Articles | Volume 13, issue 12
https://doi.org/10.5194/cp-13-1791-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-1791-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea
Dorothea Bunzel
CORRESPONDING AUTHOR
Center for Earth System Research and Sustainability (CEN), Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
Gerhard Schmiedl
Center for Earth System Research and Sustainability (CEN), Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
Sebastian Lindhorst
Center for Earth System Research and Sustainability (CEN), Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
Andreas Mackensen
Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany
Jesús Reolid
Center for Earth System Research and Sustainability (CEN), Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
Sarah Romahn
Center for Earth System Research and Sustainability (CEN), Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
Christian Betzler
Center for Earth System Research and Sustainability (CEN), Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
Related authors
No articles found.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-81, https://doi.org/10.5194/cp-2024-81, 2024
Preprint under review for CP
Short summary
Short summary
We report palaeoclimate and sediment provenance records for the last 220 kyr from a sediment core from the northern Red Sea. They comprise high-resolution grain size, clay mineral and geochemical data, together with Nd and Sr isotope data. The data sets document a strong temporal variability of dust influx on glacial-interglacial timescales and several shorter-term strong fluvial episodes. A key finding is that the Nile delta became a major dust source during glacioeustatic sea-level lowstands.
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2024-1072, https://doi.org/10.5194/egusphere-2024-1072, 2024
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 ka in the Gulf of Oman. We find SST variations of up to seven degree with lower SSTs during Heinrich Events (HE), especially HE4, and higher SSTs during Dansgaard-Oeschger Events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SSTs variations are influenced by the southwest (northeast) Monsoon during warmer (colder) periods.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Peter D. Clift, Christian Betzler, Steven C. Clemens, Beth Christensen, Gregor P. Eberli, Christian France-Lanord, Stephen Gallagher, Ann Holbourn, Wolfgang Kuhnt, Richard W. Murray, Yair Rosenthal, Ryuji Tada, and Shiming Wan
Sci. Dril., 31, 1–29, https://doi.org/10.5194/sd-31-1-2022, https://doi.org/10.5194/sd-31-1-2022, 2022
Short summary
Short summary
An integrated campaign of drilling around Asia and Australia was conducted from 2013 to 2016 to reconstruct the monsoon climate. The results provide relatively continuous records spanning the last 24 myr. Asia has shown a steady drying since the late Miocene, while Australia has become wetter. The monsoons are affected by the tectonics of Asia and surrounding seas, as well as orbital forcing, resulting in diachronous evolution of continental climate, ocean currents, and the marine biosphere.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Sabine Prader, Ulrich Kotthoff, Francine M.G. McCarthy, Gerhard Schmiedl, Timme H. Donders, and David R. Greenwood
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-511, https://doi.org/10.5194/bg-2017-511, 2018
Manuscript not accepted for further review
Short summary
Short summary
The observed palaeovegetation movement signals probably correspond to several glacial phases of the middle Oligocene and Early Miocene and might be best reflected within peaks of the conifer forests. Glacial phases exposed shallow shelf areas and allowed the spreading of substrate-depending forest formations. Temperature estimates revealing relative stable humid warm temperate conditions. A Sporadic occurred extinct taxon widens the understanding of its distribution pattern during the Cenozoic.
Valerie Menke, Werner Ehrmann, Yvonne Milker, Swaantje Brzelinski, Jürgen Möbius, Uwe Mikolajewicz, Bernd Zolitschka, Karin Zonneveld, Kay Christian Emeis, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-139, https://doi.org/10.5194/cp-2017-139, 2017
Preprint withdrawn
Short summary
Short summary
This study examines changes in the marine ecosystem during the past 1300 years in the Gulf of Taranto (Italy) to unravel natural and anthropogenic forcing. Our data suggest, that processes at the sea floor are linked to the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation. During the past 200 years, the effects of rising northern hemisphere temperature and increasing anthropogenic activity enhanced nutrient and organic matter fluxes leading to more eutrophic conditions.
Marc Theodor, Gerhard Schmiedl, Frans Jorissen, and Andreas Mackensen
Biogeosciences, 13, 6385–6404, https://doi.org/10.5194/bg-13-6385-2016, https://doi.org/10.5194/bg-13-6385-2016, 2016
Werner Ehrmann, Gerhard Schmiedl, Martin Seidel, Stefan Krüger, and Hartmut Schulz
Clim. Past, 12, 713–727, https://doi.org/10.5194/cp-12-713-2016, https://doi.org/10.5194/cp-12-713-2016, 2016
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
S. Romahn, A. Mackensen, J. Groeneveld, and J. Pätzold
Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, https://doi.org/10.5194/cp-10-293-2014, 2014
Y. Milker, M. Wilken, J. Schumann, D. Sakuna, P. Feldens, K. Schwarzer, and G. Schmiedl
Nat. Hazards Earth Syst. Sci., 13, 3113–3128, https://doi.org/10.5194/nhess-13-3113-2013, https://doi.org/10.5194/nhess-13-3113-2013, 2013
B. Rabe, P. A. Dodd, E. Hansen, E. Falck, U. Schauer, A. Mackensen, A. Beszczynska-Möller, G. Kattner, E. J. Rohling, and K. Cox
Ocean Sci., 9, 91–109, https://doi.org/10.5194/os-9-91-2013, https://doi.org/10.5194/os-9-91-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Planktonic foraminiferal assemblages as tracers of paleoceanographic changes within the northern Benguela current system since the Early Pleistocene
Glacial–interglacial Circumpolar Deep Water temperatures during the last 800 000 years: estimates from a synthesis of bottom water temperature reconstructions
Sea-level and monsoonal control on the Maldives carbonate platform (Indian Ocean) over the last 1.3 million years
Changes in the Red Sea overturning circulation during Marine Isotope Stage 3
Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception
An Intertropical Convergence Zone shift controlled the terrestrial material supply on the Ninetyeast Ridge
Sea ice changes in the southwest Pacific sector of the Southern Ocean during the last 140 000 years
Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits
Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr
Lower oceanic δ13C during the last interglacial period compared to the Holocene
Change in the North Atlantic circulation associated with the mid-Pleistocene transition
Thermocline state change in the eastern equatorial Pacific during the late Pliocene/early Pleistocene intensification of Northern Hemisphere glaciation
Central Arctic Ocean paleoceanography from ∼ 50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition
Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins
Mediterranean Outflow Water variability during the Early Pleistocene
Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios
Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31–19)
Photic zone changes in the north-west Pacific Ocean from MIS 4–5e
Seasonal changes in glacial polynya activity inferred from Weddell Sea varves
High-latitude obliquity as a dominant forcing in the Agulhas current system
Sensitivity of Red Sea circulation to sea level and insolation forcing during the last interglacial
Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition
Oceanic tracer and proxy time scales revisited
Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation
A simple mixing explanation for late Pleistocene changes in the Pacific-South Atlantic benthic δ13C gradient
High Arabian Sea productivity conditions during MIS 13 – odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition?
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
David M. Chandler and Petra M. Langebroek
Clim. Past, 20, 2055–2080, https://doi.org/10.5194/cp-20-2055-2024, https://doi.org/10.5194/cp-20-2055-2024, 2024
Short summary
Short summary
Sea level rise and global climate change caused by ice melt in Antarctica represent a puzzle of feedbacks between the climate, ocean, and ice sheets over tens to thousands of years. Antarctic Ice Sheet melting is caused mainly by warm deep water from the Southern Ocean. Here, we analyse close relationships between deep water temperatures and global climate over the last 800 000 years. This knowledge can help us to better understand how climate and sea level are likely to change in the future.
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Xudong Xu, Jianguo Liu, Yun Huang, Lanlan Zhang, Liang Yi, Shengfa Liu, Yiping Yang, Li Cao, and Long Tan
Clim. Past, 18, 1369–1384, https://doi.org/10.5194/cp-18-1369-2022, https://doi.org/10.5194/cp-18-1369-2022, 2022
Short summary
Short summary
Terrestrial materials in marine environments record source information and help us understand how climate and ocean impact sediment compositions. Here, we use evidence on the Ninetyeast Ridge to analyze the relationship between terrestrial material supplementation and climatic change. We find that the ITCZ controlled the rainfall in the Burman source area and that closer connections occurred between the Northern–Southern Hemisphere in the eastern Indian Ocean during the late LGM.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Kim Alix Jakob, Jörg Pross, Christian Scholz, Jens Fiebig, and Oliver Friedrich
Clim. Past, 14, 1079–1095, https://doi.org/10.5194/cp-14-1079-2018, https://doi.org/10.5194/cp-14-1079-2018, 2018
Short summary
Short summary
Eastern equatorial Pacific (EEP) thermocline dynamics during the intensification of Northern Hemisphere glaciation (iNHG; ~ 2.5 Ma) currently remain unclear. In light of this uncertainty, we generated geochemical, faunal and sedimentological data for EEP Site 849 (~ 2.75–2.4 Ma). We recorded a thermocline depth change shortly before the final phase of the iNHG, which supports the hypothesis that tropical thermocline shoaling may have contributed to substantial Northern Hemisphere ice growth.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
Carl Wunsch
Clim. Past, 12, 1281–1296, https://doi.org/10.5194/cp-12-1281-2016, https://doi.org/10.5194/cp-12-1281-2016, 2016
Short summary
Short summary
This paper examines the oxygen isotope data in several deep-sea cores. The question addressed is whether those data support an inference that the abyssal ocean in the Last Glacial Maximum period was significantly colder than it is today. Along with a separate analysis of salinity data in the same cores, it is concluded that a cold, saline deep ocean is consistent with the available data but so is an abyss much more like that found today. LGM model testers should beware.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
G. E. A. Swann and A. M. Snelling
Clim. Past, 11, 15–25, https://doi.org/10.5194/cp-11-15-2015, https://doi.org/10.5194/cp-11-15-2015, 2015
Short summary
Short summary
New diatom isotope records are presented alongside existing geochemical and isotope records to document changes in the photic zone, including nutrient supply and the efficiency of the soft-tissue biological pump, between MIS 4 and MIS 5e in the subarctic north-west Pacific Ocean. The results provide evidence for temporal changes in the strength and efficiency of the regional soft-tissue biological pump, altering the ratio of regenerated to preformed nutrients in the water.
D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos
Clim. Past, 10, 1239–1251, https://doi.org/10.5194/cp-10-1239-2014, https://doi.org/10.5194/cp-10-1239-2014, 2014
T. Caley, J.-H. Kim, B. Malaizé, J. Giraudeau, T. Laepple, N. Caillon, K. Charlier, H. Rebaubier, L. Rossignol, I. S. Castañeda, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011, https://doi.org/10.5194/cp-7-1285-2011, 2011
G. Trommer, M. Siccha, E. J. Rohling, K. Grant, M. T. J. van der Meer, S. Schouten, U. Baranowski, and M. Kucera
Clim. Past, 7, 941–955, https://doi.org/10.5194/cp-7-941-2011, https://doi.org/10.5194/cp-7-941-2011, 2011
S. Sepulcre, L. Vidal, K. Tachikawa, F. Rostek, and E. Bard
Clim. Past, 7, 75–90, https://doi.org/10.5194/cp-7-75-2011, https://doi.org/10.5194/cp-7-75-2011, 2011
C. Siberlin and C. Wunsch
Clim. Past, 7, 27–39, https://doi.org/10.5194/cp-7-27-2011, https://doi.org/10.5194/cp-7-27-2011, 2011
A. H. L. Voelker, T. Rodrigues, K. Billups, D. Oppo, J. McManus, R. Stein, J. Hefter, and J. O. Grimalt
Clim. Past, 6, 531–552, https://doi.org/10.5194/cp-6-531-2010, https://doi.org/10.5194/cp-6-531-2010, 2010
L. E. Lisiecki
Clim. Past, 6, 305–314, https://doi.org/10.5194/cp-6-305-2010, https://doi.org/10.5194/cp-6-305-2010, 2010
M. Ziegler, L. J. Lourens, E. Tuenter, and G.-J. Reichart
Clim. Past, 6, 63–76, https://doi.org/10.5194/cp-6-63-2010, https://doi.org/10.5194/cp-6-63-2010, 2010
Cited articles
Allen, K., Roberts, S., and Murray, J. W.: Marginal marine agglutinated foraminifera: affinities for mineral phases, J. Micropaleontol., 35, 183–191, https://doi.org/10.1144/jm.18.2.183, 1999.
Almogi-Labin, A., Schmiedl, G., Hemleben, C., Siman-Tov, R., Segl, M., and Meischner, D.: The influence of the NE winter monsoon on productivity changes in the Gulf of Aden, NW Arabian Sea, during the last 530 ka as recorded by foraminifera, Mar. Micropaleontol., 40, 295–319, https://doi.org/10.1016/S0377-8398(00)00043-8, 2000.
Altabet, M. A., Higginson, M. J., and Murray, D. W.: The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2, Nature, 415, 159–162, https://doi.org/10.1038/415159a, 2002.
Alve, E.: Colonization of new habitats by benthic foraminifera: a review, Earth-Sci. Rev., 46, 167–185, https://doi.org/10.1016/S0012-8252(99)00016-1, 1999.
Anderson, R. F., Barker, S., Fleisher, M., Gersonde, R., Goldstein, S. L., Kuhn, G., Mortyn, P. G., Pahnke, K., and Sachs, J. P.: Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean, Philos. T. R. Soc. A, 372, 1–17, https://doi.org/10.1098/rsta.2013.0054, 2014.
Armynot du Châtelet, E., Bout-Roumazeilles, V., Coccioni, R., Frontalini, F., Guillot, F., Kaminski, M. A., Recourt, P., Riboulleau, A., Trentesaux, A., Tribovillard, N., and Ventalon, S.: Environmental control on shell structure and composition of agglutinated foraminifera along a proximal-distal transect in the Marmara Sea, Mar. Geol., 335, 114–128, https://doi.org/10.1016/j.margeo.2012.10.013, 2013.
Aston, S. R., Chester, R., Johnson, L. R., and Padgham, R. C.: Eolian dust from the lower atmosphere of the eastern Atlantic and Indian Oceans, China Sea and Sea of Japan, Mar. Geol., 14, 15–28, https://doi.org/10.1016/0025-3227(73)90040-6, 1973.
Backhaus, K., Erichson, B., Plinke, W., and Weiber, R.: Multivariate Analysemethoden, Springer, Berlin, Heidelberg, New York, 1–575, 2008.
Badawi, A., Schmiedl, G., and Hemleben, C.: Impact of late Quaternary environmental changes on deep-sea benthic foraminiferal faunas of the Red Sea, Mar. Micropaleontol., 58, 13–30, https://doi.org/10.1016/j.marmicro.2005.08.002, 2005.
Banner, F. T., Pereira, C. P. G., and Desai, D.: “Tretomphaloid” float chambers in the Discorbidae and Cymbaloporidae, J. Foramin. Res., 15, 159–174, https://doi.org/10.2113/gsjfr.15.3.159, 1985.
Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot, F., and Labeyrie, L.: Insolation cycles as a major control of equatorial Indian Ocean Primary Production, Science, 278, 1451–1454, https://doi.org/10.1126/science.278.5342.1451, 1997.
Beaufort, L., de Garidel-Thoron, T., Mix, A. C., and Pisias, N. G.: ENSO-like forcing on oceanic primary production during the Late Pleistocene, Science, 293, 2440–2444, https://doi.org/10.1126/science.293.5539.2440, 2001.
Betzler, C., Hübscher, C., Lindhorst, S., Reijmer, J. J. G., Römer, M., Droxler, A. W., Fürstenau, J., and Lüdmann, T.: Monsoonal-induced partial carbonate platform drowning (Maldives, Indian Ocean), Geology, 37, 867–870, https://doi.org/10.1130/G25702A.1, 2009.
Betzler, C., Fürstenau, J., Lüdmann, T., Hübscher, C., Lindhorst, S., Paul, A., Reijmer, J. J. G., and Droxler, A. W.: Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean, Basin Res., 25, 172–196, https://doi.org/10.1111/j.1365-2117.2012.00554.x, 2013a.
Betzler, C., Lüdmann, T., Hübscher, C., and Fürstenau, J.: Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean), Sediment. Geol., 290, 126–137, https://doi.org/10.1016/j.sedgeo.2013.03.011, 2013b.
Betzler, C., Eberli, G. P., Kroon, D., Wright, J. D., Swart, P. K., Nath, B. N., Alvarez-Zarikian, C. A., Alonso-García, M., Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozal, S., Inoue, M., Jovane, L., Lanci, L. Laya, J. C., Mee, A. L. H., Lüdmann, T., Nakakuni, M., Niino, K., Petruny, L. M., Pratiwi, S. D., Reijmer, J. J. G., Reolid, J., Slagle, A. L., Sloss, C. R., Su, X., Yao, Z., and Young, J. R.: The abrupt onset of the modern South Asian Monsoon winds, Sci. Rep., 6, 29838, https://doi.org/10.1038/srep29838, 2016.
Bianchi, G. G., Hall, I. R., McCave I. N., and Joseph, L.: Measurement of the sortable silt current speed proxy using the Sedigraph 5100 and Coulter Multisizer IIe: Precision and accuracy, Sedimentology, 46, 1001–1014, https://doi.org/10.1046/j.1365-3091.1999.00256.x, 1999.
Blott, S. J. and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Böning, P. and Bard, E.: Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea sediments, Geochim. Cosmochim. Ac., 73, 6771–6788, https://doi.org/10.1016/j.gca.2009.08.028, 2009.
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall., J., Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M. T., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and Zeldis, J.: A mesoscale phytoplankton bloom in the polar Southern Ocean simulated by iron fertilization, Nature, 407, 695–702, https://doi.org/10.1038/35037500, 2000.
Bunzel, D., Schmiedl, G., Lindhorst, S., Mackensen, A., Reolid, J., Romahn, S., and Betzler, C.: Benthic foraminifera census counts and compilation of the isotope, grain size, TOC, CaCO3 and XRF data records of sediment core SO236_052-4, PANGAEA, https://doi.org/10.1594/PANGAEA.882514, 2017.
Caley, T., Malaizé, B., Zaragosi, S., Rossignol, L., Bourget, J., Eynaud, F., Martinez, P., Giraudeau, J., Charlier, K., and Ellouz-Zimmermann, N.: New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon, Earth Planet. Sc. Lett., 308, 433–444, https://doi.org/10.1016/j.epsl.2011.06.019, 2011a.
Caley, T., Malaizé, B., Revel, M., Ducassou, E., Wainer, K., Ibrahim, M., Shoeaib, D., Migeon, S., and Marieu, V.: Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a “global monsoon”, Quaternary Sci. Rev., 30, 3705–3715, https://doi.org/10.1016/j.quascirev.2011.09.015, 2011b.
Caley, T., Zaragosi, S., Bourget, J., Martinez, P., Malaizé, B., Eynaud, F., Rossignol, L., Garlan, T., and Ellouz-Zimmermann, N.: Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records, Biogeosciences, 10, 7347–7359, https://doi.org/10.5194/bg-10-7347-2013, 2013.
Chauhan, O. S. and Shukla, A. S.: Evaluation of the influence of monsoon climatology on dispersal and sequestration of continental flux over the southeastern Arabian Sea, Mar. Geol., 371, 44–56, https://doi.org/10.1016/j.margeo.2015.10.018, 2016.
Clemens, S. C. and Prell, W. L.: Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep-sea sediments, Paleoceanography, 5, 109–145, https://doi.org/10.1029/PA005i002p00109, 1990.
Clemens, S. C. and Prell, W. L.: A 350 000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea, Mar. Geol., 201, 35–51, https://doi.org/10.1016/S0025-3227(03)00207-X, 2003.
Clemens, S. C., Prell, W. L., Murray, D. W., Shimmield, G., and Weedon, G.: Forcing mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, 1991.
Clemens, S. C., Murray, D. W., and Prell, W. L.: Nonstationary Phase of the Plio-Pleistocene Asian Monsoon, Science, 274, 943–948, 1996.
Corliss, B. H.: Microhabitats of benthic foraminifera within deep-sea sediments, Nature, 314, 435–438, https://doi.org/10.1038/314435a0, 1985.
Corliss, B. H. and Chen, C.: Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications, Geology, 16, 716–719, https://doi.org/10.1130/0091-7613(1988)016<0716:MPONSD>2.3.CO;2, 1988.
Costa, K. M., McManus, J. F., Anderson, R. F., Ren, H., Sigman, D. M., Winckler, G., Fleisher, M. Q., Marcantonio, F., and Ravelo, A. C.: No iron fertilization in the equatorial Pacific Ocean during the last ice age, Nature, 529, 519–522, https://doi.org/10.1038/nature16453, 2016.
Croudace, I. W. and Rothwell, R. G.: Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences, Developments in Paleoenvironmental Research 17, Springer, Dordrecht, Heidelberg, New York, London, 1–656, 2015.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, https://doi.org/10.1038/364218a0, 1993.
Das, M., Singh, R. K., Gupta, A. K., and Bhaumik, A. K.: Holocene strengthening of the oxygen minimum zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity?, Palaeogeogr. Palaeocl., 483, 125–135, https://doi.org/10.1016/j.palaeo.2016.10.035, 2017.
De, S. and Gupta, A. K.: Deep-sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of Recent benthic foraminifera, Palaeogeogr. Palaeocl., 291, 429–442, https://doi.org/10.1016/j.palaeo.2010.03.012, 2010.
Debenay, J.-P.: A Guide to 1000 Foraminifera from Southwestern Pacific, New Caledonia, IRD Éditions, Publications Scientifiques du Muséum, Paris, France, CP41, 1–384, 2012.
deMenocal, P. B., Bloemendal, J., and King, J.: A rock-magnetic record of monsoonal dust deposition to the Arabian Sea: Evidence for a shift in the mode of deposition at 2.4 Ma, Proceedings of the Ocean Drilling Program, Scientific Results, 117, 389–407, 1991.
Den Dulk, M., Reichart, G. J., van Heyst, S., Zachariasse, W. J., and Van der Zwaan, G. J.: Benthic foraminifera as proxies of organic matter flux and bottom water oxygenation? A case history from the northern Arabian Sea, Palaeogeogr. Palaeocl., 161, 337–359, https://doi.org/10.1016/S0031-0182(00)00074-2, 2000.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y., Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., and Haug, G. H.: Links between tropical rainfall, and North Atlantic climate during the last glacial period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/NGEO1712, 2013.
de Vos, A., Pattiaratchi, C. B., and Wijeratne, E. M. S.: Surface circulation and upwelling patterns around Sri Lanka, Biogeosciences, 11, 5909–5930, https://doi.org/10.5194/bg-11-5909-2014, 2014.
Ding, Z., Liu, T., Rutter, N. W., Yu, Z., Guo, Z., and Zhu, R.: Ice-Volume Forcing of East Asian Winter Monsoon Variations in the Past 800 000 Years, Quaternary Res., 44, 149–159, https://doi.org/10.1006/qres.1995.1059, 1995.
di Primio, R. and Leythaeuser, D.: Quantification of the effect of carbonate redistribution by pressure solution in organic-rich carbonates, Mar. Petrol. Geol., 12, 735–739, https://doi.org/10.1016/0264-8172(95)93598-X, 1995.
Duce, R. A. and Tindale, N. W.: Atmospheric transport of iron and its deposition in the ocean, Limnol. Oceanogr., 36, 1715–1726, https://doi.org/10.4319/lo.1991.36.8.1715, 1991.
Duleba, W., Debenay, J.-P., Eichler, B. B., and de Mahiques, M. M.: Holocene Environmental and Water Circulation Changes: Foraminifer Morphogroups Evidence in Flamengo Bay (SP, Brazil), J. Coastal Res., 15, 554–571, 1999.
Dunbar, G. B. and Dickens, G. R.: Late Quaternary shedding of shallow-water marine carbonate along a tropical mixed siliciclastic-carbonate shelf: Great Barrier Reef, Australia, Sedimentology, 50, 1061–1077, https://doi.org/10.1046/j.1365-3091.2003.00593.x, 2003.
Dutta, K., Bhushan, R., and Somayajulu, B. L. K.: ΔR Correction Values for the Northern Indian Ocean, Radiocarbon, 43, 483–488, https://doi.org/10.1017/S0033822200038376, 2001.
Edelmann-Furstenberg, Y., Scherbacher, M., Hemleben, C., and Almogi-Labin, A.: Deep-sea benthic foraminifera from the central Red Sea, J. Foramin. Res., 31, 48–59, 2001.
Elmore, A. C., McClymont, E. L., Elderfield, H., Kender, S., Cook, M. R., Leng, M. J., Greaves, M., and Misra, S.: Antarctic Intermediate Water properties since 400 ka recorded in infaunal (Uvigerina peregrina) and epifaunal (Planulina wuellerstorfi) benthic foraminifera, Earth Planet. Sc. Lett., 428, 193–203, https://doi.org/10.1016/j.epsl.2015.07.013, 2015.
Folk, R. L. and Ward, W. C.: Brazos River Bar: A Study in the Significance of Grain Size Parameters, J. Sediment. Petrol., 27, 3–26, 1957.
Fontanier, C., Jorissen, F. J., Licari, L., Alexandre, A., Anschutz, P., and Carbonel, P.: Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats, Deep-Sea Res. Pt. I, 49, 751–785, https://doi.org/10.1016/S0967-0637(01)00078-4, 2002.
Gao, Y., Kaufman, Y. J., Tanré, D., Kolber, D., and Falkowski, P. G.: Seasonal Distribution of Aeolian Iron Fluxes to the Global Ocean, Geophys. Res. Lett., 28, 29–32, 2001.
Grand, M. M., Measures, C. I., Hatta, M., Hiscock, W. T., Buck, C. S., and Landing, W. M.: Dust deposition in the eastern Indian Ocean: The ocean perspective from Antarctica to the Bay of Bengal, Global Biogeochem. Cy., 29, 357–374, https://doi.org/10.1002/2014GB004898, 2015.
Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y., and Liu, T. S.: Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature, 416, 159–163, https://doi.org/10.1038/416159a, 2002.
Gupta, A. K. and Srinivasan, M. S.: Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP Site 214 during the Late Neogene, Mar. Micropaleontol., 19, 355–367, https://doi.org/10.1016/0377-8398(92)90038-L, 1992.
Gupta, A. K. and Thomas, E.: Initiation of Northern Hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean, Geology, 31, 47–50, https://doi.org/10.1130/0091-7613(2003)031<0047:IONHGA>2.0.CO;2, 2003.
Gupta, A. K., Anderson, D. M., and Overpeck, J. T.: Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean, Nature, 421, 354–357, https://doi.org/10.1038/nature01340, 2003.
Hall, I. R., McCave, I. N., Chapman, M. R., and Shackleton, N. J.: Coherent deep flow variation in the Iceland and American basins during the last interglacial, Earth Planet. Sc. Lett., 164, 15–21, https://doi.org/10.1016/S0012-821X(98)00209-X, 1998.
Hao, Q., Wang, L., Oldfield, F., Peng, S., Qin, L., Song, Y., Xu, B., Qiao, Y., Bloemendal, J., and Guo, Z.: Delayed build-up of Arctic ice sheets during 400 000-year minima in insolation variability, Nature, 490, 393–396, https://doi.org/10.1038/nature11493, 2012.
Harrison, T. M., Copeland, P., Kidd, W. S. F., and Yin, A.: Raising Tibet, Science, 255, 1663–1670, 1992.
Hastenrath, S., Nicklis, A., and Greischar, L.: Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean, J. Geophys. Res., 98, 20219–20235, https://doi.org/10.1029/93JC02330, 1993.
Hermelin, J. O. R. and Shimmield, G. B.: Impact of productivity events on the benthic foraminiferal fauna in the Arabian Sea over the last 150 000 years, Paleoceanography, 10, 85–116, https://doi.org/10.1029/94PA02514, 1995.
Holbourn, A., Henderson, A. S., and MacLeod, N.: Atlas of Benthic Foraminifera, Wiley-Blackwell, John Wiley & Sons Ltd. Publication, Natural History Museum, 1–642, https://doi.org/10.1002/9781118452493, 2013.
Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N., and Rickaby, R. E. M.: Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin, Nat. Geosci., 8, 40–43, https://doi.org/10.1038/ngeo2317, 2015.
Hottinger, L., Halicz, E., and Reiss, Z.: Recent Foraminiferida from the Gulf of Aqaba, Red Sea, Ljubljana, Slovenska Akademija Znanosti in Umetnosti, Razred za naravoslovne vede, Classis IV: Historia naturalis, 33, 1–179, 1993.
Itambi, A. C., von Dobeneck, T., Mulitza, S., Bickert, T., and Heslop, D.: Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: Evidence in marine sediments from offshore Senegal, Paleoceanography, 24, PA1205, https://doi.org/10.1029/2007PA001570, 2009.
Ivanova, E., Schiebel, R., Singh, A. D., Schmiedl, G., Niebler, H.-S., and Hemleben, C.: Primary production in the Arabian Sea during the last 135 000 years, Palaeogeogr. Palaeocl., 197, 61–82, https://doi.org/10.1016/S0031-0182(03)00386-9, 2003.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., LaRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate, Science, 308, 67–71, https://doi.org/10.1126/science.1105959, 2005.
Jones, R. W.: The Challenger Foraminifera, The Natural History Museum, London, Oxford University Press Inc., New York, USA, 1–290, 1994.
Jorissen, F. J. and Wittling, I.: Ecological evidence from live-dead comparisons of benthic foraminiferal faunas off Cape Blanc (Northwest Africa), Palaeogeogr. Palaeocl., 149, 151–170, https://doi.org/10.1016/S0031-0182(98)00198-9, 1999.
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G. V.: A conceptual model explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15, https://doi.org/10.1016/0377-8398(95)00047-X, 1995.
Jorissen, F. J., Fontanier, C., and Thomas, E.,: Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, in: Proxies in Late Cenozoic paleoceanography, edited by: Hillaire-Marcel, C. and De Vernal, A., Developments in Mar. Geol., Elsevier, Amsterdam, the Netherlands, 277–328, 2007.
Jung, S. J. A., Ganssen, G. M., and Davies, G. R.: Multidecadal variations in the early Holocene outflow of Red Sea Water into the Arabian Sea, Paleoceanography, 16, 658–668, https://doi.org/10.1029/2000PA000592, 2001.
Koho, K. A., García, R., de Stigter, H. C., Epping, E., Koning, E., Kouwenhoven, T. J., and Van der Zwaan, G. J.: Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: A case study from Lisbon–Setúbal Canyon (southern Portugal), Prog. Oceanogr., 79, 55–82, https://doi.org/10.1016/j.pocean.2008.07.004, 2008.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Leuschner, D. C. and Sirocko, F.: Orbital insolation forcing of the Indian Monsoon – a motor for global climate changes?, Palaeogeogr. Palaeocl., 197, 83–95, https://doi.org/10.1016/S0031-0182(03)00387-0, 2003.
Licari, L. N., Schumacher, S., Wenzhöfer, F., Zabel, M., and Mackensen, A.: Communities and microhabitats of living benthic foraminifera from the tropical East Atlantic: Impact of different productivity regimes, J. Foramin. Res., 33, 10–31, https://doi.org/10.2113/0330010, 2003.
Linke, P. and Lutze, G. F.: Microhabitat preferences of benthic foraminifera-a static concept or a dynamic adaptation to optimize food acquisition?, Mar. Micropaleontol., 20, 215–234, https://doi.org/10.1016/0377-8398(93)90034-U, 1993.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Liu, T., Ding, Z., and Rutter, N.: Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma, Quaternary Sci. Rev., 18, 1205–1212, https://doi.org/10.1016/S0277-3791(98)00110-3, 1999.
Loeblich, A. R. and Tappan, H.: Foraminiferal Genera and their Classification, Van Nostrand Reinhold Company, New York, USA, 1–2115, 1988.
Lourens, L. J., Wehausen, R., and Brumsack, H.-J.: Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years, Nature, 409, 1029–1033, https://doi.org/10.1038/35059062, 2001.
Lüdmann, T., Kalvelage, C., Betzler, C., Fürstenau, J., and Hübscher, C.: The Maldives, a giant isolated carbonate platform dominated by bottom currents, Mar. Petrol. Geol., 43, 326–340, https://doi.org/10.1016/j.marpetgeo.2013.01.004, 2013.
Lutze, G. F. and Thiel, H.: Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis, J. Foramin. Res., 19, 153–158, https://doi.org/10.2113/gsjfr.19.2.153, 1989.
Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P. P., and Balkanski, Y.: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum, Earth-Sci. Rev., 99, 61–97, https://doi.org/10.1016/j.earscirev.2009.12.001, 2010.
Manabe, S. and Broccoli, A. J.: Mountains and Arid Climates of Middle Latitudes, Science, 247, 192–195, 1990.
Manighetti, B. and McCave, I. N.: Late glacial and Holocene palaeocurrents through South Rockall Gap, NE Atlantic Ocean, Paleoceanography, 10, 611–626, 1995.
Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: The case for iron, Limnol. Oceanogr., 36, 1793–1802, 1991.
Martínez-García, A. Sigman, D. M., Ren, H., Anderson, R. F., Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.: Iron fertilization of the Subantarctic Ocean during the Last Ice Age, Science, 343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
McCave, I. N. and Hall, I. R.: Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophy. Geosy., 7, 1–37, https://doi.org/10.1029/2006GC001284, 2006.
McCave, I. N., Manighetti, B., and Beveridge, N. A. S.: Circulation in the glacial North Atlantic inferred from grain-size measurements, Nature, 374, 149–152, https://doi.org/10.1038/374149a0, 1995a.
McCave, I. N., Manighetti, B., and Robinson, S. G.: Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography, Paleoceanography, 10, 593–610, https://doi.org/10.1029/94PA03039, 1995b.
Milker, Y. and Schmiedl, G.: A taxonomic guide to modern benthic shelf foraminifera of the western Mediterranean Sea, Palaeontol. Electron., 15, 1–134, 2012.
Möbius, J., Gaye, B., Lahajnar, N., Bahlmann, E., and Emeis, K.-C.: Influence of diagenesis on sedimentary δ15N in the Arabian Sea over the last 130 ka, Mar. Geol., 284, 127–138, https://doi.org/10.1016/j.margeo.2011.03.013, 2011.
Müller, P. J. and Suess, E.: Productivity, sedimentation rate, and sedimentary organic matter in the oceans – I. Organic carbon preservation, Deep-Sea Res., 26, 1347–1362, https://doi.org/10.1016/0198-0149(79)90003-7, 1979.
Müller, P. J., Schneider, R., and Ruhland, G.: Late Quaternary pCO2 variations in the Angola Current: Evidence from organic carbon δ13C and alkenone temperature, in: Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change, edited by: Zahn, R., Pedersen, T. F., Kaminski, M. A., and Labeyrie, L., NATO ASI Series I, Global Environmental Change, 17, Springer-Verlag, Berlin, Germany, 343–366, 1994.
Murgese, D. S. and De Deckker, P.: The Late Quaternary evolution of water masses in the eastern Indian Ocean between Australia and Indonesia, based on benthic foraminifera faunal and carbon isotopes analyses, Palaeogeogr. Palaeocl., 247, 382–401, https://doi.org/10.1016/j.palaeo.2006.11.002, 2007.
Murray, J. W.: Ecology and Applications of Benthic Foraminifera, Cambridge University Press, New York, USA, 1–426, 2006.
Naik, D. K., Saraswat, R., Lea, D. W., Kurtarkar, S. R., and Mackensen, A.: Last glacial-interglacial productivity and associated changes in the eastern Arabian Sea, Palaeogeogr. Palaeocl., 483, 147–156, https://doi.org/10.1016/j.palaeo.2016.07.014, 2017.
Nair, R. R., Ittekkot, V., Manganini, S. J., Ramaswamy, V., Haake, B., Degens, E. T., Desai, B. N., and Honjo, S.: Increased particle flux to the deep ocean related to monsoons, Nature, 338, 749–751, https://doi.org/10.1038/338749a0, 1989.
NASA Goddard Space Flight Center: MODIS-Aqua Ocean Color Data, Ocean Ecology Laboratory, Ocean Biology Processing Group, https://doi.org/10.5067/AQUA/MODIS_OC.2014.0, 2014.
Olson, D. B., Hitchcock, G. L., Fine, R. A., and Warren, B. A.: Maintenance of the low-oxygen layer in the central Arabian Sea, Deep-Sea Res. Pt. II, 40, 673–685, https://doi.org/10.1016/0967-0645(93)90051-N, 1993.
Pahnke, K. and Zahn, R.: Southern hemisphere water mass conversion with North Atlantic climate variability, Science, 307, 1741–1746, https://doi.org/10.1126/science.1102163, 2005.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program Performs Time-Series Analysis, Eos Transactions AGU, 77, 379–379, https://doi.org/10.1029/96EO00259, 1996.
Parker, J. H. and Gischler, E.: Modern foraminiferal distribution and diversity in two atolls from the Maldives, Indian Ocean, Mar. Micropaleontol., 78, 30–49, https://doi.org/10.1016/j.marmicro.2010.09.007, 2011.
Pattan, J. N. and Pearce, N. J. G.: Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: Results from redox-sensitive elements, Palaeogeogr. Palaeocl., 280, 396–405, https://doi.org/10.1016/j.palaeo.2009.06.027, 2009.
Paul, A., Reijmer, J. J., Fürstenau, J., Kinkel, H., and Betzler, C.: Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonit production (Maldives, Indian Ocean), Sedimentology, 59, 1640–1658, https://doi.org/10.1111/j.1365-3091.2011.01319.x, 2012.
Pichevin, L., Bard, E., Martinez, P., and Billy, I.: Evidence of ventilation changes in the Arabian Sea during the late Quaternary: Implication for denitrification and nitrous oxide emission, Global Biogeochem. Cy., 21, GB4008, https://doi.org/10.1029/2006GB002852, 2007.
Prasad, T. G. and Ikeda, M.: Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea, J. Geophys. Res., 106, 17059–17071, https://doi.org/10.1029/2000JC000480, 2001.
Reichart, G. J., Lourens, L. J., and Zachariasse, W. J.: Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225 000 years, Paleoceanography, 13, 607–621, https://doi.org/10.1029/98PA02203, 1998.
Reid, J. L.: On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports, Prog. Oceanogr., 56, 137–186, https://doi.org/10.1016/S0079-6611(02)00141-6, 2003.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50 000 years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Reolid, J., Reolid, M., Betzler, C., Lindhorst, S., Wiesner, M. G., and Lahajnar, N.: Upper Pleistocene cold-water corals from the Inner Sea of the Maldives: taphonomy and environment, Facies, 63, 1–20, https://doi.org/10.1007/s10347-016-0491-7, 2017.
Rixen, T., Haake, B., Ittekkot, V., Guptha, M. V. S., Nair, R. R., and Schlüssel, P.: Coupling between SW monsoon-related surface and deep ocean processes as discerned from continous particle flux measurements and correlated satellite data, J. Geophys. Res., 101, 28569–28582, https://doi.org/10.1029/96JC02420, 1996.
Roberts, A. P., Rohling, E. J., Grant, K. M., Larrasoaña, J. C., and Liu, Q.: Atmospheric dust variability from Arabia and China over the last 500 000 years, Quaternary Sci. Rev., 30, 3537–3541, https://doi.org/10.1016/j.quascirev.2011.09.007, 2011.
Rohling, E. J., Grant, K., Bolshaw, M., Roberst, A. P., Siddall, M., Hemleben, C., and Kucera, M.: Antarctic temperature and global sea level closely coupled over the past ?ve glacial cycles, Nat. Geosci., 2, 500–504, https://doi.org/10.1038/NGEO557, 2009.
Romero, O. E., Kim, J.-H., and Hebbeln, D.: Paleoproductivity evolution off central Chile from the Last Glacial Maximum to the Early Holocene, Quaternary Res., 65, 519–525, https://doi.org/10.1016/j.yqres.2005.07.003, 2006.
Ronge, T. A., Steph, S., Tiedemann, R., Prange, M., Merkel, U., Nürnberg, D., and Kuhn, G.: Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350 000 years, Paleoceanography, 30, 23–38, https://doi.org/10.1002/2014PA002727, 2015.
Rostek, F., Bard, E., Beaufort, L., Sonzogni, C., and Ganssen, G.: Sea surface temperature and productivity records for the past 240 ka in the Arabian Sea, Deep-Sea Res. Pt. II, 44, 1461–1480, https://doi.org/10.1016/S0967-0645(97)00008-8, 1997.
Ruddiman, W. F. and Kutzbach, J. E.: Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west, Atmospheres, 94, 18409–18427, https://doi.org/10.1029/JD094iD15p18409, 1989.
Rühlemann, C., Müller, P. J., and Schneider, R. R.: Organic carbon and carbonate as paleoproductivity proxies: Examples from high and low productivity areas of the tropical Atlantic, in: Use of proxies in paleoceanography: Examples from the South Atlantic, edited by: Fischer, G. and Wefer, G., Springer, Berlin, Heidelberg, Germany, 315–344, 1999.
Sarkar, S. and Gupta, A. K.: Deep-sea paleoceanography of Maldives Islands (ODP Hole 716A), equatorial Indian Ocean during MIS 12-6, J. Bioscience, 34, 749–764, https://doi.org/10.1007/s12038-009-0066-7, 2009.
Sarkar, S. and Gupta, A. K.: Late Quaternary productivity changes in the equatorial Indian Ocean (ODP Hole 716A), Palaeogeogr. Palaeocl., 397, 7–19, https://doi.org/10.1016/j.palaeo.2013.12.002, 2014.
Sasamal, S. K.: Island wake circulation off Maldives during boreal winter, as visualised with MODIS derived chlorophyll-a data and other satellite measurements, Int. J. Remote Sens., 28, 891–903, https://doi.org/10.1080/01431160600858459, 2007.
Schlager, W., Reijmer, J. J. G., and Droxler, A.: Highstand Shedding of Carbonate Platforms, J. Sediment. Res., 64B, 270–281, 1994.
Schmiedl, G. and Leuschner, D. C.: Oxygenation changes in the deep western Arabian Sea during the last 190 000 years: productivity versus deep-water circulation, Paleoceanography, 20, PA2008, https://doi.org/10.1029/2004PA001044, 2005.
Schmiedl, G. and Mackensen, A.: Multispecies stable isotopes of benthic foraminifers reveal past changes of organic matter decomposition and deepwater oxygenation in the Arabian Sea, Paleoceanography, 21, PA4213, https://doi.org/10.1029/2006PA001284, 2006.
Schmiedl, G., Mackensen, A., and Müller, P. J.: Recent benthic foraminifera from the eastern South Atlantic Ocean: Dependence on food supply and water masses, Mar. Micropaleontol., 32, 249–287, https://doi.org/10.1016/S0377-8398(97)00023-6, 1997.
Schoepfer, S. D., Shen, J., Wei, H., Tyson, R. V., Ingall, E., and Algeo, T. J.: Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity, Earth-Sci. Rev., 149, 23–52, https://doi.org/10.1016/j.earscirev.2014.08.017, 2015.
Schott, F. A. and McCreary Jr., J. P.: The monsoon circulation of the Indian Ocean, Prog. Oceanogr., 51, 1–123, https://doi.org/10.1016/S0079-6611(01)00083-0, 2001.
Schulz, H., von Rad, U., and Erlenkeuser, H.: Correlation between Arabian Sea and Greenland climate oscillation of the past 110 000 years, Nature, 393, 54–57, https://doi.org/10.1038/31750, 1998.
Singh, A. D., Jung, S. J. A., Darling, K., Ganeshram, R., Ivanochko, T., and Kroon, D.: Productivity collapses in the Arabian Sea during glacial cold phases, Paleoceanography, 26, PA3210, https://doi.org/10.1029/2009PA001923, 2011.
Sirocko, F. and Lange, H.: Clay-mineral accumulation rates in the Arabian Sea during the late Quaternary, Mar. Geol., 97, 105–119, https://doi.org/10.1016/0025-3227(91)90021-U, 1991.
Smith, A. J. and Gallagher, S. J.: The Recent foraminifera and facies of the Bass Canyon: a temperate submarine canyon in Gippsland, Australia, J. Micropalaeontol., 22, 63–83, https://doi.org/10.1144/jm.22.1.63, 2003.
Southon, J., Kashgarian, M., Fontugne, M., Metivier, B., and Yim, W. W.-S.: Marine Reservoir Corrections for the Indian Ocean and Southeast Asia, Radiocarbon, 44, 167–180, https://doi.org/10.1017/S0033822200064778, 2002.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, https://doi.org/10.1126/science.1153847, 2008.
Stuiver, M. and Reimer, P. J.: Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35, 215–230, 1993.
Sun, X., Corliss, B. H., Brown, C. W., and Showers, W. J.: The effect of primary productivity and seasonality on the distribution of deep-sea benthic foraminifera in the North Atlantic, Deep-Sea Res. Pt. I, 53, 28–47, https://doi.org/10.1016/j.dsr.2005.07.003, 2006.
Thiede, J., Nees, S., Altenbach, A., Andresen, N., Findlay, C., Hill, P., Howard, W., Jellinek, T., Jurkschat, T., Laurent, E., van der Lingen, G., Müller, A., Neil, H., Probert, I., Rehder, W., Reijmer, J., Rendle, R., Roth, S., Rueggeberg, A., Runze, O., Schulz, H., Schumann, M., Sturm, A., Swanson, K., and Willamowski, C.: FS Sonne Fahrtbericht SO136, Cruise Report SO136, TASQWA: Quaternary variability of water masses in Southern Tasman sea and the southern ocean (SW pacific sector), Wellington-Hobart, October 16 November 12, GEOMAR Report 89, 1–106, GEOMAR, Kiel, Germany, 1999.
Weiss, R. F., Broecker, W. S., Craig, H., and Spencer, D.: GEOSECS Indian Ocean Expedition: Hydrographic Data 1977–1978, 5, U.S. Government Printing Office, Washington, D.C., USA, 1–62, 1983.
Wiggert, J. D., Murtugudde, R. G., and Christian, J. R.: Annual ecosystem variability in the tropical Indian Ocean: Results of a coupled bio-physical ocean general circulation model, Deep-Sea Res. Pt. II, 53, 644–676, https://doi.org/10.1016/j.dsr2.2006.01.027, 2006.
Wyrtki, K.: Physical oceanography of the Indian Ocean, in: The biology of the Indian Ocean, edited by: Zeitzschel, B. and Gerlach, S. A., Springer-Verlag, Berlin, Heidelberg, Germany, 18–36, 1973.
You, Y.: Intermediate water circulation and ventilation of the Indian Ocean derived from water-mass contributions, J. Mar. Res., 56, 1029–1067, 1998.
Zhang, X., Arimoto, R., An, Z., Chen, T., Zhang, G., Zhu, G., and Wang, X.: Atmospheric trace elements over source regions for Chinese dust: concentrations, sources and atmospheric depositions on the Loess Plateau, Atmos. Environ., 27A, 2051–2067, https://doi.org/10.1016/0960-1686(93)90277-6, 1993.
Zhang, X. Y., Lu, H. Y., Arimoto, R., and Gong, S. L.: Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: two 250-ka loess records, Earth Planet. Sc. Lett., 202, 637–643, https://doi.org/10.1016/S0012-821X(02)00797-5, 2002.
Ziegler, M., Jilbert, T., de Lange, G., Lourens, L. J., and Reichart, G.-J.: Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores, Geochem. Geophy. Geosy., 9, 1–6, https://doi.org/10.1029/2007GC001932, 2008.
Ziegler, M., Lourens, L. J., Tuenter, E., and Reichart, G.-J.: Anomalously high Arabian Sea productivity conditions during MIS 13, Clim. Past Discuss., 5, 1989–2018, 2009.
Ziegler, M., Lourens, L. J., Tuenter, E., and Reichart, G.-J.: High Arabian Sea productivity conditions during MIS 13 – odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition?, Clim. Past, 6, 63–76, https://doi.org/10.5194/cp-6-63-2010, 2010.
Short summary
We investigated a sediment core from the Maldives to unravel the interaction between equatorial climate and ocean variability of the past 200 000 years. The sedimentological, geochemical and foraminiferal data records reveal enhanced dust, which was transported by intensified winter monsoon winds during glacial conditions. Precessional fluctuations of bottom water oxygen suggests an expansion of the Arabian Sea OMZ and a varying inflow of Antarctic Intermediate Water.
We investigated a sediment core from the Maldives to unravel the interaction between equatorial...