28, 2004.
Benito, G., Barriendos, M., Llasat, M. C., Machado, M. J., and Thorndycraft, V. R.: Impacts on natural hazards of climatic origin, A. Flood risk, in: Preliminary Evaluation of the Impacts of Climate Change in Spain, edited by: Moreno, J. M., Ministerio de Medio Ambiente, Madrid, 2005.
Bradley, R. S. and Jones, P. D.: Little Ice Age' summer temperature variations: their nature and relevance to recent global warming trends, Holocene, 3, 367–376, 1993.
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Rev. Geophys., 54, 5–63, 2016.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J.: 2500 Years of European Climate Variability and Human Susceptibility, Science, 331, 578–582, 2011.
Cabrita, A. N.: A Cheia Grande no Guadiana, 7 de Dezembro de 1876, in: Eventos Meteorológicos, Estremoz, 2007.
Calvert, S. E. and Pedersen, T. F.: Chapter Fourteen Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application, in: Developments in Marine Geology, edited by: Claude, H. M. and Anne De, V., Elsevier, 2007.
Cardeira, S., Rita, F., Relvas, P., and Cravo, A.: Chlorophyll a and chemical signatures during an upwelling event off the South Portuguese coast (SW Iberia), Cont. Shelf Res., 52, 133–149, 2013.
Cisneros, M., Cacho, I., Frigola, J., Canals, M., Masqué, P., Martrat, B., Casado, M., Grimalt, J. O., Pena, L. D., Margaritelli, G., and Lirer, F.: Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach, Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, 2016.
Climate, E.: ESPON CLIMATE – Climate Change and Territorial Effects on Regions and Local Economies in Europe, Applied Research 2013/1/4, Draft Final Report Version 25/2/2011, TU Dortmund University, Germany, 2011.
Comas-Bru, L. and McDermott, F.: Impacts of the EA and SCA patterns on the European twentieth century NAO – winter climate relationship, Q. J. Roy. Meteor. Soc., 140, 354–363, 2014.
Cook, E., D'Arrigo R. D., and ME, M.: A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since A.D. 400, J. Clim., 15, 1754–1764, 2002.
Cook, E. R., Esper, J., and D'Arrigo, R. D.: Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years, Quaternary Sci. Rev., 23, 2063–2074, 2004.
Crowley, J. and Unterman, M. B.: Technical details concerning development of a 1200-yr proxy index for global volcanism, Crowley AOD-Reff, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
Cunningham, L. K., Austin, W. E. N., Knudsen, K. L., Eiríksson, J., Scourse, J. D., Wanamaker, A. D., Butler, P. G., Cage, A. G., Richter, T., Husum, K., Hald, M., Andersson, C., Zorita, E., Linderholm, H. W., Gunnarson, B. E., Sicre, M.-A., Sejrup, H. P., Jiang, H., and Wilson, R. J. S.: Reconstructions of surface ocean conditions from the northeast Atlantic and Nordic seas during the last millennium, Holocene, 23, 921–935, 2013.
Desprat, S., Sánchez Goñi, M. A. F., and Loutre, M.-F.: Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data, Earth Planet. Sc. Lett., 213, 63–78, 2003.
Diz, P., Francés, G., Pelejero, C., Grimalt, J. O., and Vilas, F.: The last 3000 years in the Ría de Vigo (NW Iberian Margin): climatic and hydrographic signals, Holocene, 12, 459–468, 2002.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156, 1322–1335, 1967.
Eglinton, G., Bradshaw, S. A., Rosell, A., Sarnthein, M., Pflaumann, U., and Tiedemann, R.: Molecular record of secular sea surface temperature changes on 100-year timescales for glacial terminations I, II and IV, Nature, 356, 423–426, 1992.
Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-Frequency Signals in Long Tre-Ring Chronologies for Reconstructing Past Temperature, Science, 295, 2250–2253, 2002.
Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita, E.: Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium, Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, 2013.
Fiúza, A.: The Portuguese Coastal Upwelling, Lisbon, 45–71, 1982.
Fiúza, A.: Upwelling patterns off Portugal, in: Coastal Upwelling its sediment record, edited by: Suess, E. and Thiede, J., Plenum, New York, 1983.
Fiúza, A. and Macedo, M. E.: Climatological space and time variation of the Portuguese coastal upwelling, Oceanol. Acta, 5, 31–40, 1982.
Fiúza, A. A. and Frouin, T. B. R.: Observations of a Warm Oceanic Current Flowing Northward along the Coasts Of Potugal and Spain During November–December 1983, Eos Trans. AGU, 67, 867–1302, https://doi.org/10.1029/EO067i044p00867, 1986.
Frankcombe, L. M., von der Heydt, A., and Dijkstra, H. A.: North Atlantic Multidecadal Climate Variability: An Investigation of Dominant Time Scales and Processes, J. Clim., 23, 3616–3638, 2010.
Garel, E., Laiz, I., Drago, T., and Relvas, P.: Characterisation of coastal counter-currents on the inner shelf of the Gulf of Cadiz, J. Marine Syst., 155, 19–34, 2016.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734, 2006.
Gouhier, T. C., Grinstead, A., and Simko, V.: biwavelet: Conduct univariate and bivariate wavelet analyses (Version 0.20.10), 2016.
Gray, S. T., Graumlich, L. J., Betancourt, J. L., and Pederson, G. T.: A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D., Geophys. Res. Lett., 31, L12205, https://doi.org/10.11029/12004GL019932, 2004.
Guiot, J. and Cramer, W.: Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems, Science, 354, 465–468, 2016.
Hegerl, G. C., Crowley, T. J., Hyde, W. T., and Frame, D. J.: Climate sensitivity constrained by temperature reconstructions over the past seven centuries, Nature, 440, 1029–1032, 2006.
Hernández, A., Trigo, R. M., Pla-Rabes, S., Valero-Garcés, B. L., Jerez, S., Rico-Herrero, M., Vega, J. C., Jambrina-Enríquez, M., and Giralt, S.: Sensitivity of two Iberian lakes to North Atlantic atmospheric circulation modes, Clim. Dynam., 45, 3403–3417, 2015.
Hurrell, J.: Decadal trends in the North Atlantic Oscillation – regional temperatures and precipitation, Science, 269, 676–679, 1995.
Iglesias, I., Avilez-Valente, P., Couvelard, X., and Caldeira, R.: Geostrophic influence in the River Douro plume: a climatological study, V Conferência Nacional de Mecânica dos Fluidos, Termodinâmica e Energia MEFTE 2014, 11–12 Setembro 2014, Porto, Portugal APMTAC, 2014.
IPCC: Annex II: Climate System Scenario Tables In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013a.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013b.
Jambrina-Enríquez, M., Sachse, D., and Valero-Garcés, B. L.: A deglaciation and Holocene biomarker-based reconstruction of climate and environmental variability in NW Iberian Peninsula: the Sanabria Lake sequence, J. Paleolimnol., 56, 49–66, 2016.
Jerez, S. and Trigo, R. M.: Time-scale and extent at which large-scale circulation modes determine the wind and solar potential in the Iberian Peninsula, Enviro. Res. Lett., 8, 044035, https://doi.org/10.1088/1748-9326/8/4/044035, 2013.
Jones, P. D., Osborn, T. J., and Briffa, K. R.: The Evolution of Climate Over the Last Millenium, Science, 292, 662–667, 2001.
Lebreiro, S. M., Francés, G., Abrantes, F. F. G., Diz, P., Bartels-Jónsdóttir, H. B., Stroynowski, Z. N., Gil, I. M., Pena, L. D., Rodrigues, T., Jones, P. D., Nombela, M. A., Alejo, I., Briffa, K. R., Harris, I., and Grimalt, J. O.: Climate change and coastal hydrographic response along the Atlantic Iberian margin (Tagus Prodelta and Muros Ría) during the last two millennia, Holocene, 16, 1003–1015, 2006.
Lionello, P., Malanott-Rizzoli, R., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., and Xoplaki, E. T.: The Mediterranean climate: An overview of the main characteristics and issues, in: Mediterranean Climate Variability (MedClivar), Elsevier, Amsterdam, 2006.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, https://doi.org/10.1029/2004PA001071, 2005.
Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P. D., Davies, T. D., Portis, D., Gonzalez-Rouco, J. F., von Storch, H., Gyalistras, D., Casty, C., and Wanner, H.: Extending North Atlantic Oscillation Reconstructions Back to 1500, Atmos. Sci. Lett., 2, 114–124, 2002.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500, Science, 303, 1499–1503, https://doi.org/10.1126/science.1093877, 2004.
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S., Esper, J., McCarroll, D., Toreti, A., Frank, D., Jungclaus, J. H., Barriendos, M., Bertolin, C., Bothe, O., Brázdil, R., Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge, Q., Gómez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl, G. C., Holmgren, K., Klimenko, V. V., Martín-Chivelet, J., Pfister, C., Roberts, N., Schindler, A., Schurer, A., Solomina, O., von Gunten, L., Wahl, E., Wanner, H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.: European summer temperatures since Roman times, Environ. Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni., F.: Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256–1260, 2010.
Marta-Almeida, M., Dubert, J., and Peliz, Á.: Simulations of extreme shelf current along the North-Western Iberian Shelf forced by wind and river runoff, Valencia, Spain, 1555–1559, 2002.
Martín-Chivelet, J., Muñoz-García, M. B., Edwards, R. L., Turrero, M. J., and Ortega, A. I.: Land surface temperature changes in Northern Iberia since 4000 years BP, based on δ13C of speleothems, Glob. Planet. Change, 77, 1–12, 2011.
McGregor, H. V., Evans, M. N., Goosse, H., Leduc, G., Martrat, B., Addison, J. A., Mortyn, P. G., Oppo, D. W., Seidenkrantz, M.-S., Sicre, M.-A., Phipps, S. J., Selvaraj, K., Thirumalai, K., Filipsson, H. L., and Ersek, V.: Robust global ocean cooling trend for the pre-industrial Common Era, Nat. Geosci., 8, 671–677, 2015.
McKim, D. K.: Common Era entry, Westminster John Knox Press, Louisville, Kentucky, 1998.
Mendes, R., Sousa, M. C., deCastro, M., Gómez-Gesteira, M., and Dias, J. M.: New insights into the Western Iberian Buoyant Plume: Interaction between the Douro and Minho River plumes under winter conditions, Prog. Oceanogr., 141, 30–43, 2016.
Miranda, P., M. A., Coelho, F. E. S., Tomé, A. R., Valente, M. A., Carvalho, A., Pires, C., Pires, H. O., Pires, V. C., and Ramalho, C.: 20th Century Portuguese Climate and Climate Scenarios, in: Climate Changes in Portugal: Scenarios, Impacts and Adaptation Measures (SIAM Project), edited by: Santos, F. D., Forbes, K., and Moita, R., Gradiva, 2002.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlén, W. H.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution data, Nature, 433, 613–617, 2005.
Moore, P. D., Webb, J. A., and Collinson, M. E.: Pollen analysis, Blackwell scientific publication, Oxford, 216 pp., 1991.
Morellón, M., Valero-GarcÉS, B., Anselmetti, F., Ariztegui, D., Schnellmann, M., Moreno, A. N. A., Mata, P., Rico, M., and Corella, J. P.: Late Quaternary deposition and facies model for karstic Lake Estanya (North-eastern Spain), Sedimentology, 56, 1505–1534, 2009.
Moreno, A., Valero-Garcés, B. L., González-Sampériz, P., and Rico, M.: Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain), J. Paleolimnol., 40, 943–961, 2008.
Moreno, A., Morellón, M., Martín-Puertas, C., Frigola, J., Canals, M., Cacho, I., Corella, J. P., Pérez, A., Belmonte, Á., Vegas-Vilarrúbia, T., González-Sampériz, P., and Valero-Garcés, B. L.: Was there a common hydrological pattern in the Iberian Peninsula region during the Medieval Climate Anomaly?, PAGES news, 19, 16–18, 2011.
Muller, P. J., Kirst, G., Rohland, G., von Storch, I., and Rosell-Mele, A.: Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S), Geochim. Cosmochim. Ac., 62, 1757–1772, 1998.
Naughton, F., Sanchez Goñi, M. F., Desprat, S., Turon, J. L., Duprat, J., Malaizé, B., Joli, C., Cortijo, E., Drago, T., and Freitas, M. C.: Present-day and past (last 2 000 years) marine pollen signal off western Iberia, Mar. Micropaleontol., 62, 91–114, 2007.
Oliveira, P. B., Moita, T., Catarino, R., and da Silva, A.: Wintertime SST and Chla off NW Iberian shelf from satellite and insitu data, Amsterdam, 24–28 September 2007.
Otero, P., Ruiz-Villarreal, M., and Peliz, A.: Variability of river plumes off Northwest Iberia in response to wind events, J. Marine Syst., 72, 238–255, 2008.
Peliz, Á., Rosa, T. L., Santos, A. P., and Pissarra, J. L.: Fronts, jets, and counter-flows in the Western Iberian upwelling system, J. Marine Syst., 35, 61–77, 2002.
Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., and Le Cann, B.: Winter upper ocean circulation in the Western Iberian Basin – Fronts, Eddies and Poleward Flows: an overview, Deep-Sea Res. Pt. I, 52, 621–646, 2005.
Pena, L. D., Francés, G., Diz, P., Esparza, M., Grimalt, J. O., Nombela, M. A., and Alejo, I.: Climate fluctuations during the Holocene in NW Iberia: High and low latitude linkages, Cont. Shelf Res., 30, 1487–1496, 2010.
R Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria: the R Foundation for Statistical Computing, ISBN: 3-900051-07-0, available online at: http://www.R-project.org/, 2016.
Reille, M.: Pollen et spores d'Europe et d'Afrique du Nord, Laboratoire de botanique historique et palynologie, Marseille, 1992.
Reimer, P., Baillie, M., Bard, E., Bayliss, A., Beck, J., Bertrand, C., Blackwell, P., Buck, C., Burr, G., Cutler, K., Damon, P., Edwards, R., Fairbanks, R., Friedrich, M., Guilderson, T., Hughen, K., Kromer, B., McCormac, F., Manning, Ramsey, C. B., Reimer, R., Remmele, S., Southon, J., Stuiver, M., Talamo, S., Taylor, F., van der Plicht, J., and Weyhenmeyer, C.: Marine04 Marine radiocarbon age calibration, 26–0 ka BP, Radiocarbon, 46, 1029–1058, 2004.
Relvas, P., Barton, E., Dubert, J., Oliveira, P. B., Peliz, A., da Silva, J., and Santos, A. M. P.: Physical oceanography of the western Iberia ecosystem: Latest views and challenges, Prog. Oceanogr., 74, 149–173, 2007.
Relvas, P. and Barton, E. D.: Mesoscale patterns in the Cape São Vicente (Iberian Peninsula) upwelling region, J. Geophys. Res., 107, 21–23, 2002.
Relvas, P., Luıs, J., and Santos, A. M. P.: Importance of the mesoscale in the decadal changes observed in the northern Canary upwelling system, Geophys. Res. Lett., 36, L22601, https://doi.org/10.1029/2009GL040504, 2009.
Rodrigues, T., Grimalt, J. O., Abrantes, F. G., Flores, J. A., and Lebreiro, S. M.: Holocene interdependences of changes in sea surface temperature, productivity, and fluvial inputs in the Iberian continental shelf (Tagus mud patch), Geochem. Geophy. Geosy. 10, Q07U06, https://doi.org/10.1029/2008GC002367, 2009.
Romero-Viana, L., Julià, R., Schimmel, M., Camacho, A., Vicente, E., and Miracle, M. R.: Reconstruction of annual winter rainfall since A.D. 1579 in centraleastern Spain based on calcite laminated sediment from Lake La Cruz, Climate Change, 107, 343–361, 2011.
Rosell-Melé, A., Carter, J. A., and Eglinton, G.: Survey of distribution of long-chain alkenones and alkyl alkenoates in marine surface sediments from the North East Atlantic, Org. Geochem., 22, 501–509, 1994.
Saenger, C., Came, R. E., Oppo, D. W., Keigwin, L. D., and Cohen, A. L.: Regional climate variability in the western subtropical North Atlantic during the past two millennia, Paleoceanography, 26, PA2206, https://doi.org/10.1029/2010PA002038, 2011.
Sánchez, R. F. and Relvas, P.: Spring–summer climatological circulation in the upper layer in the region of Cape St. Vincent, Southwest Portugal, ICES J. Mar. Sci., 60, 1232–1250, 2003.
Sánchez-López, G., Hernández, A., Pla-Rabes, S., Trigo, R. M., Toro, M., Granados, I., Sáez, A., Masqué, P., Pueyo, J. J., Rubio-Inglés, M. J., and Giralt, S.: Climate reconstruction for the last two millennia in central Iberia: The role of East Atlantic (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian Peninsula, Quaternary Sci. Rev., 149, 135–150, 2016.
Schurer, A. P., Tett, S. F. B., and Hegerl, G. C.: Small influence of solar variability on climate over the past millennium, Nat. Geosci., 7, 104–108, 2014.
Seidov, D., Mishonov, A., Reagan, J., and Parsons, R.: Multidecadal variability and climate shift in the North Atlantic Ocean, Geophys. Res. Lett., 44, 4985–4993, 2017.
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., and Beer, J.: An unusually active Sun during recent decades compared to the previous 11,000 years, Nature, 431, 1084–1087, 2004.
Steinhilber, F., Abreu, J. A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P. W., Mann, M., McCracken, K. G., H. Miller, Miyahara, H., Oerter, H., and Wilhelms, F.: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings, P. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.1118965109, 2012.
Teles-Machado, A., Peliz, Á., McWilliams, J. C., Cardoso, R. M., Soares, P. M. M., and Miranda, P. M. A.: On the year-to-year changes of the Iberian Poleward Current, J. Geophys. Res.-Ocean., 120, 4980–4999, 2015.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.
Touchan, R., Xoplaki, E., Funkhouser, G., Luterbacher, J., Hughes, M. K., Erkan, N., Akkemik, Ü., and Stephan, J.: Reconstructions of Spring/Summer Precipitation for the Eastern Mediterranean from Tree-Ring Widths and its Connection to Large-Scale Atmospheric Circulation, Clim. Dynam., 25, 75–98, 2005.
Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y., Gámiz-Fortis, S., and Esteban-Parra, M. J.: North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula, Int. J. Climatol., 24, 925–944, 2004.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank, D. C.: Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly, Science, 324, 78–80, 2009.
Tullot, I.: Historical documentation of Spain's climate, Madrid, 1988.
Turner, T. E., Swindles, G. T., Charman, D. J., Langdon, P. G., Morris, P. J., Booth, R. K., Parry, L. E., and Nichols, J. E.: Solar cycles or random processes? Evaluating solar variability in Holocene climate records, Sci. Rep., 6, 23961, https://doi.org/10.1038/srep23961, 2016.
Usoskin, I. G., Solanki, S. K., and Kovaltsov, G. A.: Grand minima of solar activity during the last millennia, Proceedings of the International Astronomical Union, 7, 372–382, 2011.
Valero-Garcés, B. L., González-Sampériz, P., Navas, A., Machín, J., Mata, P., Delgado-Huertas, A., Bao, R., Moreno, A., Carrión, J. S., Schwalb, A., and González-Barrios, A.: Human Impact Since Medieval Times and Recent Ecological Restorationin a Mediterranean Lake: The Laguna Zoñar, Southern Spain, J. Paleolimnol., 35, 441–465, 2006.
Varzeano, J.: Há um século a grande cheia do Guadiana provocou tragédia em Alcoutim. In: Jornal do Algarve, Vila Real de Santo António, 1976.
Villanueva, J.: Estudi de les variaciones climàtiques i oceanogràfiques a l`atlantic Nord Durant els últims 300.000 anys mitjançant l`análisi de marcadores moleculars, 1996, Dep.Química Ambiental, Universitat de Barcelona, Barcelona, 186 pp., 1996.
Villanueva, J. and Grimalt, J. O.: Gas Chromatographic Tuning of the Uk′37 Paleothermometer, Anal. Chem., 69, 3329–3332, 1997.
Villanueva, J., Pelejero, C., and Grimalt, J. O.: Clean-up procedures for the unbiased estimation of C37 alkenone sea surface temperatures and terrigenous n-alkane in paleoceanography, J. Chromatogr., A757, 145–151, 1997.
Yamamoto, A. and Palter, J. B.: The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature, Nat. Commun., 7, 10930, https://doi.org/10.1038/ncomms10930, 2016.
Zampieri, M., Toreti, A., Schindler, A., Scoccimarro, E., and Gualdi, S.: Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer, Glob. Planet. Change, https://doi.org/10.1016/j.gloplacha.2016.08.014, 2016.
Zhang, R.: Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic, Geophys. Res. Lett., 34, L12713, https://doi.org/10.1029/2007GL030225, 2007.
Short summary
Reconstructions of the last 2000-year climatic conditions along the Iberian Margin, a vulnerable region regarding current global warming, reveal a long-term cooling in sea surface temperature (SST) ending with the 19th century and centennial-scale variability that exposes warm SSTs throughout the first 1300 years followed by the colder Little Ice Age. The Industrial Era starts by 1800 CE, with an SST rise and a second increase in SST at ca. 1970 CE, particularly marked in the southern region.
Reconstructions of the last 2000-year climatic conditions along the Iberian Margin, a vulnerable...