Articles | Volume 12, issue 3
https://doi.org/10.5194/cp-12-697-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-12-697-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods
Geography, College of Life and Environmental Sciences, University of
Exeter, Exeter, UK
Henry Hooghiemstra
Institute for Biodiversity and Ecosystem Dynamics, University of
Amsterdam, Amsterdam, the Netherlands
Oscar Rama-Corredor
Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
Belen Martrat
Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
Joan O. Grimalt
Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
Lonnie Thompson
School of Earth Sciences and Byrd Polar and Climate Research Center, The
Ohio State University, Columbus, Ohio, USA
Mark B. Bush
Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, USA
Zaire González-Carranza
Institute for Biodiversity and Ecosystem Dynamics, University of
Amsterdam, Amsterdam, the Netherlands
Jennifer Hanselman
Department of Biology, Westfield State University, Westfield, Massachusetts, USA
Bryan Valencia
Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, USA
César Velásquez-Ruiz
Bio-Science School, Universidad Nacional de Colombia, Sede Medellín, Colombia
Related authors
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Kara A. Lamantia, Laura J. Larocca, Lonnie G. Thompson, and Bryan G. Mark
The Cryosphere, 18, 4633–4644, https://doi.org/10.5194/tc-18-4633-2024, https://doi.org/10.5194/tc-18-4633-2024, 2024
Short summary
Short summary
Glaciers that exist within tropical regions are vital water resources and excellent indicators of a changing climate. We use satellite imagery analysis to detect the boundary between snow and ice on the Quelccaya Ice Cap (QIC), Peru, which indicates the ice cap's overall health. These results are analyzed with other variables, such as temperature, precipitation, and sea surface temperature anomalies, to better understand the factors and timelines driving the ice retreat.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Hai Cheng, and R. Lawrence Edwards
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-54, https://doi.org/10.5194/cp-2024-54, 2024
Revised manuscript accepted for CP
Short summary
Short summary
This study presents a new speleothem record of the western Mediterranean region that offers new insights into the timeline of glacial terminations TIV, TIII, and TIII.a. The comparison among the studied deglaciations reveals differences in terms of intensity and duration and opens the opportunity to evaluate marine sediment chronologies based on orbital tuning from the North Atlantic and the Western Mediterranean.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Henry Hooghiemstra, Gustavo Sarmiento Pérez, Vladimir Torres Torres, Juan-Carlos Berrío, Lucas Lourens, and Suzette G. A. Flantua
Sci. Dril., 30, 1–15, https://doi.org/10.5194/sd-30-1-2022, https://doi.org/10.5194/sd-30-1-2022, 2022
Short summary
Short summary
This is a brief overview of long continental fossil pollen records globally in relationship with marine records. Specifically, the Northern Andes is a key area in developing and testing hypotheses in the fields of ecology, paleobiogeography, and climate change in tropical regions. We review 60 years of deep drilling experience in this region that have led to landmark records. We also highlight the early development of long continental pollen records from unique, deep, sediment-filled basins.
Aleix Cortina-Guerra, Juan José Gomez-Navarro, Belen Martrat, Juan Pedro Montávez, Alessandro Incarbona, Joan O. Grimalt, Marie-Alexandrine Sicre, and P. Graham Mortyn
Clim. Past, 17, 1523–1532, https://doi.org/10.5194/cp-17-1523-2021, https://doi.org/10.5194/cp-17-1523-2021, 2021
Short summary
Short summary
During late 20th century a singular Mediterranean circulation episode called the Eastern Mediterranean Transient (EMT) event occurred. It involved changes on the seawater physical and biogeochemical properties, which can impact areas broadly. Here, using paleosimulations for the last 1000 years we found that the East Atlantic/Western Russian atmospheric mode was the main driver of the EMT-type events in the past, and enhancement of this mode was coetaneous with low solar insolation.
Joel D. Barker, Susan Kaspari, Paolo Gabrielli, Anna Wegner, Emilie Beaudon, M. Roxana Sierra-Hernández, and Lonnie Thompson
Atmos. Chem. Phys., 21, 5615–5633, https://doi.org/10.5194/acp-21-5615-2021, https://doi.org/10.5194/acp-21-5615-2021, 2021
Short summary
Short summary
Black carbon (BC), an aerosol that contributes to glacier melt, is important for central Himalayan hydrology because glaciers are a water source to rivers that affect 25 % of the global population in Southeast Asia. Using the Dasuopu ice core (1781–1992 CE), we find that drought-associated biomass burning is an important source of BC to the central Himalaya over a period of months to years and that hemispheric changes in atmospheric circulation influence BC deposition over longer periods.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
M. Roxana Sierra-Hernández, Emilie Beaudon, Paolo Gabrielli, and Lonnie Thompson
Atmos. Chem. Phys., 19, 15533–15544, https://doi.org/10.5194/acp-19-15533-2019, https://doi.org/10.5194/acp-19-15533-2019, 2019
Short summary
Short summary
Energy consumption in Asia has substantially risen since 1970, leading to increased levels of air pollution, which can have severe impacts on human health and the environment. We present the first continuous ice-core record of toxic trace metals that covers 1971–2015. This new record from the Guliya ice cap in northwestern Tibet shows that Pb, Cd, Zn, and Ni, emitted mostly from fossil fuel combustion and biomass burning in South Asia, have reached the remote, high-altitude glacier since 1990.
Lourdes Arellano, Pilar Fernández, Barend L. van Drooge, Neil L. Rose, Ulrike Nickus, Hansjoerg Thies, Evzen Stuchlík, Lluís Camarero, Jordi Catalan, and Joan O. Grimalt
Atmos. Chem. Phys., 18, 16081–16097, https://doi.org/10.5194/acp-18-16081-2018, https://doi.org/10.5194/acp-18-16081-2018, 2018
Short summary
Short summary
Mountain areas are key for studying the impact of diffuse pollution due to human activities on the continental areas. Polycyclic aromatic hydrocarbons (PAHs), human carcinogens with increased levels since the 1950s, are significant constituents of this pollution. We determined PAHs in monthly atmospheric deposition collected in European high mountain areas. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout at remote sites.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Philip B. Holden, H. John B. Birks, Stephen J. Brooks, Mark B. Bush, Grace M. Hwang, Frazer Matthews-Bird, Bryan G. Valencia, and Robert van Woesik
Geosci. Model Dev., 10, 483–498, https://doi.org/10.5194/gmd-10-483-2017, https://doi.org/10.5194/gmd-10-483-2017, 2017
Short summary
Short summary
We describe BUMPER, a Bayesian transfer function for inferring past climate from micro-fossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast. We apply BUMPER to a range of proxies, including both real and artificial data, demonstrating ease of use and applicability to multi-proxy reconstructions.
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
C. D. Chadwell, D. R. Hardy, C. Braun, H. H. Brecher, and L. G. Thompson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-40, https://doi.org/10.5194/tc-2016-40, 2016
Revised manuscript has not been submitted
Short summary
Short summary
The Quelccaya Ice Cap in southern Peru is the largest tropical glacier on earth. Aerial photographs and satellite images have documented retreat of its margins since 1963. While thinning of the glacier has been observed at its margins, here we document for the first time that the glacier has thinned all over during the past 30 years, including the elevation lowering 4.4 m within the highest regions of the glacier above ~ 5400 m a.s.l., where snow accumulation feeds the glacier.
S. G. A. Flantua, H. Hooghiemstra, M. Vuille, H. Behling, J. F. Carson, W. D. Gosling, I. Hoyos, M. P. Ledru, E. Montoya, F. Mayle, A. Maldonado, V. Rull, M. S. Tonello, B. S. Whitney, and C. González-Arango
Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, https://doi.org/10.5194/cp-12-483-2016, 2016
Short summary
Short summary
This paper serves as a guide to high-quality pollen records in South America that capture environmental variability during the last 2 millennia. We identify the pollen records suitable for climate modelling and discuss their sensitivity to the spatial signature of climate modes. Furthermore, evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change.
S. G. A. Flantua, M. Blaauw, and H. Hooghiemstra
Clim. Past, 12, 387–414, https://doi.org/10.5194/cp-12-387-2016, https://doi.org/10.5194/cp-12-387-2016, 2016
Short summary
Short summary
We present a review of chronological dating from ca. 1100 fossil pollen records in Central and South America. Additionally, a temporal quality assessment is implemented on 292 records from northwest South America, which include recalibrating 234 age models. This method evaluates uncertainties for inferred sample ages and chronologies. Important time windows on centennial-millennial climate variability are discussed for sample resolution (estimated years/sample) and temporal uncertainty.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
B. L. van Drooge and J. O. Grimalt
Atmos. Chem. Phys., 15, 7735–7752, https://doi.org/10.5194/acp-15-7735-2015, https://doi.org/10.5194/acp-15-7735-2015, 2015
Short summary
Short summary
Molecular organic tracer compounds were analyzed in six particle sizes in an urban background site (Barcelona) and in a rural site in Spain. The results improve considerably our current understanding on the composition and particle-size distribution of organic air pollution in traffic intensive urban areas and rural sites where combustion of biomass plays an important role on the local and regional air quality, either by emissions from open fires or from domestic heating.
M. Alier, B. L. van Drooge, M. Dall'Osto, X. Querol, J. O. Grimalt, and R. Tauler
Atmos. Chem. Phys., 13, 10353–10371, https://doi.org/10.5194/acp-13-10353-2013, https://doi.org/10.5194/acp-13-10353-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, M. C. Minguillon, M. Alier, F. Amato, M. Brines, M. Cusack, J. O. Grimalt, A. Karanasiou, T. Moreno, M. Pandolfi, J. Pey, C. Reche, A. Ripoll, R. Tauler, B. L. Van Drooge, M. Viana, R. M. Harrison, J. Gietl, D. Beddows, W. Bloss, C. O'Dowd, D. Ceburnis, G. Martucci, N. L. Ng, D. Worsnop, J. Wenger, E. Mc Gillicuddy, J. Sodeau, R. Healy, F. Lucarelli, S. Nava, J. L. Jimenez, F. Gomez Moreno, B. Artinano, A. S. H. Prévôt, L. Pfaffenberger, S. Frey, F. Wilsenack, D. Casabona, P. Jiménez-Guerrero, D. Gross, and N. Cots
Atmos. Chem. Phys., 13, 8991–9019, https://doi.org/10.5194/acp-13-8991-2013, https://doi.org/10.5194/acp-13-8991-2013, 2013
Related subject area
Subject: Vegetation Dynamics | Archive: Terrestrial Archives | Timescale: Millenial/D-O
Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn sediments
A new high-resolution pollen sequence at Lake Van, Turkey: insights into penultimate interglacial–glacial climate change on vegetation history
Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial
Geochronological database and classification system for age uncertainties in Neotropical pollen records
Abrupt climate and vegetation variability of eastern Anatolia during the last glacial
Climate variability over the last 92 ka in SW Balkans from analysis of sediments from Lake Prespa
Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Nadine Pickarski and Thomas Litt
Clim. Past, 13, 689–710, https://doi.org/10.5194/cp-13-689-2017, https://doi.org/10.5194/cp-13-689-2017, 2017
Short summary
Short summary
We present a new detailed pollen and isotope record from Lake Van (Turkey) spanning the period from 250 to 128 ka. In contrast to SW Europe, all three terrestrial warm intervals at Lake Van are characterized by clear interglacial conditions. The largest forest expansion occurred during MIS 7c instead of MIS 7e. Our record also reveals high oscillations between 193 and 157 ka followed by low variations (157 to 131 ka) that highlighted Dansgaard–Oeschger-like events during the penultimate glacial.
Andrea Miebach, Phoebe Niestrath, Patricia Roeser, and Thomas Litt
Clim. Past, 12, 575–593, https://doi.org/10.5194/cp-12-575-2016, https://doi.org/10.5194/cp-12-575-2016, 2016
Short summary
Short summary
We analyze the vegetation and climate in northwestern Turkey during the last ca. 31 000 years based on a new pollen data set from lacustrine sediment cores. The study reveals vegetation responses to long-term and rapid climate changes. Moreover, it documents human activities in the catchment of Lake Iznik and shows a clear anthropogenic impact on the vegetation since the Early Bronze Age.
S. G. A. Flantua, M. Blaauw, and H. Hooghiemstra
Clim. Past, 12, 387–414, https://doi.org/10.5194/cp-12-387-2016, https://doi.org/10.5194/cp-12-387-2016, 2016
Short summary
Short summary
We present a review of chronological dating from ca. 1100 fossil pollen records in Central and South America. Additionally, a temporal quality assessment is implemented on 292 records from northwest South America, which include recalibrating 234 age models. This method evaluates uncertainties for inferred sample ages and chronologies. Important time windows on centennial-millennial climate variability are discussed for sample resolution (estimated years/sample) and temporal uncertainty.
N. Pickarski, O. Kwiecien, D. Langgut, and T. Litt
Clim. Past, 11, 1491–1505, https://doi.org/10.5194/cp-11-1491-2015, https://doi.org/10.5194/cp-11-1491-2015, 2015
K. Panagiotopoulos, A. Böhm, M. J. Leng, B. Wagner, and F. Schäbitz
Clim. Past, 10, 643–660, https://doi.org/10.5194/cp-10-643-2014, https://doi.org/10.5194/cp-10-643-2014, 2014
M. H. M. Groot, R. G. Bogotá, L. J. Lourens, H. Hooghiemstra, M. Vriend, J. C. Berrio, E. Tuenter, J. Van der Plicht, B. Van Geel, M. Ziegler, S. L. Weber, A. Betancourt, L. Contreras, S. Gaviria, C. Giraldo, N. González, J. H. F. Jansen, M. Konert, D. Ortega, O. Rangel, G. Sarmiento, J. Vandenberghe, T. Van der Hammen, M. Van der Linden, and W. Westerhoff
Clim. Past, 7, 299–316, https://doi.org/10.5194/cp-7-299-2011, https://doi.org/10.5194/cp-7-299-2011, 2011
Cited articles
Arz, H. W., Pätzold, J., and Wefer, G.: Correlated millennial-scale
changes in surface hydrography andd terrigenous sediment yield inferred from
the last-glacial marine deposits off Northeastern Brazil, Quaternary
Res., 50, 157–166, 1998.
Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T.
K., Bacher, N. P., and Veliz, C.: Tropical climate changes at millennial and
orbital timescales on the Bolivian Altiplano, Nature, 409, 698–701, 2001.
Bakker, J., Moscol, M., and Hooghiemstra, H.: Holocene environmental change
at the upper forest line in northern Ecuador, The Holocene, 18, 877–893,
2008.
Birks, H. J. B. and Birks, H. H.: Quaternary Palaeoecology, University Park
Press, Baltimore, 1980.
Bogotá, R. G., Groot, M. H. M., Hooghiemstra, H., Lourens, L. J.,
Linden, M. V. D., and Berrio, J. C.: Rapid climate change from north Andean
Lake Fúquene pollen records driven by obliquity:
implications for a basin-wide biostratigraphic zonation for the last 284 ka,
Quaternary Sci. Rev., 30, 3321–3337, https://doi.org/10.1016/j.quascirev.2011.08.003,
2011.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to
Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Bush, M. B., Silman, M. R., and Urrego, D. H.: 48,000 years of climate and
forest change in a biodiversity hot spot, Science, 303, 827–829,
https://doi.org/10.1126/science.1090795, 2004.
Bush, M. B., Hansen, B. C. S., Rodbell, D. T., Seltzer, G. O., Young, K. R.,
León, B., Abbott, M. B., Silman, M. R., and Gosling, W. D.: A
17 000-year history of Andean climate and vegetation change from Laguna de
Chochos, Peru, J. Quaternary Sci., 20, 703–714, 2005.
Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., d'Horta, F. M.,
Ribas, C. C., Vuille, M., Stott, L. D., and Auler, A. S.: Climate change
patterns in Amazonia and biodiversity, Nature Communications, 4, 1–6, https://doi.org/10.1038/ncomms2415, 2013.
Chiang, J. C. and Bitz, C. M.: Influence of high latitude ice cover on the
marine Intertropical Convergence Zone, Clim. Dynam., 25, 477–496, 2005.
Colinvaux, P. A., De Oliveira, P. E., Moreno, J. E., Miller, M. C., and
Bush, M. B.: A long pollen record from lowland Amazonia: Forest and cooling
in glacial times, Science, 274, 85–88, 1996.
Colinvaux, P. A., Bush, M. B., Steinitz-Kannan, M., and Miller, M. C.:
Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon,
Quaternary Res., 48, 69–78, 1997.
Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso,
A. O., Ferrari, J. A., Silva Dias, P. L., and Viana Jr., O.:
Insolation-driven changes in atmospheric circulation over the past 116,000
years in subtropical Brazil, Nature, 434, 63–66, 2005.
Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., and
Ferrari, J. A.: A stalagmite record of changes in atmospheric circulation
and soild processes in the Brazilian subtropics during the Late Pleistocene,
Quaternary Sci. Rev., 25, 2749–2761, 2006.
EPICA: One-to-one coupling of glacial climate variability in Greenland and
Antarctica, Nature, 444, 195–198, https://doi.org/10.1038/nature05301, 2006.
Escobar, J., Hodell, D. A., Brenner, M., Curtis, J. H., Gilli, A., Mueller,
A. D., Anselmetti, F. S., Ariztegui, D., Grzesik, D. A., and Pérez, L.:
A ∼ 43 ka record of paleoenvironmental change in the Central
American lowlands inferred from stable isotopes of lacustrine ostracods,
Quaternary Sci. Rev., 37, 92–104, 2012.
Fritz, S. C., Baker, P. A., Ekdahl, E., Seltzer, G. O., and Stevens, L. R.:
Millennial-scale climate variability during the Last Glacial period in the
tropical Andes, Quaternary Sci. Rev., 29, 1017–1024, 2010.
Fu, R., Dickinson, R. E., Chen, M., and Wang, H.: How do tropical sea
surface temperatures influence the seasonal distribution of precipitation in
the equatorial Amazon?, J. Climate, 14, 4003–4026, 2001.
Gan, M. A. and Rao, V. B.: The influence of the Andes Cordillera on
transient disturbances, Mon. Weather Rev., 122, 1141–1157, 1994.
Garreaud, R. and Wallace, J. M.: Summertime incursions of midlatitude air
into subtropical and tropical South America, Mon. Weather Rev., 126,
2713–2733, 1998.
Garreaud, R. D.: Cold air incursions over subtropical South America: Mean
structure and dynamics, Mon. Weather Rev., 128, 2544–2559, 2000.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day
South American climate, Palaeogeogr. Palaeocl.,
281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
González-Carranza, Z., Hooghiemstra, H., and Vélez, M. I.: Major
altitudinal shifts in Andean vegetation on the Amazonian flank show
temporary loss of biota in the Holocene, The Holocene, 22, 1227–1241,
https://doi.org/10.1177/0959683612451183, 2012.
Graham, A.: The Andes: a geological overview from a biological perspective,
Ann. Mo. Bot. Gard., 96, 371–385, 2009.
Groot, M. H. M., Bogotá, R. G., Lourens, L. J., Hooghiemstra, H., Vriend,
M., Berrio, J. C., Tuenter, E., Van der Plicht, J., Van Geel, B., Ziegler,
M., Weber, S. L., Betancourt, A., Contreras, L., Gaviria, S., Giraldo, C.,
González, N., Jansen, J. H. F., Konert, M., Ortega, D., Rangel, O.,
Sarmiento, G., Vandenberghe, J., Van der Hammen, T., Van der Linden, M., and
Westerhoff, W.: Ultra-high resolution pollen record from the northern Andes
reveals rapid shifts in montane climates within the last two glacial cycles,
Clim. Past, 7, 299–316, https://doi.org/10.5194/cp-7-299-2011, 2011.
Hanselman, J. A., Bush, M. B., Gosling, W. D., Collins, A., Knox, C., Baker,
P. A., and Fritz, S. C.: A 370,000-year record of vegetation and fire history
around Lake Titicaca (Bolivia/Peru), Palaeogeogr. Palaeocl.,
305, 201–214, https://doi.org/10.1016/j.palaeo.2011.03.002, 2011.
Hansen, B. C. S., Rodbell, D. T., Seltzer, G. O., León, B., Young, K. R.,
and Abbott, M.: Late-glacial and Holocene vegetational history from two sites
in the western Cordillera of southwestern Ecuador, Palaeogeogr. Palaeocl.,
194, 79–108, 2003.
Harrison, S. P. and Sanchez Goñi, M. F.: Global patterns of vegetation
response to millennial-scale variability and rapid climate change during the
last glacial period, Quaternary Sci. Rev., 29, 2957–2980,
https://doi.org/10.1016/j.quascirev.2010.07.016, 2010.
Haug, G. H., Hughen, K. A., Sigman, D., Peterson, L. C., and Röhl, U.:
Southward Migration of the intertropical convergence zone through the
Holocene, Science, 293, 1304–1308, 2001.
Heinrich, H.: Origin and consequences of cyclic ice rafting in the Northeast
Atlantic Ocean during the past 130,000 years, Quaternary Res., 29, 142–152,
https://doi.org/10.1016/0033-5894(88)90057-9, 1988.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of
the North Atlantic and their global climate imprint, Rev. Geophys., 42,
RG1005, https://doi.org/10.1029/2003RG000128, 2004.
Hessler, I., Dupont, L., Bonnefille, R., Behling, H., González, C.,
Helmens, K. F., Hooghiemstra, H., Lebamba, J., Ledru, M.-P., LÈzine,
A.-M., Maley, J., Marret, F., and Vincens, A.: Millennial-scale changes in
vegetation records from tropical Africa and South America during the last
glacial, Quaternary Sci. Rev., 29, 2882–2899,
https://doi.org/10.1016/j.quascirev.2009.11.029, 2010.
Hill, M. O. and Gauch, H. G.: Detrended Correspondence Analysis: an improved
ordination technique, Vegetatio, 42, 47–58, 1980.
Hooghiemstra, H.: Vegetational and climatic history of the high plain of
Bogota, Colombia: A continuous record of the last 3.5 million Years, Gantner
Verlag, Vaduz, 368 pp., 1984.
Hooghiemstra, H. and van der Hammen, T.: Quaternary ice-age in the Colombian
Andes: developing an understanding of our legacy, Philos. T. R. Soc. Lond.,
359, 173–181, 2004.
Hooghiemstra, H., Berrio, J. C., Groot, M. H., Bogotá-A, R. G., Olivera,
M. M., and González-Carranza, Z.: The dynamic history of the upper forest
line ecotone in the northern Andes, in: Ecotones Between Forest and
Grassland, Springer, New York, Heidelberg, Dordrecht, London, 229–246, 2012.
Hughen, K. A., Overpeck, J. T., Peterson, L. C., and Trumbore, S.: Rapid
climate changes in the tropical Atlantic region during the last deglaciation,
Nature, 380, 51–54, 1996.
Hughen, K. A., Eglinton, T. I., Xu, L., and Makou, M.: Abrupt Tropical
Vegetation Response to Rapid Climate Changes, Science, 304, 1955–1959, 2004.
Jansen, B., de Boer, E. J., Cleef, A. M., Hooghiemstra, H., Moscol-Olivera,
M., Tonneijck, F. H., and Verstraten, J. M.: Reconstruction of late Holocene
forest dynamics in northern Ecuador from biomarkers and pollen in soil cores,
Palaeogeogr. Palaeocl., 386, 607–619, 2013.
Jennerjahn, T. C., Ittekkot, V., Arz, H. W., Behling, H., Pätzold, J.,
and Wefer, G.: Asynchronous Terrestrial and Marine Signals of Climate Change
During Heinrich Events, Science, 306, 2236–2239,
https://doi.org/10.1126/science.1102490, 2004.
Killeen, T. J., Douglas, M., Consiglio, T., Jørgensen, P. M., and Mejia,
J.: Dry spots and wet spots in the Andean hotspot, J. Biogeogr., 34,
1357–1373, 2007.
Körner, C.: The use of “altitude” in ecological research, Trends Ecol.
Evol., 22, 569–574, https://doi.org/10.1016/j.tree.2007.09.006, 2007.
Lachniet, M. S., Asmerom, Y., Bernal, J. P., Polyak, V. J., and
Vazquez-Selem, L.: Orbital pacing and ocean circulation-induced collapses of
the Mesoamerican monsoon over the past 22,000 y, P. Natl. Acad. Sci. USA,
110, 9255–9260, 2013.
Luteyn, J. L. and Churchill, S. P.: Páramos: a checklist of plant
diversity, geographical distribution, and botanical literature, New York
Botanical Garden Press, New York, 1999.
Mangerud, J. A. N., Andersen, S. T., Berglund, B. E., and Donner, J. J.:
Quaternary stratigraphy of Norden, a proposal for terminology and
classification, Boreas, 3, 109–126, https://doi.org/10.1111/j.1502-3885.1974.tb00669.x,
1974.
McCune, B. and Grace, J. B.: Analysis of ecological communities, MjM Software
Design, Gleneden Beach, Oregon, 300 pp., 2002.
Mosblech, N. A. S., Bush, M. B., Gosling, W. D., Hodell, D., Thomas, L., van
Calsteren, P., Correa-Metrio, A., Valencia, B. G., Curtis, J., and van
Woesik, R.: North Atlantic forcing of Amazonian precipitation during the last
ice age, Nat. Geosci., 5, 817–820, 2012.
NGRIP Members: High-resolution record of Northern Hemisphere climate extending
into the last interglacial period, Nature, 431, 147–151, 2004.
Paduano, G. M., Bush, M. B., Baker, P. A., Fritz, S. C., and Seltzer, G. O.:
A vegetation and fire history of Lake Titicaca since the Last Glacial
Maximum, Palaeogeogr. Palaeocl., 194, 259–279, 2003.
Peterson, L. C., Haug, G. H., Hughen, K. A., and Röhl, U.: Rapid changes
in the Hydrologic cycle of the Tropical Atlantic during the Last Glacial,
Science, 290, 1947–1951, 2000.
Poveda, G. and Mesa, O. J.: Feedbacks between hydrological processes in
tropical South America and large-scale ocean-atmospheric phenomena, J.
Climate, 10, 2690–2702, 1997.
Poveda, G., Waylen, P. R., and Pulwarty, R. S.: Annual and inter-annual
variability of the present climate in northern South America and southern
Mesoamerica, Palaeogeogr. Palaeocl., 234, 3–27, 2006.
Poveda, G., Álvarez, D. M., and Rueda, Ó. A.: Hydro-climatic
variability over the Andes of Colombia associated with ENSO: a review of
climatic processes and their impact on one of the Earth's most important
biodiversity hotspots, Clim. Dynam., 36, 2233–2249,
https://doi.org/10.1007/s00382-010-0931-y, 2011.
Rama-Corredor, O., Martrat, B., Grimalt, J. O., López-Otalvaro, G. E.,
Flores, J. A., and Sierro, F.: Parallelisms between sea surface temperature
changes in the western tropical Atlantic (Guiana Basin) and high latitude
climate signals over the last 140 000 years, Clim. Past, 11, 1297–1311,
https://doi.org/10.5194/cp-11-1297-2015, 2015.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer,
H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111,
D06102, https://doi.org/10.1029/2005JD006079, 2006.
Reese, C. A. and Liu, K.: A modern pollen rain study from the central Andes
region of South America, J. Biogeogr., 32, 709–718, 2005.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer,
B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and Plicht, J. V. D.:
IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal
BP, Radiocarbon, 55, 1869–1887, 2013.
Ruddiman, W. F.: Earth's Climate: past and future, Macmillan, Publishing
House, London, 2001.
Rühlemann, C., Mulitza, S., Müller, P. J., Wefer, G., and Zahn, R.:
Warming of the tropical Atlantic Ocean and slowdown of thermohaline
circulation during the last deglaciation, Nature, 402, 511–514, 1999.
Rühlemann, C., Mulitza, S., Lohmann, G., Paul, A., Matthias, P., and
Wefer, G.: Abrupt Warming of the Intermediate-Depth Atlantic Ocean in
Response to Thermohaline Circulation Slowdown During the last deglaciation,
PAGES News, 11, 17–19, 2003.
Sánchez Goñi, M. F. and Harrison, S. P.: Millennial-scale climate
variability and vegetation changes during the Last Glacial: Concepts and
terminology, Quaternary Sci. Rev., 29, 2823–2827, 2010.
Schmidt, M. W., Spero, H. J., and Lea, D. W.: Links between salinity
variation in the Caribbean and North Atlantic thermohaline circulation,
Nature, 428, 160–163, 2004.
Seltzer, G., Rodbell, D., and Burns, S.: Isotopic evidence for late
Quaternary climatic change in tropical South America, Geology, 28, 35–38,
2000.
Smith, J. A., Seltzer, G. O., Farber, D. L., Rodbell, D. T., and Finkel, R.
C.: Early Local Last Glacial Maximum in the Tropical Andes, Science, 308,
678–681, 2005.
Smith, J. A., Mark, B. G., and Rodbell, D. T.: The timing and magnitude of
moutain glaciation in the tropical Andes, J. Quaternary Sci., 23, 609–634,
https://doi.org/10.1002/jqs.1224, 2008.
Thompson, L. G.: Tropical ice core records: evidence for asynchronous
glaciations on Milankovitch timescales, J. Quaternary Sci., 20, 723–733,
2005.
Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson,
K. A., Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K.,
Bolzan, J. F., Cole-Dai, J., and Francou, B.: A 25,000-year tropical climate
history from Bolivian ice cores, Science, 282, 1858–1864, 1998.
Torres, V., Vandenberghe, J., and Hooghiemstra, H.: An environmental
reconstruction of the sediment infill of the Bogotá basin (Colombia)
during the last 3 million years from abiotic and biotic proxies, Palaeogeogr.
Palaeocl., 226, 127–148, 2005.
Urrego, D. H., Silman, M. R., and Bush, M. B.: The Last Glacial Maximum:
stability and change in a western Amazonian cloud forest, J. Quaternary Sci.,
20, 693–701, 2005.
Urrego, D. H., Bush, M. B., Silman, M. R., Correa-Metrio, A., Ledru, M.-P.,
Mayle, F. E., Paduano, G., and Valencia, B. G.: Millennial-scale Ecological
Changes in Tropical South America since the Last Glacial Maximum, in: Past
climate variability from the Last Glacial Maximum to the Holocene in South
America and surrounding regions, edited by: Vimeux, F., Sylvestre, F., and
Khodri, M., Developments in Paleoenvironmental Research Series (DPER),
Springer, Paris, 283–300, 2009.
Urrego, D. H., Bush, M. B., and Silman, M. R.: A long history of cloud and
forest migration from Lake Consuelo, Peru, Quaternary Res., 73, 364–373,
https://doi.org/10.1016/j.yqres.2009.10.005, 2010.
Urrego, D. H., Silman, M. R., Correa-Metrio, A., and Bush, M. B.:
Pollen-vegetation relationships along steep climatic gradients in western
Amazonia, J. Veg. Sci., 22, 795–806, https://doi.org/10.1111/j.1654-1103.2011.01289.x,
2011.
Urrego, D. H., Bush, M. B., Silman, M. R., Niccum, B. A., De La Rosa, P.,
McMichael, C., Hagen, S., and Palace, M.: Holocene fires, forest stability
and human occupation in southwestern Amazonia, J. Biogeogr., 40, 521–533,
https://doi.org/10.1111/jbi.12016, 2013.
Urrego, D. H., Bernal, J. P., Chiessi, C. M., Cruz, F. W., Sanchez Goñi,
M. F., Power, M., Hooghiemstra, H., and participants, L.: Millennial-scale
climate variability in the American tropics and subtropics, PAGES Mag., 22,
94–95, 2014.
Valencia, B. G., Urrego, D. H., Silman, M. R., and Bush, M. B.: From ice age
to modern: a record of landscape change in an Andean cloud forest, J.
Biogeogr., 37, 1637–1647, https://doi.org/10.1111/j.1365-2699.2010.02318.x, 2010.
Van Boxel, J., González-Carranza, Z., Hooghiemstra, H., Bierkens, M., and
Vélez, M.: Reconstructing past precipitation from lake levels and inverse
modelling for Andean Lake La Cocha, J. Paleolimnol., 51, 63–77, 2014.
van der Hammen, T. and Hooghiemstra, H.: Interglacial-glacial Fuquene-3
pollen record from Colombia: an Eemian to Holocene climate record, Global
Planet. Change, 36, 181–199, 2003.
van der Hammen, T., Barelds, J., De Jong, H., and De Veer, A. A.: Glacial
sequence and environmental history in the Sierra Nevada del Cocuy (Colombia),
Palaeogeogr. Palaeocl., 32, 247–340, 1980/1981.
Velásquez, C. A. and Hooghiemstra, H.: Pollen-based 17-kyr forest
dynamics and climate change from the Western Cordillera of Colombia;
no-analogue associations and temporarily lost biomes, Rev. Palaeobot.
Palyno., 194, 38–49, https://doi.org/10.1016/j.revpalbo.2013.03.001, 2013.
Vuille, M. and Bradley, R. S.: Mean annual temperature trends and their
vertical structure in the tropical Andes, Geophys. Res. Lett., 27,
3885–3888, 2000.
Vuille, M. and Werner, M.: Stable isotopes in precipitation recording South
American summer monsoon and ENSO variability: observations and model results,
Clim. Dynam., 25, 401–413, 2005.
Vuille, M., Bradley, R. S., and Keimig, F.: Interannual climate variability
in the Central Andes and its relation to tropical Pacific and Atlantic
forcing, J. Geophys. Res., 105, 12447–12460, 2000.
Weigend, M.: Observations on the biogeography of the Amotape-Huancabamba Zone
in northern Peru, Bot. Rev., 68, 38–54,
https://doi.org/10.1663/0006-8101(2002)068[0038:OOTBOT]2.0.CO;2, 2002.
Weng, C., Bush, M. B., and Silman, M. R.: An analysis of modern pollen rain
on an elevational gradient in southern Peru, J. Trop. Ecol., 20, 113–124,
2004.
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson,
A.: Millennial-scale variability during the last glacial: The ice core
record, Quaternary Sci. Rev., 29, 2828–2838,
https://doi.org/10.1016/j.quascirev.2009.10.013, 2010.
Zhou, J. and Lau, K. M.: Does a monsoon climate exist over South America?, J.
Climate, 11, 1020–1040, 1998.
Zhou, J. and Lau, K. M.: Principal modes of interannual and decadal
variability of summer rainfall over South America, Int. J. Climatol., 21,
1623–1644, 2001.
Short summary
We compare eight pollen records reflecting environmental change in the tropical Andes over the past 30 000 years. Our analysis focuses on the signature of millennial-scale climate variability in the tropical Andes: Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the tropical vegetation, with downslope upper forest line (UFL) migrations and cooling during HS and the Younger Dryas.
We compare eight pollen records reflecting environmental change in the tropical Andes over the...