Articles | Volume 13, issue 1
https://doi.org/10.5194/cp-13-17-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-13-17-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals
Quentin Dubois-Dauphin
Laboratoire Geosciences Paris-Sud (GEOPS), Université de Paris
Sud, Université Paris-Saclay, 91405 Orsay, France
Paolo Montagna
ISMAR-CNR, via Gobetti 101, 40129 Bologna, Italy
Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W,
Palisades, NY 10964, USA
Giuseppe Siani
Laboratoire Geosciences Paris-Sud (GEOPS), Université de Paris
Sud, Université Paris-Saclay, 91405 Orsay, France
Eric Douville
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Claudia Wienberg
MARUM Center for Marine Environmental Sciences, University of Bremen,
Leobener Strasse, 28359 Bremen, Germany
Dierk Hebbeln
MARUM Center for Marine Environmental Sciences, University of Bremen,
Leobener Strasse, 28359 Bremen, Germany
Zhifei Liu
State Key Laboratory of Marine Geology, Tongji University, Shanghai
200092, China
Nejib Kallel
Laboratoire Georessources, Matériaux, Environnements et
Changements Globaux, LR13ES23, Faculté des Sciences de Sfax,
Université de Sfax, BP1171, 3000 Sfax, Tunisia
Arnaud Dapoigny
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Marie Revel
Geoazur, UNS, IRD, OCA, CNRS, 250 rue Albert Einstein, 06500 Valbonne,
France
Edwige Pons-Branchu
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Marco Taviani
ISMAR-CNR, via Gobetti 101, 40129 Bologna, Italy
Biology Department, Woods Hole Oceanographic Institution, 266 Woods
Hole Road, Woods Hole, MA 02543, USA
Christophe Colin
CORRESPONDING AUTHOR
Laboratoire Geosciences Paris-Sud (GEOPS), Université de Paris
Sud, Université Paris-Saclay, 91405 Orsay, France
Related authors
No articles found.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Luis Greiffenhagen, Jürgen Titschack, Claudia Wienberg, Haozhuang Wang, and Dierk Hebbeln
EGUsphere, https://doi.org/10.5194/egusphere-2024-2532, https://doi.org/10.5194/egusphere-2024-2532, 2024
Short summary
Short summary
Cold-water coral mounds are large structures on the seabed that are built by corals over thousands of years. They are regarded as carbonate sinks, with a potentially important role in the marine carbon cycle, but more quantitative studies are needed. Using sediment cores, we calculate the amount of carbon that has been stored in two mounds over the last 400 thousand years. We provide the first numbers and show that up to 19 times more carbon is accumulated on mounds than on the common seafloor.
Carlo Mologni, Marie Revel, Eric Chaumillon, Emmanuel Malet, Thibault Coulombier, Pierre Sabatier, Pierre Brigode, Gwenael Hervé, Anne-Lise Develle, Laure Schenini, Medhi Messous, Gourguen Davtian, Alain Carré, Delphine Bosch, Natacha Volto, Clément Ménard, Lamya Khalidi, and Fabien Arnaud
Clim. Past, 20, 1837–1860, https://doi.org/10.5194/cp-20-1837-2024, https://doi.org/10.5194/cp-20-1837-2024, 2024
Short summary
Short summary
The reactivity of local to regional hydrosystems to global changes remains understated in East African climate models. By reconstructing a chronicle of seasonal floods and droughts from a lacustrine sedimentary core, this paper highlights the impact of El Niño anomalies in the Awash River valley (Ethiopia). Studying regional hydrosystem feedbacks to global atmospheric anomalies is essential for better comprehending and mitigating the effects of global warming in extreme environments.
Clémence Paul, Clément Piel, Joana Sauze, Olivier Jossoud, Arnaud Dapoigny, Daniele Romanini, Frédérique Prié, Sébastien Devidal, Roxanne Jacob, Alexandru Milcu, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-1755, https://doi.org/10.5194/egusphere-2024-1755, 2024
Short summary
Short summary
Our study investigated the influence of plant processes on oxygen dynamics, crucial for paleoclimatology. By examining maize respiration and photosynthesis using advanced techniques, we enhanced our understanding of past climates through ice core analysis.
Loïc Martin, Julius Nouet, Arnaud Dapoigny, Gaëlle Barbotin, Fanny Claverie, Edwige Pons-Branchu, Jocelyn Barbarand, Christophe Pécheyran, Norbert Mercier, Fanny Derym, Bernard Gély, and Hélène Valladas
Geochronology, 6, 247–263, https://doi.org/10.5194/gchron-6-247-2024, https://doi.org/10.5194/gchron-6-247-2024, 2024
Short summary
Short summary
Carbonate wall deposits of Trou du Renard cave (France) were dated using a multimethod approach: U–Th dating by bulk dissolution of samples and inductively coupled plasma mass spectrometry (ICP-MS), U–Th dating by laser ablation ICP-MS imaging, and radiocarbon dating. The samples were studied to ensure that they give reliable ages. Ages ranging from 187.9 ± 5.3 ka and 1.4 ± 0.1 ka were found. This approach should make it possible to establish more robust chronologies of archaeological caves.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Hanxiao Wang, Zhifei Liu, Jiaying Li, Baozhi Lin, Yulong Zhao, Xiaodong Zhang, Junyuan Cao, Jingwen Zhang, Hongzhe Song, and Wenzhuo Wang
Biogeosciences, 20, 5109–5123, https://doi.org/10.5194/bg-20-5109-2023, https://doi.org/10.5194/bg-20-5109-2023, 2023
Short summary
Short summary
The sinking of zooplankton fecal pellets is a key process in the marine biological carbon pump. This study presents carbon export of four shapes of fecal pellets from two time-series sediment traps in the South China Sea. The results show that the sinking fate of fecal pellets is regulated by marine primary productivity, deep-dwelling zooplankton community, and deep-sea currents in the tropical marginal sea, thus providing a new perspective for exploring the carbon cycle in the world ocean.
Clémence Paul, Clément Piel, Joana Sauze, Nicolas Pasquier, Frédéric Prié, Sébastien Devidal, Roxanne Jacob, Arnaud Dapoigny, Olivier Jossoud, Alexandru Milcu, and Amaëlle Landais
Biogeosciences, 20, 1047–1062, https://doi.org/10.5194/bg-20-1047-2023, https://doi.org/10.5194/bg-20-1047-2023, 2023
Short summary
Short summary
To improve the interpretation of the δ18Oatm and Δ17O of O2 in air bubbles in ice cores, we need to better quantify the oxygen fractionation coefficients associated with biological processes. We performed a simplified analogue of the terrestrial biosphere in a closed chamber. We found a respiration fractionation in agreement with the previous estimates at the microorganism scale, and a terrestrial photosynthetic fractionation was found. This has an impact on the estimation of the Dole effect.
Ruifang Ma, Sophie Sépulcre, Laetitia Licari, Frédéric Haurine, Franck Bassinot, Zhaojie Yu, and Christophe Colin
Clim. Past, 18, 1757–1774, https://doi.org/10.5194/cp-18-1757-2022, https://doi.org/10.5194/cp-18-1757-2022, 2022
Short summary
Short summary
We provide high-resolution Cd / Ca records of benthic foraminifera on two cores from the northern Indian Ocean since the last deglaciation. We reconstructed intermediate Cdw records based on Cd / Ca. Combined with benthic foraminiferal assemblages, we show that intermediate Cdw during the last deglaciation was mainly influenced by the ventilation of intermediate–bottom water masses. Thereafter during the Holocene surface productivity is the main forcing factor related to monsoon precipitation.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Yuan Gao, Youfeng Gao, Daniel E. Ibarra, Xiaojing Du, Tian Dong, Zhifei Liu, and Chengshan Wang
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-36, https://doi.org/10.5194/cp-2020-36, 2020
Revised manuscript not accepted
Short summary
Short summary
We present a high-resolution clay mineralogical record in continental Songliao Basin of NE China from the latest Cretaceous through the earliest Paleogene. Three clay mineralogical proxies are used for paleoclimatic reconstructions and are correlated with marine records.
Fluctuations in terrestrial climate occurred during the latest Cretaceous and across the K-Pg boundary when warming (cooling) caused increasing (decreasing) precipitation and intensified (weakened) chemical weathering.
Pierre Sabatier, Marie Nicolle, Christine Piot, Christophe Colin, Maxime Debret, Didier Swingedouw, Yves Perrette, Marie-Charlotte Bellingery, Benjamin Chazeau, Anne-Lise Develle, Maxime Leblanc, Charlotte Skonieczny, Yoann Copard, Jean-Louis Reyss, Emmanuel Malet, Isabelle Jouffroy-Bapicot, Maëlle Kelner, Jérôme Poulenard, Julien Didier, Fabien Arnaud, and Boris Vannière
Clim. Past, 16, 283–298, https://doi.org/10.5194/cp-16-283-2020, https://doi.org/10.5194/cp-16-283-2020, 2020
Short summary
Short summary
High-resolution multiproxy analysis of sediment core from a high-elevation lake on Corsica allows us to reconstruct past African dust inputs to the western Mediterranean area over the last 3 millennia. Millennial variations of Saharan dust input have been correlated with the long-term southward migration of the Intertropical Convergence Zone, while short-term variations were associated with the North Atlantic Oscillation and total solar irradiance after and before 1070 cal BP, respectively.
Ulrike Hanz, Claudia Wienberg, Dierk Hebbeln, Gerard Duineveld, Marc Lavaleye, Katriina Juva, Wolf-Christian Dullo, André Freiwald, Leonardo Tamborrino, Gert-Jan Reichart, Sascha Flögel, and Furu Mienis
Biogeosciences, 16, 4337–4356, https://doi.org/10.5194/bg-16-4337-2019, https://doi.org/10.5194/bg-16-4337-2019, 2019
Short summary
Short summary
Along the Namibian and Angolan margins, low oxygen conditions do not meet environmental ranges for cold–water corals and hence are expected to be unsuitable habitats. Environmental conditions show that tidal movements deliver water with more oxygen and high–quality organic matter, suggesting that corals compensate unfavorable conditions with availability of food. With the expected expansion of oxygen minimum zones in the future, this study provides an example how ecosystems cope with extremes.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Julie A. Trotter, Charitha Pattiaratchi, Paolo Montagna, Marco Taviani, James Falter, Ron Thresher, Andrew Hosie, David Haig, Federica Foglini, Quan Hua, and Malcolm T. McCulloch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-319, https://doi.org/10.5194/bg-2018-319, 2018
Manuscript not accepted for further review
Short summary
Short summary
The first ROV exploration of the Perth Canyon offshore southwest Australia discovered diverse
hot spotsof deep-sea biota to depths of ~ 2000 m. Some corals were living below the carbonate saturation horizon. Extensive coral graveyards found at ~ 700 and ~ 1700 m are between ~ 18 000 and ~ 30 000 years old, indicating these corals flourished during the last ice age. Anthropogenic carbon detected within the upper ~ 800 m highlights the increasing threat of climate change to deep-sea ecosystems.
Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne deVernal, Dmitry Divine, Johannes P. Werner, Anne Hormes, Atte Korhola, and Hans W. Linderholm
Clim. Past, 14, 101–116, https://doi.org/10.5194/cp-14-101-2018, https://doi.org/10.5194/cp-14-101-2018, 2018
Short summary
Short summary
Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from North Atlantic, Siberia and Alaska regionally averaged records. A focus on the last 2 centuries shows a climate variability linked to anthropogenic forcing but also a multidecadal variability likely due to regional natural processes acting on the internal climate system. It is an important issue to understand multidecadal variabilities occurring in the instrumental data.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Sahbi Jaouadi, Vincent Lebreton, Viviane Bout-Roumazeilles, Giuseppe Siani, Rached Lakhdar, Ridha Boussoffara, Laurent Dezileau, Nejib Kallel, Beya Mannai-Tayech, and Nathalie Combourieu-Nebout
Clim. Past, 12, 1339–1359, https://doi.org/10.5194/cp-12-1339-2016, https://doi.org/10.5194/cp-12-1339-2016, 2016
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, https://doi.org/10.5194/cp-11-855-2015, 2015
D. Hebbeln, C. Wienberg, P. Wintersteller, A. Freiwald, M. Becker, L. Beuck, C. Dullo, G. P. Eberli, S. Glogowski, L. Matos, N. Forster, H. Reyes-Bonilla, and M. Taviani
Biogeosciences, 11, 1799–1815, https://doi.org/10.5194/bg-11-1799-2014, https://doi.org/10.5194/bg-11-1799-2014, 2014
C. Marzin, N. Kallel, M. Kageyama, J.-C. Duplessy, and P. Braconnot
Clim. Past, 9, 2135–2151, https://doi.org/10.5194/cp-9-2135-2013, https://doi.org/10.5194/cp-9-2135-2013, 2013
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
N. Combourieu-Nebout, O. Peyron, V. Bout-Roumazeilles, S. Goring, I. Dormoy, S. Joannin, L. Sadori, G. Siani, and M. Magny
Clim. Past, 9, 2023–2042, https://doi.org/10.5194/cp-9-2023-2013, https://doi.org/10.5194/cp-9-2023-2013, 2013
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
R. A. Eagle, J. M. Eiler, A. K. Tripati, J. B. Ries, P. S. Freitas, C. Hiebenthal, A. D. Wanamaker Jr., M. Taviani, M. Elliot, S. Marenssi, K. Nakamura, P. Ramirez, and K. Roy
Biogeosciences, 10, 4591–4606, https://doi.org/10.5194/bg-10-4591-2013, https://doi.org/10.5194/bg-10-4591-2013, 2013
M.-A. Sicre, G. Siani, D. Genty, N. Kallel, and L. Essallami
Clim. Past, 9, 1375–1383, https://doi.org/10.5194/cp-9-1375-2013, https://doi.org/10.5194/cp-9-1375-2013, 2013
C. Wienberg, P. Wintersteller, L. Beuck, and D. Hebbeln
Biogeosciences, 10, 3421–3443, https://doi.org/10.5194/bg-10-3421-2013, https://doi.org/10.5194/bg-10-3421-2013, 2013
T. Morato, K. Ø. Kvile, G. H. Taranto, F. Tempera, B. E. Narayanaswamy, D. Hebbeln, G. M. Menezes, C. Wienberg, R. S. Santos, and T. J. Pitcher
Biogeosciences, 10, 3039–3054, https://doi.org/10.5194/bg-10-3039-2013, https://doi.org/10.5194/bg-10-3039-2013, 2013
S. Desprat, N. Combourieu-Nebout, L. Essallami, M. A. Sicre, I. Dormoy, O. Peyron, G. Siani, V. Bout Roumazeilles, and J. L. Turon
Clim. Past, 9, 767–787, https://doi.org/10.5194/cp-9-767-2013, https://doi.org/10.5194/cp-9-767-2013, 2013
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne
Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, https://doi.org/10.5194/cp-9-499-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Holocene
Response of biological productivity to North Atlantic marine front migration during the Holocene
Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene
Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years
Reconstruction of Holocene oceanographic conditions in eastern Baffin Bay
Multiproxy evidence of the Neoglacial expansion of Atlantic Water to eastern Svalbard
Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?
Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison
Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event
The 4.2 ka event, ENSO, and coral reef development
Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea
Neoglacial climate anomalies and the Harappan metamorphosis
Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation
Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea
Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records
Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa
Holocene evolution of the North Atlantic subsurface transport
Changes in Holocene meridional circulation and poleward Atlantic flow: the Bay of Biscay as a nodal point
Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach
Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic
Late Weichselian and Holocene palaeoceanography of Storfjordrenna, southern Svalbard
Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions
The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event
Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea
Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr
Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records
Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Joanna Pawłowska, Magdalena Łącka, Małgorzata Kucharska, Jan Pawlowski, and Marek Zajączkowski
Clim. Past, 16, 487–501, https://doi.org/10.5194/cp-16-487-2020, https://doi.org/10.5194/cp-16-487-2020, 2020
Short summary
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Raymond S. Bradley and Jostein Bakke
Clim. Past, 15, 1665–1676, https://doi.org/10.5194/cp-15-1665-2019, https://doi.org/10.5194/cp-15-1665-2019, 2019
Short summary
Short summary
We review paleoceanographic and paleoclimatic records from the northern North Atlantic to assess the nature of climatic conditions at 4.2 ka BP. There was a general decline in temperatures after ~ 5 ka BP, which led to the onset of neoglaciation. Although a few records do show a distinct anomaly around 4.2 ka BP (associated with a glacial advance), this is not widespread and we interpret it as a local manifestation of the overall climatic deterioration that characterized the late Holocene.
Albert Català, Isabel Cacho, Jaime Frigola, Leopoldo D. Pena, and Fabrizio Lirer
Clim. Past, 15, 927–942, https://doi.org/10.5194/cp-15-927-2019, https://doi.org/10.5194/cp-15-927-2019, 2019
Short summary
Short summary
We present a new high-resolution sea surface temperature (SST) reconstruction for the Holocene (last 11 700 years) in the westernmost Mediterranean Sea. We identify three sub-periods: the Early Holocene with warmest SST; the Middle Holocene with a cooling trend ending at 4200 years, which is identified as a double peak cooling event that marks the transition between the Middle and Late Holocene; and the Late Holocene with very different behaviour in both long- and short-term SST variability.
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Lauren T. Toth and Richard B. Aronson
Clim. Past, 15, 105–119, https://doi.org/10.5194/cp-15-105-2019, https://doi.org/10.5194/cp-15-105-2019, 2019
Short summary
Short summary
We explore the hypothesis that a shift in global climate 4200 years ago (the 4.2 ka event) was related to the El Niño–Southern Oscillation (ENSO). We summarize records of coral reef development in the tropical eastern Pacific, where intensification of ENSO stalled reef growth for 2500 years starting around 4.2 ka. Because corals are highly sensitive to climatic changes, like ENSO, we suggest that records from coral reefs may provide important clues about the role of ENSO in the 4.2 ka event.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Masanobu Yamamoto, Seung-Il Nam, Leonid Polyak, Daisuke Kobayashi, Kenta Suzuki, Tomohisa Irino, and Koji Shimada
Clim. Past, 13, 1111–1127, https://doi.org/10.5194/cp-13-1111-2017, https://doi.org/10.5194/cp-13-1111-2017, 2017
Short summary
Short summary
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the Beaufort Gyre (BG) strength during the Holocene, consistent with a decrease in summer insolation. Multi-centennial variability in BG circulation is consistent with fluctuations in solar irradiance. The Bering Strait inflow shows intensification during the middle Holocene, associated with sea-ice retreat and an increase in marine production in the Chukchi Sea, which is attributed to a weaker Aleutian Low.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
C. Consolaro, T. L. Rasmussen, G. Panieri, J. Mienert, S. Bünz, and K. Sztybor
Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, https://doi.org/10.5194/cp-11-669-2015, 2015
Short summary
Short summary
A sediment core collected from a pockmark field on the Vestnesa Ridge (~80N) in the Fram Strait is presented. Our results show an undisturbed sedimentary record for the last 14 ka BP and negative carbon isotope excursions (CIEs) during the Bølling-Allerød interstadials and during the early Holocene. Both CIEs relate to periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere, suggesting an apparent correlation with warm climatic events.
M. Łącka, M. Zajączkowski, M. Forwick, and W. Szczuciński
Clim. Past, 11, 587–603, https://doi.org/10.5194/cp-11-587-2015, https://doi.org/10.5194/cp-11-587-2015, 2015
Short summary
Short summary
Storfjordrenna was deglaciated about 13,950 cal yr BP. During the transition from the sub-glacial to glaciomarine setting, Arctic Waters dominated its hydrography. However, the waters were not uniformly cold and experienced several warmer spells. Atlantic Water began to flow onto the shelves off Svalbard and into Storfjorden during the early Holocene, leading to progressive warming and significant glacial melting. A surface-water cooling and freshening occurred in late Holocene.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
A. D. Tegzes, E. Jansen, and R. J. Telford
Clim. Past, 10, 1887–1904, https://doi.org/10.5194/cp-10-1887-2014, https://doi.org/10.5194/cp-10-1887-2014, 2014
D. E. Groot, S. Aagaard-Sørensen, and K. Husum
Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, https://doi.org/10.5194/cp-10-51-2014, 2014
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne
Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, https://doi.org/10.5194/cp-9-499-2013, 2013
Cited articles
Abu-Zied, R. H., Rohling, E. J., Jorissen, F. J., Fontanier, C., Casford, J. S. L., and Cooke, S.: Benthic foraminiferal response to changes in bottom-water oxygenation and organic carbon flux in the eastern Mediterranean during LGM to Recent times, Mar. Micropaleontol., 67, 46–68, https://doi.org/10.1016/j.marmicro.2007.08.006, 2008.
Allen, J. R. M., Huntley, B., Brandt, U., Brauer, A., Hubberten, H., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J. F. W., Nowaczyk, N. R., Oberhänsli, H., Watts, W. A., Wulf, S., and Zolitschka, B.: Rapid environmental changes in southern Europe during the last glacial period, Nature, 400, 740–743, https://doi.org/10.1038/23432, 1999.
Andersen, M. B., Stirling, C. H., Zimmermann, B., and Halliday, A. N.: Precise determination of the open ocean 234U/238U composition, Geochem. Geophy. Geosy., 11, Q12003, https://doi.org/10.1029/2010GC003318, 2010.
Arsouze, T., Dutay, J.-C., Lacan, F., and Jeandel, C.: Reconstructing the Nd oceanic cycle using a coupled dynamical – biogeochemical model, Biogeosciences, 6, 2829–2846, https://doi.org/10.5194/bg-6-2829-2009, 2009.
Astraldi, M., Gasparini, G. P., Gervasio, L., and Salusti, E.: Dense Water Dynamics along the Strait of Sicily (Mediterranean Sea), J. Phys. Oceanogr., 31, 3457–3475, https://doi.org/10.1175/1520-0485(2001)031<3457:DWDATS>2.0.CO;2, 2001.
Astraldi, M., Gasparini, G. P., Vetrano, A., and Vignudelli, S.: Hydrographic characteristics and interannual variability of water masses in the central Mediterranean: A sensitivity test for long-term changes in the Mediterranean Sea, Deep-Sea Res. Pt. I, 49, 661–680, https://doi.org/10.1016/S0967-0637(01)00059-0, 2002a.
Astraldi, M., Conversano, F., Civitarese, G., Gasparini, G. P., Ribera d'Alcalà, M., and Vetrano, A.: Water mass properties and chemical signatures in the central Mediterranean region, J. Mar. Syst., 33/34, 155–177, https://doi.org/10.1016/S0924-7963(02)00057-X, 2002b.
Bahr, A., Kaboth, S., Jiménez-Espejo, F. J., Sierro, F. J., Voelker, A. H. L., Lourens, L., Röhl, U., Reichart, G. J., Escutia, C., Hernández-Molina, F. J., Pross, J., and Friedrich, O.: Persistent monsoonal forcing of Mediterranean Outflow Water dynamics during the late Pleistocene, Geology, 43, 951–954, https://doi.org/10.1130/G37013.1, 2015.
Barker, P. A., Talbot, M. R., Street-Perrott, F. A., Marret, F., Scourse, J., and Odada, E. O.: Late Quaternary climatic variability in intertropical Africa, in: Past Climate Variability through Europe and Africa, Springer Netherlands, Dordrecht, 117–138, 2004.
Bartov, Y., Goldstein, S. L., Stein, M., and Enzel, Y.: Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events, Geology, 31, 439, https://doi.org/10.1130/0091-7613(2003)031<0439:CAEITE>2.0.CO;2, 2003.
Bigg, G. R. and Wadley, M. R.: Millennial-scale variability in the oceans: an ocean modelling view, J. Quaternary Sci., 16, 309–319, https://doi.org/10.1002/jqs.599, 2001.
Bout-Roumazeilles, V., Combourieu-Nebout, N., Desprat, S., Siani, G., Turon, J. L., and Essallami, L.: Tracking atmospheric and riverine terrigenous supplies variability during the last glacial and the Holocene in central Mediterranean, Clim. Past, 9, 1065–1087, https://doi.org/10.5194/cp-9-1065-2013, 2013.
Buckley, H. A. and Johnson, L. R.: Late pleistocene to recent sediment deposition in the central and western Mediterranean, Deep-Sea Res. Pt. A, 35, 749–766, https://doi.org/10.1016/0198-0149(88)90028-3, 1988.
Cacho, I., Pelejero, C., Grimalt, J. O., Calafat, A., and Canals, M.: C37 alkenone measurements of sea surface temperature in the Gulf of Lions (NW Mediterranean), Org. Geochem., 30, 557–566, https://doi.org/10.1016/S0146-6380(99)00038-8, 1999.
Cacho, I., Grimalt, J. O., Sierro, F. J., Shackleton, N., and Canals, M.: Evidence for enhanced Mediterranean thermohaline circulation during rapid climatic coolings, Earth Planet. Sci. Lett., 183, 417–429, https://doi.org/10.1016/S0012-821X(00)00296-X, 2000.
Cacho, I., Grimalt, J. O., Canals, M., Sbaffi, L., Shackleton, N. J., Schönfeld, J., and Zahn, R.: Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes, Paleoceanography, 16, 40–52, https://doi.org/10.1029/2000PA000502, 2001.
Cacho, I., Grimalt, J. O., and Canals, M.: Response of the Western Mediterranean Sea to rapid climatic variability during the last 50,000 years: a molecular biomarker approach, J. Mar. Syst., 33/34, 253–272, https://doi.org/10.1016/S0924-7963(02)00061-1, 2002.
Cacho, I., Shackleton, N., Elderfield, H., Sierro, F. J., and Grimalt, J. O.: Glacial rapid variability in deep-water temperature and δ18O from the Western Mediterranean Sea, Quaternary Sci. Rev., 25, 3294–3311, https://doi.org/10.1016/j.quascirev.2006.10.004, 2006.
Calvert, S. E.: Geochemistry of Pleistocene sapropels and associated sediments from the Eastern Mediterranean, Oceanol. Ac., 6, 255–267, 1983.
Castañeda, I. S., Schouten, S., Pätzold, J., Lucassen, F., Kasemann, S., Kuhlmann, H., and Schefuß, E.: Hydroclimate variability in the Nile River Basin during the past 28,000 years, Earth Planet. Sci. Lett., 438, 47–56, https://doi.org/10.1016/j.epsl.2015.12.014, 2016.
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J. D., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Calvin Alexander, E.: Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet. Sci. Lett., 371/372, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Colin, C., Frank, N., Copard, K., and Douville, E.: Neodymium isotopic composition of deep-sea corals from the NE Atlantic: implications for past hydrological changes during the Holocene, Quaternary Sci. Rev., 29, 2509–2517, https://doi.org/10.1016/j.quascirev.2010.05.012, 2010.
Combourieu-Nebout, N., Turon, J. L., Zahn, R., Capotondi, L., Londeix, L., and Pahnke, K.: Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 ky, Geology, 30, 863–866, https://doi.org/10.1130/0091-7613(2002)030<0863:EAAAHP>2.0.CO;2, 2002.
Copard, K., Colin, C., Douville, E., Freiwald, A., Gudmundsson, G., De Mol, B., and Frank, N.: Nd isotopes in deep-sea corals in the North-eastern Atlantic, Quaternary Sci. Rev., 29, 2499–2508, https://doi.org/10.1016/j.quascirev.2010.05.025, 2010.
Copard, K., Colin, C., Henderson, G. M., Scholten, J., Douville, E., Sicre, M.-A., and Frank, N.: Late Holocene intermediate water variability in the northeastern Atlantic as recorded by deep-sea corals, Earth Planet. Sci. Lett., 313/314, 34–44, https://doi.org/10.1016/j.epsl.2011.09.047, 2012.
Cramp, A. and O'Sullivan, G.: Neogene sapropels in the Mediterranean: a review, Mar. Geol., 153, 11–28, https://doi.org/10.1016/S0025-3227(98)00092-9, 1999.
De Lange, G. J., Thomson, J., Reitz, A., Slomp, C. P., Principato, M. S., Erba, E., and Corselli, C.: Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel, Nat. Geosci., 1, 606–610, 2008.
DeMenocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M.: Coherent High- and Low-Latitude Climate Variability During the Holocene Warm Period, Science, 288 2198–2202, https://doi.org/10.1126/science.288.5474.2198, 2000.
Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A. L., Henderson, G. M., Okuno, J., and Yokoyama, Y.: Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago, Nature, 483, 559–564, https://doi.org/10.1038/nature10902, 2012.
Douville, E., Sallé, E., Frank, N., Eisele, M., Pons-Branchu, E., and Ayrault, S.: Rapid and accurate U–Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry, Chem. Geol., 272, 1–11, https://doi.org/10.1016/j.chemgeo.2010.01.007, 2010.
Dubois-Dauphin, Q., Colin, C., Bonneau, L., Montagna, P., Wu, Q., Van Rooij, D., Reverdin, G., Douville, E., Thil, F., Waldner, A., and Frank, N.: Fingerprinting North-east Atlantic water masses using Neodymium isotopes, GCA, in review, 2016.
Elmore, A. C., Piotrowski, A. M., Wright, J. D., and Scrivner, A. E.: Testing the extraction of past seawater Nd isotopic composition from North Atlantic deep sea sediments and foraminifera, Geochem. Geophy. Geosy., 12, Q09008, https://doi.org/10.1029/2011GC003741, 2011.
Emeis, K.-C., Sakamoto, T., Wehausen, R., and Brumsack, H.-J.: The sapropel record of the eastern Mediterranean Sea — results of Ocean Drilling Program Leg 160, Palaeogeogr. Palaeoclimatol., 158, 371–395, https://doi.org/10.1016/S0031-0182(00)00059-6, 2000.
Fink, H. G., Wienberg, C., De Pol-Holz, R., Wintersteller, P., and Hebbeln, D.: Cold-water coral growth in the Alboran Sea related to high productivity during the Late Pleistocene and Holocene, Mar. Geol., 339, 71–82, https://doi.org/10.1016/j.margeo.2013.04.009, 2013.
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F. J., Flores, J. a., Grimalt, J. O., Hodell, D. A., and Curtis, J. H.: Holocene climate variability in the western Mediterranean region from a deepwater sediment record, Paleoceanography, 22, PA2209, https://doi.org/10.1029/2006PA001307, 2007.
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F. J., Flores, J. A., and Grimalt, J. O.: Evidence of abrupt changes in Western Mediterranean Deep Water circulation during the last 50kyr: A high-resolution marine record from the Balearic Sea, Quaternary Int., 181, 88–104, https://doi.org/10.1016/j.quaint.2007.06.016, 2008.
Garcin, Y., Junginger, A., Melnick, D., Olago, D. O., Strecker, M. R., and Trauth, M. H.: Late Pleistocene–Holocene rise and collapse of Lake Suguta, northern Kenya Rift, Quaternary Sci. Rev., 28, 911–925, https://doi.org/10.1016/j.quascirev.2008.12.006, 2009.
Hebbeln, D., Wienberg, C., Beuck, L., Freiwald, A., Wintersteller, P., and cruise participants: Report and preliminary results of R/V POSEIDON Cruise 385 “Cold-water corals of the Alboran Sea (western Mediterranean Sea)”, Faro – Toulon, 29 May –16 June 2009. Reports of the Department of Geosciences at the University of Bremen, No. 273, Department of Geosciences, Bremen University, urn:nbn:de:gbv:46-ep000106508, 2009.
Hennekam, R., Jilbert, T., Schnetger, B., and De Lange, G. J.: Solar forcing of Nile discharge and sapropel S1 formation in the early to middle Holocene eastern Mediterranean, Paleoceanography, 29, 343–356, https://doi.org/10.1002/2013PA002553, 2014.
Henry, F., Jeandel, C., Dupré, B., and Minster, J.-F.: Particulate and dissolved Nd in the western Mediterranean Sea: Sources, fate and budget, Mar. Chem., 45, 283–305, https://doi.org/10.1016/0304-4203(94)90075-2, 1994.
Hooghiemstra, H., Bechler, A., and Beug, H.-J.: Isopollen maps for 18,000 years B.P. of the Atlantic offshore of northwest Africa: Evidence for paleowind circulation, Paleoceanography, 2, 561–582, https://doi.org/10.1029/PA002i006p00561, 1987.
Hopkins, T. S.: Recent observations on the intermediate and deep water circulation in the Southern Tyrrhenian Sea, Oceanol. Acta, (Special issue), 41–50, 1988. Huang, T. C. and Stanley, D. J.: Western Alboran sea: sediment dispersal, pounding and reversal of currents, in The Mediterranean Sea: A Natural Sedimentation Laboratory, pp. 521–559, Dowden, Hutchinson & Ross, Stroudsurg, PA., 1972.
Hutson, W. H.: The Agulhas Current During the Late Pleistocene: Analysis of Modern Faunal Analogs, Science, 207, 64–66, https://doi.org/10.1126/science.207.4426.64, 1980.
Itambi, a. C., von Dobeneck, T., Mulitza, S., Bickert, T., and Heslop, D.: Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: Evidence in marine sediments from offshore Senegal, Paleoceanography, 24, PA1205, https://doi.org/10.1029/2007PA001570, 2009.
Ivy-Ochs, S., Kerschner, H., and Schlüchter, C.: Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: The Alpine perspective, Quaternary Int., 164-165, 53–63, https://doi.org/10.1016/j.quaint.2006.12.008, 2007.
Jacobsen, S. B. and Wasserburg, G. J.: Sm-Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50, 139–155, https://doi.org/10.1016/0012-821X(80)90125-9, 1980.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M.: Precision measurements of half-lives and specific activities of 235U and 238U, Phys. Rev. C, 4, 1889–1906, https://doi.org/10.1103/PhysRevC.4.1889, 1971.
Jiménez-Espejo, F. J., Pardos-Gené, M., Martínez-Ruiz, F., García-Alix, A., van de Flierdt, T., Toyofuku, T., Bahr, A., and Kreissig, K.: Geochemical evidence for intermediate water circulation in the westernmost Mediterranean over the last 20 kyr BP and its impact on the Mediterranean Outflow, Global Planet. Change, 135, 38–46, https://doi.org/10.1016/j.gloplacha.2015.10.001, 2015.
Kallel, N., Paterne, M., Labeyrie, L., Duplessy, J.-C., and Arnold, M.: Temperature and salinity records of the Tyrrhenian Sea during the last 18,000 years, Palaeogeogr. Palaeoclimatol., 135, 97–108, https://doi.org/10.1016/S0031-0182(97)00021-7, 1997.
Kelly, M. A., Ivy-Ochs, S., Kubik, P. W., Von Blanckenburg, F., and Schlüchter, C.: Chronology of deglaciation based on 10 Be dates of glacial erosional features in the Grimsel Pass region, central Swiss Alps, Boreas, 35, 634–643, https://doi.org/10.1111/j.1502-3885.2006.tb01169.x, 2006.
Khelifi, N., Sarnthein, M., Andersen, N., Blanz, T., Frank, M., Garbe-Schonberg, D., Haley, B. A., Stumpf, R., and Weinelt, M.: A major and long-term Pliocene intensification of the Mediterranean outflow, 3.5–3.3 Ma ago, Geology, 37, 811–814, https://doi.org/10.1130/G30058A.1, 2009.
Kinder, T. H. and Parrilla, G.: Yes, some of the Mediterranean water does come from great depth, J. Geophys. Res., 92, 2901–2906, https://doi.org/10.1029/JC092iC03p02901, 1987.
Kuhnt, T., Schmiedl, G., Ehrmann, W., Hamann, Y., and Hemleben, C.: Deep-sea ecosystem variability of the Aegean Sea during the past 22 kyr as revealed by Benthic Foraminifera, Mar. Micropaleontol., 64, 141–162, https://doi.org/10.1016/j.marmicro.2007.04.003, 2007.
Kuhnt, T., Schmiedl, G., Ehrmann, W., Hamann, Y., and Andersen, N.: Stable isotopic composition of Holocene benthic foraminifers from the Eastern Mediterranean Sea: Past changes in productivity and deep water oxygenation, Palaeogeogr. Palaeoclimatol., 268, 106–115, https://doi.org/10.1016/j.palaeo.2008.07.010, 2008.
Lacan, F. and Jeandel, C.: Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns, Earth Planet. Sci. Lett., 186, 497–512, https://doi.org/10.1016/S0012-821X(01)00263-1, 2001.
Lacan, F. and Jeandel, C.: Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent–ocean interface, Earth Planet. Sci. Lett., 232, 245–257, https://doi.org/10.1016/j.epsl.2005.01.004, 2005.
Lascaratos, A. and Nittis, K.: A high-resolution three-dimensional numerical study of intermediate water formation in the Levantine Sea, J. Geophys. Res., 103, 18497, https://doi.org/10.1029/98JC01196, 1998.
Lascaratos, A., Williams, R. G., and Tragou, E.: A mixed-layer study of the formation of Levantine intermediate water, J. Geophys. Res., 98, 14739, https://doi.org/10.1029/93JC00912, 1993.
López Correa, M., Montagna, P., Joseph, N., Rüggeberg, A., Fietzke, J., Flögel, S., Dorschel, B., Goldstein, S. L., Wheeler, A., and Freiwald, A.: Preboreal onset of cold-water coral growth beyond the Arctic Circle revealed by coupled radiocarbon and U-series dating and neodymium isotopes, Quaternary Sci. Rev., 34, 24–43, https://doi.org/10.1016/j.quascirev.2011.12.005, 2012.
López-Jurado, J. L., Marcos, M., and Monserrat, S.: Hydrographic conditions affecting two fishing grounds of Mallorca island (Western Mediterranean): during the IDEA Project (2003–2004), J. Mar. Syst., 71, 303–315, https://doi.org/10.1016/j.jmarsys.2007.03.007, 2008.
Ludwig, K. R. and Titterington, D. M.: Calculation of 230Th ∕ U isochrons, ages, and errors, Geochim. Cosmochim. Ac., 58, 5031–5042, https://doi.org/10.1016/0016-7037(94)90229-1, 1994.
Lugmair, G. W., Shimamura, T., Lewis, R. S., and Anders, E.: Samarium-146 in the Early Solar System: Evidence from Neodymium in the Allende Meteorite, Science, 222, 1015–1018, https://doi.org/10.1126/science.222.4627.1015, 1983.
Malanotte-Rizzoli, P., Manca, B. B., D'Alcala, M. R., Theocharis, A., Brenner, S., Budillon, G., and Ozsoy, E.: The Eastern Mediterranean in the 80s and in the 90s: the big transition in the intermediate and deep circulations, Dynam. Atmos. Ocean., 29, 365–395, https://doi.org/10.1016/S0377-0265(99)00011-1, 1999.
Manca, B., Ibello, V., Pacciaroni, M., Scarazzato, P., and Giorgetti, A.: Ventilation of deep waters in the Adriatic and Ionian Seas following changes in thermohaline circulation of the Eastern Mediterranean, Clim. Res., 31, 239–256, https://doi.org/10.3354/cr031239, 2006.
Martrat, B., Grimalt, J. O., Lopez-Martinez, C., Cacho, I., Sierro, F. J., Flores, J. A., Zahn, R., Canals, M., Curtis, J. H., and Hodell, D. a: Abrupt temperature changes in the Western Mediterranean over the past 250,000 years, Science, 306, 1762–1765, https://doi.org/10.1126/science.1101706, 2004.
Martrat, B., Jimenez-Amat, P., Zahn, R., and Grimalt, J. O.: Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region, Quaternary Sci. Rev., 99, 122–134, https://doi.org/10.1016/j.quascirev.2014.06.016, 2014.
Melki, T., Kallel, N., Jorissen, F. J., Guichard, F., Dennielou, B., Berné, S., Labeyrie, L., and Fontugne, M.: Abrupt climate change, sea surface salinity and paleoproductivity in the western Mediterranean Sea (Gulf of Lion) during the last 28 kyr, Palaeogeogr. Palaeoclimatol., 279, 96–113, https://doi.org/10.1016/j.palaeo.2009.05.005, 2009.
Mercone, D., Thomson, J., Croudace, I. W., Siani, G., Paterne, M., and Troelstra, S.: Duration of S1, the most recent sapropel in the eastern Mediterranean Sea, as indicated by accelerator mass spectrometry radiocarbon and geochemical evidence, Paleoceanography, 15, 336–347, https://doi.org/10.1029/1999PA000397, 2000.
Mercone, D., Thomson, J., Abu-Zied, R. H., Croudace, I. W., and Rohling, E. J.: High-resolution geochemical and micropalaeontological profiling of the most recent eastern Mediterranean sapropel, Mar. Geol., 177, 25–44, https://doi.org/10.1016/S0025-3227(01)00122-0, 2001.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Mar. Syst., 20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Millot, C.: Another description of the Mediterranean Sea outflow, Prog. Oceanogr., 82, 101–124, https://doi.org/10.1016/j.pocean.2009.04.016, 2009.
Millot, C.: Heterogeneities of in- and out-flows in the Mediterranean Sea, Prog. Oceanogr., 120, 254–278, https://doi.org/10.1016/j.pocean.2013.09.007, 2014.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: Environmental Chemistry, vol. 5, edited by: A. Saliot, Springer Berlin Heidelberg, Heidelberg, 29–66, 2005.
Millot, C., Candela, J., Fuda, J.-L., and Tber, Y.: Large warming and salinification of the Mediterranean outflow due to changes in its composition, Deep-Sea Res. Pt. I, 53, 656–666, https://doi.org/10.1016/j.dsr.2005.12.017, 2006.
Montero-Serrano, J.-C., Frank, N., Colin, C., Wienberg, C., and Eisele, M.: The climate influence on the mid-depth Northeast Atlantic gyres viewed by cold-water corals, Geophys. Res. Lett., 38, L19604, https://doi.org/10.1029/2011GL048733, 2011.
Montero-Serrano, J.-C., Frank, N., Tisnérat-Laborde, N., Colin, C., Wu, C., Lin, K., Shen, C., Copard, K., Orejas, C., Gori, A., De Mol, L., Van Rooij, D., Reverdin, G., and Douville, E.: Decadal changes in the mid-depth water mass dynamic of the Northeastern Atlantic margin (Bay of Biscay), Earth Planet. Sci. Lett., 364, 134–144, https://doi.org/10.1016/j.epsl.2013.01.012, 2013.
Moreno, A., Cacho, I., Canals, M., Prins, M. a., Sánchez-Goñi, M.-F., Grimal, O. J., and Weltje, G. J.: Saharan Dust Transport and High-Latitude Glacial Climatic Variability: The Alboran Sea Record, Quaternary Res., 58, 318–328, https://doi.org/10.1006/qres.2002.2383, 2002.
Moreno, A., Cacho, I., Canals, M., Grimalt, J. O., Sánchez-Goñi, M. F., Shackleton, N., and Sierro, F. J.: Links between marine and atmospheric processes oscillating on a millennial time-scale, A multi-proxy study of the last 50,000 yr from the Alboran Sea (Western Mediterranean Sea), Quaternary Sci. Rev., 24, 1623–1636, https://doi.org/10.1016/j.quascirev.2004.06.018, 2005.
Myers, P. G., Haines, K., and Rohling, E. J.: Modeling the paleocirculation of the Mediterranean: The Last Glacial Maximum and the Holocene with emphasis on the formation of sapropel S1, Paleoceanography, 13, 586–606, https://doi.org/10.1029/98PA02736, 1998.
Ovchinnikov, I. M.: The formation of intermediate water in the Mediterranean, Oceanology, 24, 168–173, 1984.
Overpeck, J. T., Webb, T., and Prentice, I. C.: Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs, Quaternary Res., 23, 87–108, https://doi.org/10.1016/0033-5894(85)90074-2, 1985.
Paterne, M., Kallel, N., Labeyrie, L., Vautravers, M., Duplessy, J.-C., Rossignol-Strick, M., Cortijo, E., Arnold, M., and Fontugne, M.: Hydrological relationship between the North Atlantic Ocean and the Mediterranean Sea during the past 15–75 kyr, Paleoceanography, 14, 626–638, https://doi.org/10.1029/1998PA900022, 1999.
Pérez-Folgado, M., Sierro, F. J., Flores, J. A., Cacho, I., Grimalt, J. O., Zahn, R., and Shackleton, N.: Western Mediterranean planktonic foraminifera events and millennial climatic variability during the last 70 kyr, Mar. Micropaleontol., 48, 49–70, https://doi.org/10.1016/S0377-8398(02)00160-3, 2003.
Pinardi, N. and Masetti, E.: Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review, Palaeogeogr. Palaeoclimatol., 158, 153–173, https://doi.org/10.1016/S0031-0182(00)00048-1, 2000.
Piotrowski, A. M., Galy, A., Nicholl, J. a. L., Roberts, N. L., Wilson, D. J., Clegg, J. A., and Yu, J.: Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes, Earth Planet. Sci. Lett., 357/358, 289–297, https://doi.org/10.1016/j.epsl.2012.09.036, 2012.
Pons-Branchu, E., Douville, E., Roy-Barman, M., Dumont, E., Branchu, P., Thil, F., Frank, N., Bordier, L., and Borst, W.: A geochemical perspective on Parisian urban history based on U–Th dating, laminae counting and yttrium and REE concentrations of recent carbonates in underground aqueducts, Quaternary Geochronol., 24, 44–53, https://doi.org/10.1016/j.quageo.2014.08.001, 2014.
Prell, W. L.: Stability of low-latitude sea-surface temperatures: an evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies. Final report, Providence, RI (USA)., 1985.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., HattŽ, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP, Radiocarbon, 55, 1869–1887, 2013.
Revel, M., Colin, C., Bernasconi, S., Combourieu-Nebout, N., Ducassou, E., Grousset, F. E., Rolland, Y., Migeon, S., Bosch, D., Brunet, P., Zhao, Y., and Mascle, J.: 21,000 Years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan, Reg. Environ. Chang., 14, 1685–1696, https://doi.org/10.1007/s10113-014-0588-x, 2014.
Revel, M., Ducassou, E., Skonieczny, C., Colin, C., Bastian, L., Bosch, D., Migeon, S., and Mascle, J.: 20,000 years of Nile River dynamics and environmental changes in the Nile catchment area as inferred from Nile upper continental slope sediments, Quaternary Sci. Rev., 130, 200–221, https://doi.org/10.1016/j.quascirev.2015.10.030, 2015.
Roberts, N. L., Piotrowski, A. M., McManus, J. F., and Keigwin, L. D.: Synchronous deglacial overturning and water mass source changes, Science, 327, 75–78, https://doi.org/10.1126/science.1178068, 2010.
Rodrigo-Gámiz, M., Martínez-Ruiz, F., Rampen, S. W., Schouten, S., and Sinninghe Damsté, J. S.: Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy (U K′ 37 and LDI) approach, Paleoceanography, 29, 87–98, https://doi.org/10.1002/2013PA002466, 2014.
Rodrigo-Gámiz, M., Martínez-Ruiz, F., Chiaradia, M., Jiménez-Espejo, F. J., and Ariztegui, D.: Radiogenic isotopes for deciphering terrigenous input provenance in the western Mediterranean, Chem. Geol., 410, 237–250, https://doi.org/10.1016/j.chemgeo.2015.06.004, 2015.
Rogerson, M., Rohling, E. J., Weaver, P. P. E., and Murray, J. W.: Glacial to interglacial changes in the settling depth of the Mediterranean Outflow plume, Paleoceanography, 20, PA3007, https://doi.org/10.1029/2004PA001106, 2005.
Rogerson, M., Rohling, E. J., and Weaver, P. P. E.: Promotion of meridional overturning by Mediterranean-derived salt during the last deglaciation, Paleoceanography, 21, 1–8, https://doi.org/10.1029/2006PA001306, 2006.
Rogerson, M., Cacho, I., Jimenez-Espejo, F., Reguera, M. I., Sierro, F. J., Martinez-Ruiz, F., Frigola, J., and Canals, M.: A dynamic explanation for the origin of the western Mediterranean organic-rich layers, Geochem. Geophy. Geosy., 9, Q07U01, https://doi.org/10.1029/2007GC001936, 2008.
Rohling, E. J.: Review and new aspects concerning the formation of eastern Mediterranean sapropels, Mar. Geol., 122, 1–28, https://doi.org/10.1016/0025-3227(94)90202-X, 1994.
Rohling, E. J., Jorissen, F. J., and De stigter, H. C.: 200 Year interruption of Holocene sapropel formation in the Adriatic Sea, J. Micropalaeontology, 16, 97–108, https://doi.org/10.1144/jm.16.2.97, 1997.
Rohling, E. J., Mayewski, P. A., Abu-Zied, R. H., Casford, J. S. L., and Hayes, A.: Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea, Clim. Dynam., 18, 587–593, https://doi.org/10.1007/s00382-001-0194-8, 2002.
Rohling, E. J., Sprovieri, M., Cane, T., Casford, J. S. ., Cooke, S., Bouloubassi, I., Emeis, K. C., Schiebel, R., Rogerson, M., Hayes, A., Jorissen, F., and Kroon, D.: Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5, Mar. Micropaleontol., 50, 89–123, https://doi.org/10.1016/S0377-8398(03)00068-9, 2004.
Rohling, E. J., Marino, G., and Grant, K. M.: Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels), Earth-Science Rev., 143, 62–97, https://doi.org/10.1016/j.earscirev.2015.01.008, 2015.
Rossignol-Strick, M., Nesteroff, W., Olive, P., and Vergnaud-Grazzini, C.: After the deluge: Mediterranean stagnation and sapropel formation, Nature, 295, 105–110, https://doi.org/10.1038/295105a0, 1982.
Sammari, C., Millot, C., Taupier-Letage, I., Stefani, A., and Brahim, M.: Hydrological characteristics in the Tunisia–Sardinia–Sicily area during spring 1995, Deep-Sea Res. Pt. I, 46, 1671–1703, https://doi.org/10.1016/S0967-0637(99)00026-6, 1999.
Sarmiento, J. L., Herbert, T., and Toggweiler, J. R.: Mediterranean nutrient balance and episodes of anoxia, Global Biogeochem. Cy., 2, 427–444, https://doi.org/10.1029/GB002i004p00427, 1988.
Sánchez-Goñi, M., Cacho, I., Turon, J. L., Guiot, J., Sierro, F. J., Peypouquet, J., Grimalt, J. O., and Shackleton, N. J.: Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region, Clim. Dynam., 19, 95–105, https://doi.org/10.1007/s00382-001-0212-x, 2002.
Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., and Pflaumann, U.: Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa, Nature, 293, 193–196, https://doi.org/10.1038/293193a0, 1981.
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., and Weinbruch, S.: Bulk composition of northern African dust and its source sediments – A compilation, Earth-Sci. Rev., 116, 170–194, https://doi.org/10.1016/j.earscirev.2012.08.005, 2013.
Schmiedl, G., Kuhnt, T., Ehrmann, W., Emeis, K. C., Hamann, Y., Kotthoff, U., Dulski, P., and Pross, J.: Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years, Quaternary Sci. Rev., 29, 3006–3020, https://doi.org/10.1016/j.quascirev.2010.07.002, 2010.
Schönfeld, J. and Zahn, R.: Late Glacial to Holocene history of the Mediterranean outflow, Evidence from benthic foraminiferal assemblages and stable isotopes at the Portuguese margin, Palaeogeogr. Palaeoclimatol., 159, 85–111, https://doi.org/10.1016/S0031-0182(00)00035-3, 2000.
Schott, F., Visbeck, M., Send, U., Fischer, J., Stramma, L., and Desaubies, Y.: Observations of Deep Convection in the Gulf of Lions, Northern Mediterranean, during the Winter of 1991/92, J. Phys. Oceanogr., 26, 505–524, 1996.
Schroeder, K., Millot, C., Bengara, L., Ben Ismail, S., Bensi, M., Borghini, M., Budillon, G., Cardin, V., Coppola, L., Curtil, C., Drago, A., El Moumni, B., Font, J., Fuda, J. L., García-Lafuente, J., Gasparini, G. P., Kontoyiannis, H., Lefevre, D., Puig, P., Raimbault, P., Rougier, G., Salat, J., Sammari, C., Sánchez Garrido, J. C., Sanchez-Roman, A., Sparnocchia, S., Tamburini, C., Taupier-Letage, I., Theocharis, A., Vargas-Yáñez, M., and Vetrano, A.: Long-term monitoring programme of the hydrological variability in the Mediterranean Sea: a first overview of the HYDROCHANGES network, Ocean Sci., 9, 301–324, https://doi.org/10.5194/os-9-301-2013, 2013.
Scrivner, A. E., Vance, D., and Rohling, E. J.: New neodymium isotope data quantify Nile involvement in Mediterranean anoxic episodes, Geology, 32, 565, https://doi.org/10.1130/G20419.1, 2004.
Shanahan, T. M., McKay, N. P., Hughen, K. A., Overpeck, J. T., Otto-Bliesner, B., Heil, C. W., King, J., Scholz, C. A., and Peck, J.: The time-transgressive termination of the African Humid Period, Nat. Geosci., 8, 140–144, https://doi.org/10.1038/ngeo2329, 2015.
Siani, G., Paterne, M., Arnold, M., Bard, E., Metivier, B., Tisnerat, N., and Bassinot, F.: Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea, Radiocarbon, 42, 271–280, 2000.
Siani, G., Paterne, M., Michel, E., Sulpizio, R., Sbrana, A., Arnold, M., and Haddad, G.: Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum, Science, 294, 1917–1920, https://doi.org/10.1126/science.1063649, 2001.
Siani, G., Sulpizio, R., Paterne, M., and Sbrana, A.: Tephrostratigraphy study for the last 18,000 C years in a deep-sea sediment sequence for the South Adriatic, Quaternary Sci. Rev., 23, 2485–2500, https://doi.org/10.1016/j.quascirev.2004.06.004, 2004.
Siani, G., Magny, M., Paterne, M., Debret, M., and Fontugne, M.: P aleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea, Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, 2013.
Sierro, F. J., Hodell, D. A., Curtis, J. H., Flores, J. A., Reguera, I., Colmenero-Hidalgo, E., Bárcena, M. A., Grimalt, J. O., Cacho, I., Frigola, J., and Canals, M.: Impact of iceberg melting on Mediterranean thermohaline circulation during Heinrich events, Paleoceanography, 20, PA2019, https://doi.org/10.1029/2004PA001051, 2005.
Sparnocchia, S., Gasparini, G. P., Astraldi, M., Borghini, M., and Pistek, P.: Dynamics and mixing of the Eastern Mediterranean outflow in the Tyrrhenian basin, J. Mar. Syst., 20, 301–317, https://doi.org/10.1016/S0924-7963(98)00088-8, 1999.
Spivack, A. J. and Wasserburg, G. J.: Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic, Geochim. Cosmochim. Ac., 52, 2767–2773, https://doi.org/10.1016/0016-7037(88)90144-5, 1988.
Stratford, K., Williams, R. G., and Myers, P. G.: Impact of the circulation on Sapropel Formation in the eastern Mediterranean, Global Biogeochem. Cy., 14, 683–695, https://doi.org/10.1029/1999GB001157, 2000.
Struiver, M., Reimer, P. J., and Reimer, R.: CALIB 7.0, Radiocarb. Calibration Progr., 2005.
Tachikawa, K., Roy-Barman, M., Michard, A., Thouron, D., Yeghicheyan, D., and Jeandel, C.: Neodymium isotopes in the Mediterranean Sea: comparison between seawater and sediment signals, Geochim. Cosmochim. Ac., 68, 3095–3106, https://doi.org/10.1016/j.gca.2004.01.024, 2004.
Tachikawa, K., Piotrowski, A. M., and Bayon, G.: Neodymium associated with foraminiferal carbonate as a recorder of seawater isotopic signatures, Quaternary Sci. Rev., 88, 1–13, https://doi.org/10.1016/j.quascirev.2013.12.027, 2014.
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., and Dragusanu, C.: JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium, Chem. Geol., 168, 279–281, https://doi.org/10.1016/S0009-2541(00)00198-4, 2000.
Tachikawa, K., Vidal, L., Cornuault, M., Garcia, M., Pothin, A., Sonzogni, C., Bard, E., Menot, G., and Revel, M.: Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition, Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, 2015.
Taviani, M., Angeletti, L., Canese, S., Cannas, R., Cardone, F., Cau, A., Cau, A. B., Follesa, M. C., Marchese, F., Montagna, P., and Tessarolo, C.: The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems, Deep-Sea Res. Pt. II, https://doi.org/10.1016/j.dsr2.2015.12.008, 2015.
Thunell, R. C. and Williams, D. F.: Glacial–Holocene salinity changes in the Mediterranean Sea: hydrographic and depositional effects, Nature, 338, 493–496, https://doi.org/10.1038/338493a0, 1989.
Toucanne, S., Jouet, G., Ducassou, E., Bassetti, M. A., Dennielou, B., Angue Minto'o, C. M., Lahmi, M., Touyet, N., Charlier, K., Lericolais, G., and Mulder, T.: A 130,000-year record of Levantine Intermediate Water flow variability in the Corsica Trough, western Mediterranean Sea, Quaternary Sci. Rev., 33, 55–73, https://doi.org/10.1016/j.quascirev.2011.11.020, 2012.
Vance, D., Scrivner, A. E., and Beney, P.: The use of foraminifera as a record of the past neodymium isotope composition of seawater, Paleoceanography, 19, PA2009, https://doi.org/10.1029/2003PA000957, 2004.
van de Flierdt, T., Robinson, L. F., and Adkins, J. F.: Deep-sea coral aragonite as a recorder for the neodymium isotopic composition of seawater, Geochim. Cosmochim. Ac., 74, 6014–6032, https://doi.org/10.1016/j.gca.2010.08.001, 2010.
Voelker, A. H. L., Lebreiro, S. M., Schönfeld, J., Cacho, I., Erlenkeuser, H., and Abrantes, F.: Mediterranean outflow strengthening during northern hemisphere coolings: A salt source for the glacial Atlantic?, Earth Planet. Sci. Lett., 245, 39–55, https://doi.org/10.1016/j.epsl.2006.03.014, 2006.
Weaver, A. J., Saenko, O. A., Clark, P. U., and Mitrovica, J. X.: Meltwater Pulse 1A from Antarctica as a Trigger of the Bolling-Allerod Warm Interval, Science, 299, 1709–1713, https://doi.org/10.1126/science.1081002, 2003.
Weldeab, S., Emeis, K.-C., Hemleben, C., and Siebel, W.: Provenance of lithogenic surface sediments and pathways of riverine suspended matter in the Eastern Mediterranean Sea: evidence from 143Nd ∕ 144Nd and 87Sr ∕ 86Sr ratios, Chem. Geol., 186, 139–149, https://doi.org/10.1016/S0009-2541(01)00415-6, 2002.
Weldeab, S., Menke, V., and Schmiedl, G.: The pace of East African monsson evolution during the Holocene, Geophys. Res. Lett., 41, 1724–1731, https://doi.org/10.1002/2014GL059361.Received, 2014.
Wienberg, C., Frank, N., Mertens, K. N., Stuut, J.-B. W., Marchant, M., Fietzke, J., Mienis, F., and Hebbeln, D.: Glacial cold-water coral growth in the Gulf of Cádiz: Implications of increased palaeo-productivity, Earth Planet. Sci. Lett., 298, 405–416, https://doi.org/10.1016/j.epsl.2010.08.017, 2010.
Wu, Q., Colin, C., Liu, Z., Thil, F., Dubois-Dauphin, Q., Frank, N., Tachikawa, K., Bordier, L., and Douville, E.: Neodymium isotopic composition in foraminifera and authigenic phases of the South China Sea sediments: Implications for the hydrology of the North Pacific Ocean over the past 25 kyr, Geochem. Geophy. Geosy., 16, 3883–3904, https://doi.org/10.1002/2015GC005871, 2015.
Special issue