Articles | Volume 13, issue 12
https://doi.org/10.5194/cp-13-1751-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-13-1751-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions
Mandy Freund
CORRESPONDING AUTHOR
School of Earth Sciences, University of Melbourne, Melbourne, 3010, Australia
ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, 3010, Australia
Australian-German Climate and Energy College, University of Melbourne, Melbourne, 3010, Australia
Benjamin J. Henley
School of Earth Sciences, University of Melbourne, Melbourne, 3010, Australia
ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, 3010, Australia
David J. Karoly
School of Earth Sciences, University of Melbourne, Melbourne, 3010, Australia
ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, 3010, Australia
Kathryn J. Allen
School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Victoria, 3121, Australia
Patrick J. Baker
School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, Victoria, 3121, Australia
Related authors
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021, https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
Ian D. McHugh, Jason Beringer, Shaun C. Cunningham, Patrick J. Baker, Timothy R. Cavagnaro, Ralph Mac Nally, and Ross M. Thompson
Biogeosciences, 14, 3027–3050, https://doi.org/10.5194/bg-14-3027-2017, https://doi.org/10.5194/bg-14-3027-2017, 2017
Short summary
Short summary
We analysed a 3-year record of CO2 exchange at a eucalypt woodland and found that substantial nocturnal advective CO2 losses occurred, thus requiring correction. We demonstrated that the most common of these correction methods incurred substantial bias in long-term estimates of carbon balance if storage of CO2 below the measurement height was excluded. This is important because the majority of sites both in Australia and internationally lack such measurements.
Mitchell T. Black, David J. Karoly, Suzanne M. Rosier, Sam M. Dean, Andrew D. King, Neil R. Massey, Sarah N. Sparrow, Andy Bowery, David Wallom, Richard G. Jones, Friederike E. L. Otto, and Myles R. Allen
Geosci. Model Dev., 9, 3161–3176, https://doi.org/10.5194/gmd-9-3161-2016, https://doi.org/10.5194/gmd-9-3161-2016, 2016
Short summary
Short summary
This study presents a citizen science computing project, known as weather@home Australia–New Zealand, which runs climate models on thousands of home computers. By harnessing the power of volunteers' computers, this project is capable of simulating extreme weather events over Australia and New Zealand under different climate scenarios.
Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofield
Atmos. Chem. Phys., 16, 2401–2415, https://doi.org/10.5194/acp-16-2401-2016, https://doi.org/10.5194/acp-16-2401-2016, 2016
Short summary
Short summary
This paper describes the set-up and evaluation of the Australian Community Climate and Earth System Simulator – chemistry-climate model.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Related subject area
Subject: Atmospheric Dynamics | Archive: Terrestrial Archives | Timescale: Holocene
Patterns of centennial to millennial Holocene climate variation in the North American mid-latitudes
North Atlantic Oscillation polarity during the past 3 ka derived from lacustrine sediments of large lowland lake Schweriner See, NE-Germany
Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends
Mid-Holocene reinforcement of North Atlantic atmospheric circulation variability from a western Baltic lake sediment record
Holocene sea level and environmental change at the southern Cape – an 8.5 kyr multi-proxy paleoclimate record from Lake Voëlvlei, South Africa
Tree-ring-based spring precipitation reconstruction in the Sikhote-Alin' Mountain range
Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum
Hydrological variations in central China over the past millennium and their links to the tropical Pacific and North Atlantic oceans
Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event – a hypothesis
Hydro-climatic variability in the southwestern Indian Ocean between 6000 and 3000 years ago
Evidence for increased expression of the Amundsen Sea Low over the South Atlantic during the late Holocene
The 4.2 ka BP event: multi-proxy records from a closed lake in the northern margin of the East Asian summer monsoon
Drought and vegetation change in the central Rocky Mountains and western Great Plains: potential climatic mechanisms associated with megadrought conditions at 4200 cal yr BP
Placing the Common Era in a Holocene context: millennial to centennial patterns and trends in the hydroclimate of North America over the past 2000 years
Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks
Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact
Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains
A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years
Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns
The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data–model comparison
Late Holocene summer temperatures in the central Andes reconstructed from the sediments of high-elevation Laguna Chepical, Chile (32° S)
Effects of dating errors on nonparametric trend analyses of speleothem time series
Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies
Relationship between Holocene climate variations over southern Greenland and eastern Baffin Island and synoptic circulation pattern
Bryan N. Shuman
Clim. Past, 20, 1703–1720, https://doi.org/10.5194/cp-20-1703-2024, https://doi.org/10.5194/cp-20-1703-2024, 2024
Short summary
Short summary
A gap in understanding climate variation exists at centennial to millennial scales, particularly for warm climates. Such variations challenge detection. They exceed direct observation but are geologically short. Centennial to millennial variations that may have influenced North America were examined over the past 7 kyr. Significant patterns were detected from fossil pollen and sedimentary lake level changes, indicating ecological, hydrological, and likely human significance.
Marie-Luise Adolph, Sambor Czerwinski, Mirko Dreßler, Paul Strobel, Marcel Bliedtner, Sebastian Lorenz, Maxime Debret, and Torsten Haberzettl
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-73, https://doi.org/10.5194/cp-2023-73, 2023
Revised manuscript accepted for CP
Short summary
Short summary
We studied large-scale atmospheric conditions and lake-level variations using lake sediments from Schweriner See, NE-Germany. For the past 3000 years, our results suggest large-scale variability in the North Atlantic Oscillation, which is one of the main drivers of climate in the North Atlantic region, affecting, for example, winter temperature and precipitation. Lake-level variability is linked to precipitation changes and after the 12th century to anthropogenic impacts.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Paul Strobel, Marcel Bliedtner, Andrew S. Carr, Peter Frenzel, Björn Klaes, Gary Salazar, Julian Struck, Sönke Szidat, Roland Zech, and Torsten Haberzettl
Clim. Past, 17, 1567–1586, https://doi.org/10.5194/cp-17-1567-2021, https://doi.org/10.5194/cp-17-1567-2021, 2021
Short summary
Short summary
This study presents a multi-proxy record from Lake Voёlvlei and provides new insights into the sea level and paleoclimate history of the past 8.5 ka at South Africa’s southern Cape coast. Our results show that sea level changes at the southern coast are in good agreement with the western coast of South Africa. In terms of climate our record provides valuable insights into changing sources of precipitation at the southern Cape coast, i.e. westerly- and easterly-derived precipitation contribution.
Olga Ukhvatkina, Alexander Omelko, Dmitriy Kislov, Alexander Zhmerenetsky, Tatyana Epifanova, and Jan Altman
Clim. Past, 17, 951–967, https://doi.org/10.5194/cp-17-951-2021, https://doi.org/10.5194/cp-17-951-2021, 2021
Short summary
Short summary
We present the first precipitation reconstructions for three sites along a latitudinal gradient in the Sikhote-Alin' mountains (Russian Far East). The reconstructions are based on Korean pine tree rings. We found that an important limiting factor for this species growth was precipitation during the spring-to-early-summer period. The periodicity found in our reconstructions suggests the influence of El Niño–Southern Oscillation and Pacific Dedacadal Oscillation on the region's climate.
Florian Mekhaldi, Markus Czymzik, Florian Adolphi, Jesper Sjolte, Svante Björck, Ala Aldahan, Achim Brauer, Celia Martin-Puertas, Göran Possnert, and Raimund Muscheler
Clim. Past, 16, 1145–1157, https://doi.org/10.5194/cp-16-1145-2020, https://doi.org/10.5194/cp-16-1145-2020, 2020
Short summary
Short summary
Due to chronology uncertainties within paleoclimate archives, it is unclear how climate oscillations from different records relate to one another. By using radionuclides to synchronize Greenland ice cores and a German lake record over 11 000 years, we show that two oscillations observed in these records were not synchronous but terminated and began with the onset of a grand solar minimum. Both this and changes in ocean circulation could have played a role in the two climate oscillations.
Fucai Duan, Zhenqiu Zhang, Yi Wang, Jianshun Chen, Zebo Liao, Shitao Chen, Qingfeng Shao, and Kan Zhao
Clim. Past, 16, 475–485, https://doi.org/10.5194/cp-16-475-2020, https://doi.org/10.5194/cp-16-475-2020, 2020
Short summary
Short summary
We reconstruct a detailed history of the East Asian summer monsoon (EASM) using stalagmite records in central China during the last millennium. We estimate responses of the EASM to anthropogenic global warming by comparing its relative intensity between the Current Warm Period and Medieval Climate Anomaly, two recent warm periods. We also study potential links of the EASM to the tropical Pacific and North Atlantic oceans. This work advances our understanding of EASM dynamics.
Aurel Perşoiu, Monica Ionita, and Harvey Weiss
Clim. Past, 15, 781–793, https://doi.org/10.5194/cp-15-781-2019, https://doi.org/10.5194/cp-15-781-2019, 2019
Short summary
Short summary
We present a reconstruction of winter climate around 4.2 ka cal BP in Europe, west Asia, and northern Africa that shows generally low temperatures and heterogeneously distributed precipitation. We hypothesize that in the extratropical Northern Hemisphere the 4.2 ka BP event was caused by the strengthening and expansion of the Siberian High, which effectively blocked the moisture-carrying westerlies from reaching west Asia and also resulted in outbreaks of northerly cold and dry winds.
Hanying Li, Hai Cheng, Ashish Sinha, Gayatri Kathayat, Christoph Spötl, Aurèle Anquetil André, Arnaud Meunier, Jayant Biswas, Pengzhen Duan, Youfeng Ning, and Richard Lawrence Edwards
Clim. Past, 14, 1881–1891, https://doi.org/10.5194/cp-14-1881-2018, https://doi.org/10.5194/cp-14-1881-2018, 2018
Short summary
Short summary
The
4.2 ka eventbetween 4.2 and 3.9 ka has been widely discussed in the Northern Hemsiphere but less reported in the Southern Hemisphere. Here, we use speleothem records from Rodrigues in the southwestern Indian Ocean spanning from 6000 to 3000 years ago to investigate the regional hydro-climatic variability. Our records show no evidence for an unusual climate anomaly between 4.2 and 3.9 ka. Instead, it shows a multi-centennial drought between 3.9 and 3.5 ka.
Zoë A. Thomas, Richard T. Jones, Chris J. Fogwill, Jackie Hatton, Alan N. Williams, Alan Hogg, Scott Mooney, Philip Jones, David Lister, Paul Mayewski, and Chris S. M. Turney
Clim. Past, 14, 1727–1738, https://doi.org/10.5194/cp-14-1727-2018, https://doi.org/10.5194/cp-14-1727-2018, 2018
Short summary
Short summary
We report a high-resolution study of a 5000-year-long peat record from the Falkland Islands. This area sensitive to the dynamics of the Amundsen Sea Low, which plays a major role in modulating the Southern Ocean climate. We find wetter, colder conditions between 5.0 and 2.5 ka due to enhanced southerly airflow, with the establishment of drier and warmer conditions from 2.5 ka to present. This implies more westerly airflow and the increased projection of the ASL onto the South Atlantic.
Jule Xiao, Shengrui Zhang, Jiawei Fan, Ruilin Wen, Dayou Zhai, Zhiping Tian, and Dabang Jiang
Clim. Past, 14, 1417–1425, https://doi.org/10.5194/cp-14-1417-2018, https://doi.org/10.5194/cp-14-1417-2018, 2018
Short summary
Short summary
Multiple proxies of a sediment core at Hulun Lake in the northern margin of the EASM reveal a prominent dry event at the interval of 4210–3840 cal. yr BP that could be the regional manifestation of the 4.2 ka BP event. Future studies should be focused on the investigation of high-quality, high-resolution proxy records from climatically sensitive and geographically representative regions in order to explore the spatiotemporal pattern of the 4.2 ka BP event and the associated dynamic mechanism.
Vachel A. Carter, Jacqueline J. Shinker, and Jonathon Preece
Clim. Past, 14, 1195–1212, https://doi.org/10.5194/cp-14-1195-2018, https://doi.org/10.5194/cp-14-1195-2018, 2018
Short summary
Short summary
Between 4200 and 4000 cal yr BP, paleoecological evidence suggests a megadrought occurred in the central Rocky Mountains and western Great Plains. Modern climate analogues were used to explore potential climate mechanisms responsible for the ecological changes. Analogues illustrate that warm and dry conditions persisted through the growing season as a result of anomalously higher-than-normal heights centred over the Great Plains which suppressed moisture transport to the region.
Bryan N. Shuman, Cody Routson, Nicholas McKay, Sherilyn Fritz, Darrell Kaufman, Matthew E. Kirby, Connor Nolan, Gregory T. Pederson, and Jeannine-Marie St-Jacques
Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, https://doi.org/10.5194/cp-14-665-2018, 2018
Short summary
Short summary
A synthesis of 93 published records reveals that moisture availability increased over large portions of North America over the past 2000 years, the Common Era (CE). In many records, the second millennium CE tended to be wetter than the first millennium CE. The long-term changes formed the background for annual to multi-decade variations, such as "mega-droughts", and also provide a context for amplified rates of hydrologic change today.
Jasper G. Franke, Johannes P. Werner, and Reik V. Donner
Clim. Past, 13, 1593–1608, https://doi.org/10.5194/cp-13-1593-2017, https://doi.org/10.5194/cp-13-1593-2017, 2017
Short summary
Short summary
We apply evolving functional network analysis, a tool for studying temporal changes of the spatial co-variability structure, to a set of
Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to
long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). We obtain a
qualitative reconstruction of the NAO long-term variability over the entire Common Era.
Jack Longman, Daniel Veres, Vasile Ersek, Ulrich Salzmann, Katalin Hubay, Marc Bormann, Volker Wennrich, and Frank Schäbitz
Clim. Past, 13, 897–917, https://doi.org/10.5194/cp-13-897-2017, https://doi.org/10.5194/cp-13-897-2017, 2017
Short summary
Short summary
We present the first record of dust input into an eastern European bog over the past 10 800 years. We find significant changes in past dust deposition, with large inputs related to both natural and human influences. We show evidence that Saharan desertification has had a significant impact on dust deposition in eastern Europe for the past 6100 years.
B. Wilhelm, H. Vogel, C. Crouzet, D. Etienne, and F. S. Anselmetti
Clim. Past, 12, 299–316, https://doi.org/10.5194/cp-12-299-2016, https://doi.org/10.5194/cp-12-299-2016, 2016
Short summary
Short summary
The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by reconstructing the Foréant record. Both influences result in a higher flood frequency during past cold periods. Atlantic influences seem to result in more frequent high-intensity flood events during past warm periods, suggesting an increase in flood intensity under the global warming. However, no high-intensity events occurred during the 20th century.
C. S. M. Turney, R. T. Jones, C. Fogwill, J. Hatton, A. N. Williams, A. Hogg, Z. A. Thomas, J. Palmer, S. Mooney, and R. W. Reimer
Clim. Past, 12, 189–200, https://doi.org/10.5194/cp-12-189-2016, https://doi.org/10.5194/cp-12-189-2016, 2016
Short summary
Short summary
Southern Hemisphere westerly airflow is considered a major driver of Southern Ocean and global climate. Observational records, however, are limited. Here we present a new Falkland Islands record that exploits "exotic" South America pollen and charcoal to reconstruct changing airflow. We find stronger winds 2000–1000 cal. yr BP, associated with increased burning, and a 250-year periodicity, suggesting solar forcing. Our results have important implications for understanding late Holocene climates.
J. F. Donges, R. V. Donner, N. Marwan, S. F. M. Breitenbach, K. Rehfeld, and J. Kurths
Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, https://doi.org/10.5194/cp-11-709-2015, 2015
Short summary
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
A. Mauri, B. A. S. Davis, P. M. Collins, and J. O. Kaplan
Clim. Past, 10, 1925–1938, https://doi.org/10.5194/cp-10-1925-2014, https://doi.org/10.5194/cp-10-1925-2014, 2014
R. de Jong, L. von Gunten, A. Maldonado, and M. Grosjean
Clim. Past, 9, 1921–1932, https://doi.org/10.5194/cp-9-1921-2013, https://doi.org/10.5194/cp-9-1921-2013, 2013
M. Mudelsee, J. Fohlmeister, and D. Scholz
Clim. Past, 8, 1637–1648, https://doi.org/10.5194/cp-8-1637-2012, https://doi.org/10.5194/cp-8-1637-2012, 2012
J. C. Stager, P. A. Mayewski, J. White, B. M. Chase, F. H. Neumann, M. E. Meadows, C. D. King, and D. A. Dixon
Clim. Past, 8, 877–887, https://doi.org/10.5194/cp-8-877-2012, https://doi.org/10.5194/cp-8-877-2012, 2012
B. Fréchette and A. de Vernal
Clim. Past, 5, 347–359, https://doi.org/10.5194/cp-5-347-2009, https://doi.org/10.5194/cp-5-347-2009, 2009
Cited articles
Allan, R. J. and Haylock, M. R.: Circulation features associated with the winter rainfall decrease in Southwestern Australia, J. Climate, 6, 1356–1367, 1993.
Allen, K. J., Lee, G., Ling, F., Allie, S., Willis, M., and Baker, P. J.: Palaeohydrology in climatological context: developing the case for use of remote predictors in Australian streamflow reconstructions, Appl. Geogr., 64, 132–152, https://doi.org/10.1016/j.apgeog.2015.09.007, 2015.
Ashcroft, L., Gergis, J., and Karoly, D. J.: A historical climate dataset for southeastern Australia, 1788–1859, Geosci. Data J., 1, 158–178, https://doi.org/10.1002/gdj3.19, 2014.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño Modoki and its possible teleconnection, J. Geophys. Res.-Oceans, 112, C11007, https://doi.org/10.1029/2006JC003798, 2007.
Bradley, R. S. and Jonest, P. D.: “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends, Holocene, 3, 367–376, https://doi.org/10.1177/095968369300300409, 1993.
Cai, W. and Cowan, T.: SAM and regional rainfall in IPCC AR4 models: can anthropogenic forcing account for southwest Western Australian winter rainfall reduction?, Geophys. Res. Lett., 33, L24708, https://doi.org/10.1029/2006GL028037, 2006.
Cai, W. and Cowan, T.: Dynamics of late autumn rainfall reduction over southeastern Australia, Geophys. Res. Lett., 35, L09708, https://doi.org/10.1029/2008GL033727, 2008.
Cai, W., van Rensch, P., Cowan, T., and Sullivan, A.: Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact, J. Climate, 23, 4944–4955, https://doi.org/10.1175/2010JCLI3501.1, 2010.
Cai, W., van Rensch, P., Cowan, T., and Hendon, H. H.: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate, J. Climate, 25, 6318–6329, https://doi.org/10.1175/JCLI-D-11-00501.1, 2012.
Cai, W., Purich, A., Cowan, T., van Rensch, P., and Weller, E.: Did climate change-induced rainfall trends contribute to the Australian Millennium Drought?, J. Climate, 27, 3145–3168, https://doi.org/10.1175/JCLI-D-13-00322.1, 2014.
Cook, B. I., Ault, T. R., and Smerdon, J. E.: Unprecedented 21st century drought risk in the American Southwest and Central Plains, Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082, 2015.
Cook, B. I., Palmer, J. G., Cook, E. R., Turney, C. S. M., Allen, K., Fenwick, P., O'Donnell, A., Lough, J. M., Grierson, P. F., Ho, M., and Baker, P. J.: The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia, J. Geophys. Res.-Atmos., 121, 12820–12838, https://doi.org/10.1002/2016JD024892, 2016.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in dendroclimatology: a review and comparison of two techniques, Int. J. Climatol., 14, 379–402, 1994.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian Monsoon Failure and Megadrought During the Last Millennium, Science, 328, 486–489, https://doi.org/10.1126/science.1185188, 2010.
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., Van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson, B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F., Heussner, K. U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl, T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D., Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A., Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M., Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson, R., and Zang, C.: Old World megadroughts and pluvials during the Common Era, Sci. Adv., 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015.
CSIRO: Climate and water availability in southeastern Australia: a synthesis of findings from Phase 2 of the South Eastern Australian Climate Initiative (SEACI), CSIRO, Canberra, available at: http://www.seaci.org (last access: 28 February 2017), 2012.
CSIRO and Bureau of Meteorology: Climate Change in Australia Information for Australia's Natural Resource Management Regions: Technical Report, CSIRO and Bureau of Meteorology, Australia, 2015.
Cullen, L. E. and Grierson, P. F.: Multi-decadal scale variability in autumn-winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris, Clim. Dynam., 33, 433–444, https://doi.org/10.1007/s00382-008-0457-8, 2008.
Drosdowsky, W.: An analysis of Australian seasonal rainfall anomalies – 1950–1987. 2. Temporal variability and teleconnection patterns, Int. J. Climatol., 13, 111–149, 1993.
Fenby, C. and Gergis, J.: Rainfall variations in south-eastern Australia part 1: consolidating evidence from pre-instrumental documentary sources, 1788–1860, Int. J. Climatol., 33, 2956–2972, https://doi.org/10.1002/joc.3640, 2012.
Feng, J., Li, J., and Xu, H.: Increased summer rainfall in northwest Australia linked to southern Indian Ocean climate variability, J. Geophys. Res.-Atmos., 118, 467–480, https://doi.org/10.1029/2012JD018323, 2013.
Fiddes, S. and Timbal, B.: Future impacts of climate change on streamflows across Victoria, Australia: making use of statistical downscaling, Clim. Res., 71, 219–236, https://doi.org/10.3354/cr01447, 2017.
Freund, M.: Multi-century cool and warm season rainfall reconstructions for Australia's major climatic regions: Data and additional information on a seasonal rainfall reconstruction of major NRM regions based on paleoclimate data, https://doi.org/10.4225/49/59e3ee30cdbbc, 2017.
Gallant, A., Phipps, S. J., and Karoly, D. J.: Nonstationary Australasian teleconnections and implications for paleoclimate reconstructions, J. Climate, 26, 8827–8849, https://doi.org/10.1175/JCLI-D-12-00338.1, 2013.
Gallant, A. J. E. and Gergis, J.: An experimental streamflow reconstruction for the River Murray, Australia, 1783–1988, Water Resour. Res., 47, W00G04, https://doi.org/10.1029/2010WR009832, 2011.
Gergis, J. and Ashcroft, L.: Rainfall variations in south-eastern Australia part 2: a comparison of documentary, early instrumental and palaeoclimate records, 1788–2008, Int. J. Climatol., 33, 2973–2987, https://doi.org/10.1002/joc.3639, 2012.
Gergis, J., Garden, D., and Fenby, C.: The influence of climate on the first european settlement of Australia: a comparison of weather journals, documentary data and palaeoclimate records, 1788–1793, Environ. Hist., 15, 485–507, https://doi.org/10.1093/envhis/emq079, 2010.
Gergis, J., Gallant, A. J. E., Braganza, K., Karoly, D. J., Allen, K., Cullen, L., D'Arrigo, R., Goodwin, I., Grierson, P., and McGregor, S.: On the long-term context of the 1997–2009 “Big Dry” in South-Eastern Australia: insights from a 206-year multi-proxy rainfall reconstruction, Clim. Change, 111, 923–944, https://doi.org/10.1007/s10584-011-0263-x, 2011.
Heinrich, I., Weidner, K., Helle, G., Vos, H., Lindesay, J., and Banks, J. C. G.: Interdecadal modulation of the relationship between ENSO, IPO and precipitation: insights from tree rings in Australia, Clim. Dynam., 33, 63–73, https://doi.org/10.1007/s00382-009-0544-5, 2009.
Helman, P.: Droughts in the Murray–Darling Basin Since European Settlement, Griffith University, Southport, 2009.
Hendon, H. H., Thompson, D. W. J., and Wheeler, M. C.: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode, J. Climate, 20, 2452–2467, https://doi.org/10.1175/JCLI4134.1, 2007.
Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., and Folland, C. K.: A tripole index for the Interdecadal Pacific Oscillation, Clim. Dynam., 45, 1–14, https://doi.org/10.1007/s00382-015-2525-1, 2015.
Henley, B. J., Meehl, G., Power, S. B., Folland, C. K., King, A. D., Brown, J. N., Karoly, D. J., Delage, F., Gallant, A. J. E., Freund, M., and Neukom, R.: Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation, Environ. Res. Lett., 12, 044011, https://doi.org/10.1088/1748-9326/aa5cc8, 2017.
Hope, P., Timbal, B., and Fawcett, R.: Associations between rainfall variability in the southwest and southeast of Australia and their evolution through time, Int. J. Climatol., 30, 1360–1371, https://doi.org/10.1002/joc.1964, 2009.
Hutchinson, M. F.: Interpolating mean rainfall using thin plate smoothing splines, Int. J. Geogr. Inf. Syst., 9, 385–403, https://doi.org/10.1080/02693799508902045, 1995.
Jones, D. A., Wang, W., and Fawcett, R.: High-quality spatial climate data-sets for Australia, Aust. Meteorol. Ocean., 58, 233–248, 2009.
Keyantash, J. and Dracup, J. A.: The quantification of drought: an evaluation of drought indices, B. Am. Meteorol. Soc., 83, 1167–1180, 2002.
King, A. D., Alexander, L. V., and Donat, M. G.: Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability, Geophys. Res. Lett., 40, 2271–2277, https://doi.org/10.1002/grl.50427, 2013.
Koch, S. E., Desjardins, M., and Kocin, P. J.: An interactive barnes objective map analysis scheme for use with satellite and conventional data, J. Clim. Appl. Meteorol., 22, 1487–1503, 1983.
Larsen, S. H. and Nicholls, N.: Southern Australian rainfall and the subtropical ridge: variations, interrelationships, and trends, Geophys. Res. Lett., 36, L08708, https://doi.org/10.1029/2009GL037786, 2009.
Lough, J. M., Lewis, S. E., and Cantin, N. E.: Freshwater impacts in the central Great Barrier Reef: 1648–2011, Coral Reefs, 34, 739–751, https://doi.org/10.1007/s00338-015-1297-8, 2015.
Maher, P. and Sherwood, S. C.: Disentangling the multiple sources of large-scale variability in Australian wintertime precipitation, J. Climate, 27, 6377–6392, https://doi.org/10.1175/JCLI-D-13-00659.1, 2014.
Marshall, G.: AMS Journals Online – trends in the Southern Annular Mode from observations and reanalyses, J. Climate, 16, 4134–4143, 2003.
McBride, J. L. and Nicholls, N.: Seasonal relationships between Australian rainfall and the Southern Oscillation, Mon. Weather Rev., 111, 1998–2004, 1983.
Melvin, T. M. and Briffa, K. R.: A signal-free approach to dendroclimatic standardisation, Dendrochronologia, 26, 71–86, https://doi.org/10.1016/j.dendro.2007.12.001, 2008.
Murphy, B. F. and Timbal, B.: A review of recent climate variability and climate change in southeastern Australia, Int. J. Climatol., 28, 859–879, https://doi.org/10.1002/joc.1627, 2008.
Neukom, R. and Gergis, J.: Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years, Holocene, 22, 501–524, https://doi.org/10.1177/0959683611427335, 2012.
Nicholls, N.: Detecting and attributing Australian climate change: a review, Aust. Meteorol. Mag., 55, 199–211, 2006.
Nicholls, N., Drosdowsky, W., and Lavery, B.: Australian rainfall variability and change, Weather, 52, 66–72, https://doi.org/10.1002/j.1477-8696.1997.tb06274.x, 1997.
Oliveira, F. N. M. and Ambrizzi, T.: The effects of ENSO-types and SAM on the large-scale southern blockings, Int. J. Climatol., 37, 3067–3081, https://doi.org/10.1002/joc.4899, 2016.
Palmer, J. G., Cook, E. R., Turney, C. S. M., Allen, K., Fenwick, P., Cook, B. I., O'Donnell, A., Lough, J., Grierson, P., and Baker, P.: Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation, Environ. Res. Lett., 10, 1–12, https://doi.org/10.1088/1748-9326/10/12/124002, 2015.
Pook, M. and Gibson, T.: Atmospheric blocking and storm tracks during SOP-1 of the FROST Project, Aust. Meteorol. Mag., 1, 51–60, 1999.
Ren, H.-L. and Jin, F.-F.: Niño indices for two types of ENSO, Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031, 2011.
Risbey, J. S., Pook, M. J., and McIntosh, P. C.: On the remote drivers of rainfall variability in Australia, Mon. Weather Rev., 137, 3233–3253, https://doi.org/10.1175/2009MWR2861.1, 2009.
Saji, N. H., Goswami, B. N., and Vinayachandran, P. N.: A dipole mode in the tropical Indian Ocean, Nature, 401, 360–363, https://doi.org/10.1038/43854, 1999.
Smith, I.: An assessment of recent trends in Australian rainfall, Aust. Meteorol. Mag., 53, 163–173, 2004.
Speer, M. S., Leslie, L. M., and Fierro, A. O.: Australian east coast rainfall decline related to large scale climate drivers, Clim. Dynam., 36, 1419–1429, https://doi.org/10.1007/s00382-009-0726-1, 2009.
Taschetto, A. S. and England, M. H.: An analysis of late twentieth century trends in Australian rainfall, Int. J. Climatol., 29, 791–807, https://doi.org/10.1002/joc.1736, 2009.
Tierney, J. E., Abram, N. J., Anchukaitis, K. J., Evans, M. N., Giry, C., Kilbourne, K. H., Saenger, C. P., Wu, H. C., and Zinke, J.: Tropical sea surface temperatures for the past four centuries reconstructed from coral archives, Paleoceanography, 30, 226–252, 2015.
Timbal, B. and Drosdowsky, W.: The relationship between the decline of Southeastern Australian rainfall and the strengthening of the subtropical ridge, Int. J. Climatol., 33, 1021–1034, https://doi.org/10.1002/joc.3492, 2012.
Timbal, B. and Fawcett, R.: A historical perspective on southeastern Australian rainfall since 1865 using the instrumental record, J. Climate, 26, 1112–1129, https://doi.org/10.1175/JCLI-D-12-00082.1, 2013.
Timbal, B., Arblaster, J. M., and Power, S.: Attribution of the late-twentieth-century rainfall decline in southwest Australia, J. Climate, 19, 2046–2062, 2006.
Tozer, C. R., Vance, T. R., Roberts, J. L., Kiem, A. S., Curran, M. A. J., and Moy, A. D.: An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia, Hydrol. Earth Syst. Sci., 20, 1703–1717, https://doi.org/10.5194/hess-20-1703-2016, 2016.
Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A., Pook, M. J., Risbey, J. S., Gupta, A. S., and Taschetto, A. S.: What causes southeast Australia's worst droughts?, Geophys. Res. Lett., 36, L04706, https://doi.org/10.1029/2008GL036801, 2009.
Ummenhofer, C. C., Gupta, Sen, A., Briggs, P. R., England, M. H., McIntosh, P. C., Meyers, G. A., Pook, M. J., Raupach, M. R., and Risbey, J. S.: Indian and Pacific Ocean influences on Southeast Australian drought and soil moisture, J. Climate, 24, 1313–1336, https://doi.org/10.1175/2010JCLI3475.1, 2011.
Vance, T. R., Roberts, J. L., Plummer, C. T., Kiem, A. S., and van Ommen, T. D.: Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium, Geophys. Res. Lett., 42, 129–137, https://doi.org/10.1002/2014GL062447, 2015.
van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. A. M., Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resour. Res., 49, 1040–1057, https://doi.org/10.1002/wrcr.20123, 2013.
Verdon-Kidd, D. C. and Kiem, A. S.: Nature and causes of protracted droughts in southeast Australia: comparison between the Federation, WWII, and Big Dry droughts, Geophys. Res. Lett., 36, L22707, https://doi.org/10.1029/2009GL041067, 2009.
Wang, G. and Hendon, H. H.: Sensitivity of Australian Rainfall to Inter–El Niño Variations, J. Climate, 20, 4211–4226, https://doi.org/10.1175/JCLI4228.1, 2007.
Wardle, R.: Modeled response of the Australian monsoon to changes in land surface temperatures, Geophys. Res. Lett., 31, L16205, https://doi.org/10.1029/2004GL020157, 2004.
Watterson, I. G.: Components of precipitation and temperature anomalies and change associated with modes of the Southern Hemisphere, Int. J. Climatol., 29, 809–826, https://doi.org/10.1002/joc.1772, 2009.
Watterson, I. G.: Understanding and partitioning future climates for Australian regions from CMIP3 using ocean warming indices, Climatic Change, 111, 903–922, https://doi.org/10.1007/s10584-011-0166-x, 2011.
Short summary
To understand how climate change will influence Australian rainfall we must first understand the long-term context of droughts and floods. We reconstruct warm and cool season rainfall in Australia's eight major climatic regions for several centuries into the past, building the clearest picture yet of long-term rainfall variability across the Australian continent. We find recent rainfall increases in the warm season in the north, and declines in the cool season in the south, to be highly unusual.
To understand how climate change will influence Australian rainfall we must first understand the...