Articles | Volume 12, issue 2
https://doi.org/10.5194/cp-12-339-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-339-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study
K. Wallmann
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3,
24148 Kiel, Germany
B. Schneider
Institut für Geowissenschaften, University of Kiel, Olshausenstr.
40, 24098 Kiel, Germany
M. Sarnthein
Institut für Geowissenschaften, University of Kiel, Olshausenstr.
40, 24098 Kiel, Germany
Institut für Geologie, University of Innsbruck, Innrain 50, 6020
Innsbruck, Austria
Related authors
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1360, https://doi.org/10.5194/egusphere-2024-1360, 2024
Short summary
Short summary
Our research uses deep learning to predict organic carbon stocks in ocean sediments, crucial for understanding their role in the global carbon cycle. By analyzing over 22,000 samples and various seafloor characteristics, our model gives more accurate results than traditional methods. We estimate the top 10 cm of ocean sediments hold about 171 petagrams of carbon. This work enhances carbon stock estimates and helps plan future sampling strategies to better understand oceanic carbon burial.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Tronje P. Kemena, Angela Landolfi, Andreas Oschlies, Klaus Wallmann, and Andrew W. Dale
Earth Syst. Dynam., 10, 539–553, https://doi.org/10.5194/esd-10-539-2019, https://doi.org/10.5194/esd-10-539-2019, 2019
Short summary
Short summary
Oceanic deoxygenation is driven by climate change in several areas of the global ocean. Measurements indicate that ocean volumes with very low oxygen levels expand, with consequences for marine organisms and fishery. We found climate-change-driven phosphorus (P) input in the ocean is hereby an important driver for deoxygenation on longer timescales with effects in the next millennia.
Konstantin Stolpovsky, Andrew W. Dale, and Klaus Wallmann
Biogeosciences, 15, 3391–3407, https://doi.org/10.5194/bg-15-3391-2018, https://doi.org/10.5194/bg-15-3391-2018, 2018
Short summary
Short summary
The paper describes a new way to parameterize G-type models in marine sediments using data about reactivity of organic carbon sinking to the seafloor.
Ulrike Lomnitz, Stefan Sommer, Andrew W. Dale, Carolin R. Löscher, Anna Noffke, Klaus Wallmann, and Christian Hensen
Biogeosciences, 13, 1367–1386, https://doi.org/10.5194/bg-13-1367-2016, https://doi.org/10.5194/bg-13-1367-2016, 2016
Short summary
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
A. W. Dale, S. Sommer, U. Lomnitz, I. Montes, T. Treude, V. Liebetrau, J. Gier, C. Hensen, M. Dengler, K. Stolpovsky, L. D. Bryant, and K. Wallmann
Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, https://doi.org/10.5194/bg-12-1537-2015, 2015
A. W. Dale, V. J. Bertics, T. Treude, S. Sommer, and K. Wallmann
Biogeosciences, 10, 629–651, https://doi.org/10.5194/bg-10-629-2013, https://doi.org/10.5194/bg-10-629-2013, 2013
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1360, https://doi.org/10.5194/egusphere-2024-1360, 2024
Short summary
Short summary
Our research uses deep learning to predict organic carbon stocks in ocean sediments, crucial for understanding their role in the global carbon cycle. By analyzing over 22,000 samples and various seafloor characteristics, our model gives more accurate results than traditional methods. We estimate the top 10 cm of ocean sediments hold about 171 petagrams of carbon. This work enhances carbon stock estimates and helps plan future sampling strategies to better understand oceanic carbon burial.
Michael Sarnthein and Pieter M. Grootes
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-173, https://doi.org/10.5194/cp-2021-173, 2022
Manuscript not accepted for further review
Short summary
Short summary
Changes in the geometry of ocean Meridional Overturning Circulation (MOC) are crucial in controlling past changes of climate and the carbon inventory of the atmosphere. However, the accurate timing and global correlation of short-term glacial-to-deglacial changes of MOC in various ocean basins still present a major challenge now met by the fine structure of jumps and plateaus in atmospheric and planktic radiocarbon (14C) concentration that reflect authentic changes in atmospheric 14C production.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Sebastian Beil, Wolfgang Kuhnt, Ann Holbourn, Florian Scholz, Julian Oxmann, Klaus Wallmann, Janne Lorenzen, Mohamed Aquit, and El Hassane Chellai
Clim. Past, 16, 757–782, https://doi.org/10.5194/cp-16-757-2020, https://doi.org/10.5194/cp-16-757-2020, 2020
Short summary
Short summary
Comparison of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates shows that long-lasting negative δ13C excursions precede the positive δ13C excursions and that the evolution of the marine δ13C positive excursions is similar during both OAEs, although the durations of individual phases differ substantially. Phosphorus speciation data across OAE2 and the Mid-Cenomanian Event suggest a positive feedback loop, enhancing marine productivity during OAEs.
Sonja Geilert, Patricia Grasse, Kristin Doering, Klaus Wallmann, Claudia Ehlert, Florian Scholz, Martin Frank, Mark Schmidt, and Christian Hensen
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020, https://doi.org/10.5194/bg-17-1745-2020, 2020
Short summary
Short summary
Marine silicate weathering is a key process of the marine silica cycle; however, its controlling processes are not well understood. In the Guaymas Basin, silicate weathering has been studied under markedly differing ambient conditions. Environmental settings like redox conditions or terrigenous input of reactive silicates appear to be major factors controlling marine silicate weathering. These factors need to be taken into account in future oceanic mass balances of Si and in modeling studies.
Tronje P. Kemena, Angela Landolfi, Andreas Oschlies, Klaus Wallmann, and Andrew W. Dale
Earth Syst. Dynam., 10, 539–553, https://doi.org/10.5194/esd-10-539-2019, https://doi.org/10.5194/esd-10-539-2019, 2019
Short summary
Short summary
Oceanic deoxygenation is driven by climate change in several areas of the global ocean. Measurements indicate that ocean volumes with very low oxygen levels expand, with consequences for marine organisms and fishery. We found climate-change-driven phosphorus (P) input in the ocean is hereby an important driver for deoxygenation on longer timescales with effects in the next millennia.
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869–1883, https://doi.org/10.5194/gmd-12-1869-2019, https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Short summary
Ocean CO2 uptake played a crucial role for the global cooling during ice ages. Dust formation, e.g. by ice scraping over bedrock, potentially contributed to this CO2 uptake because (1) the iron in the dust is a fertilizer and (2) the heavy dust particles can accelerate sinking organic matter (ballasting hypothesis). This study tests the glacial dust ballasting hypothesis for the first time, using an ocean model. It turns out, however, that the ballasting effect probably played a minor role.
Konstantin Stolpovsky, Andrew W. Dale, and Klaus Wallmann
Biogeosciences, 15, 3391–3407, https://doi.org/10.5194/bg-15-3391-2018, https://doi.org/10.5194/bg-15-3391-2018, 2018
Short summary
Short summary
The paper describes a new way to parameterize G-type models in marine sediments using data about reactivity of organic carbon sinking to the seafloor.
Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, https://doi.org/10.5194/bg-15-3243-2018, 2018
Short summary
Short summary
To gain a better understanding of climate and marine biogeochemistry variations over the last 9500 years (the Holocene), we performed non-accelerated model simulations with a global coupled climate and biogeochemistry model forced by orbital parameters and atmospheric greenhouse gases. One main outcome is an increase in the volume of the eastern equatorial Pacific oxygen minimum zone, driven by a slowdown of the large-scale circulation.
Ulrike Lomnitz, Stefan Sommer, Andrew W. Dale, Carolin R. Löscher, Anna Noffke, Klaus Wallmann, and Christian Hensen
Biogeosciences, 13, 1367–1386, https://doi.org/10.5194/bg-13-1367-2016, https://doi.org/10.5194/bg-13-1367-2016, 2016
Short summary
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
A. W. Dale, S. Sommer, U. Lomnitz, I. Montes, T. Treude, V. Liebetrau, J. Gier, C. Hensen, M. Dengler, K. Stolpovsky, L. D. Bryant, and K. Wallmann
Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, https://doi.org/10.5194/bg-12-1537-2015, 2015
M. Sarnthein, B. Schneider, and P. M. Grootes
Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, https://doi.org/10.5194/cp-9-2595-2013, 2013
A. Regenberg, B. Schneider, and R. Gangstø
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-11343-2013, https://doi.org/10.5194/bgd-10-11343-2013, 2013
Revised manuscript not accepted
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
A. W. Dale, V. J. Bertics, T. Treude, S. Sommer, and K. Wallmann
Biogeosciences, 10, 629–651, https://doi.org/10.5194/bg-10-629-2013, https://doi.org/10.5194/bg-10-629-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Modelling only | Timescale: Milankovitch
Modeling the evolution of pulse-like perturbations in atmospheric carbon and carbon isotopes: the role of weathering–sedimentation imbalances
Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data
Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials
Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity
The Plio-Pleistocene climatic evolution as a consequence of orbital forcing on the carbon cycle
Impact of oceanic processes on the carbon cycle during the last termination
Impact of brine-induced stratification on the glacial carbon cycle
Glacial-interglacial atmospheric CO2 change: a possible "standing volume" effect on deep-ocean carbon sequestration
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Short summary
Perturbations in atmospheric CO2 and in its isotopic composition, e.g., in response to carbon release from the land biosphere or from fossil fuel burning, evolve differently in time. We use an Earth system model of intermediate complexity to show that fluxes to and from the solid Earth play an important role in removing these perturbations from the atmosphere over thousands of years.
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
Nathaelle Bouttes, Didier Swingedouw, Didier M. Roche, Maria F. Sanchez-Goni, and Xavier Crosta
Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018, https://doi.org/10.5194/cp-14-239-2018, 2018
Short summary
Short summary
Atmospheric CO2 is key for climate change. CO2 is lower during the oldest warm period of the last million years, the interglacials, than during the most recent ones (since 430 000 years ago). This difference has not been explained yet, but could be due to changes of ocean circulation. We test this hypothesis and the role of vegetation and ice sheets using an intermediate complexity model. We show that only small changes of CO2 can be obtained, underlying missing feedbacks or mechanisms.
Andrey Ganopolski and Victor Brovkin
Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, https://doi.org/10.5194/cp-13-1695-2017, 2017
Short summary
Short summary
Ice cores reveal that atmospheric CO2 concentration varied synchronously with the global ice volume. Explaining the mechanism of glacial–interglacial variations of atmospheric CO2 concentrations and the link between CO2 and ice sheets evolution still remains a challenge. Here using the Earth system model of intermediate complexity we performed for the first time simulations of co-evolution of climate, ice sheets and carbon cycle using the astronomical forcing as the only external forcing.
Didier Paillard
Clim. Past, 13, 1259–1267, https://doi.org/10.5194/cp-13-1259-2017, https://doi.org/10.5194/cp-13-1259-2017, 2017
Short summary
Short summary
Ice ages are paced by astronomical parameters. On longer timescales, the astronomy also acts on climate, as evidenced by the 400 kyr signature observed in carbon isotopic records. In this paper, I present a conceptual model that links the astronomy to the dynamics of organic carbon in coastal areas. The model reproduces the carbon isotopic records and a two-step decrease in atmospheric CO2 that would explain the Pleistocene (~ 2.8 Myr BP) and mid-Pleistocene (~ 0.8 Myr BP) transition.
N. Bouttes, D. Paillard, D. M. Roche, C. Waelbroeck, M. Kageyama, A. Lourantou, E. Michel, and L. Bopp
Clim. Past, 8, 149–170, https://doi.org/10.5194/cp-8-149-2012, https://doi.org/10.5194/cp-8-149-2012, 2012
N. Bouttes, D. Paillard, and D. M. Roche
Clim. Past, 6, 575–589, https://doi.org/10.5194/cp-6-575-2010, https://doi.org/10.5194/cp-6-575-2010, 2010
L. C. Skinner
Clim. Past, 5, 537–550, https://doi.org/10.5194/cp-5-537-2009, https://doi.org/10.5194/cp-5-537-2009, 2009
Cited articles
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi,
K., and Blatter, H.: Insolation-driven 100 000-year glacial cycles and
hysteresis of ice-sheet volume, Nature, 500, 190–193, https://doi.org/10.1038/nature12374,
2013.
Adkins, J. F. and Boyle, E. A.: Changing atmospheric Δ14C and
the record of deep water paleoventilation ages, Paleoceanography, 12,
337–344, 1997.
Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L.:
Climate-related variations in denitrification in the Arabian Sea from
sediment 15N/14N ratios, Nature, 373, 506–509, 1995.
Anderson, L. D., Delaney, M. L., and Faul, K. L.: Carbon to phosphorus
ratios in sediments: Implications for nutrient cycling, Global Biogeochem. Cy., 15, 65–79, 2001.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher,
M. Q., Anderson, B. E., and Burckle, L. H.: Wind-driven upwelling in the
Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323,
1443–1448, 2009.
Archer, D. E., Morford, J. L., and Emerson, S. R.: A model of suboxic
sedimentary diagenesis suitable for automatic tuning and gridded global
domains, Global Biogeochem. Cy., 16, 1017, https://doi.org/10.1029/2000GB001288, 2002.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006.
Austermann, J., Mitrovica, J. X., Latychev, K., and Milne, G. A.:
Barbados-based estimate of ice volume at Last Glacial Maximum affected by
subducted plate, Nat. Geosci., 6, 553–557, 2013.
Barker, S., Knorr, G., Vautravers, M. J., Diz, P., and Skinner, L. C.:
Extreme deepening of the Atlantic overturning circulation during
deglaciation, Nat. Geosci., 3, 567–571, 2010.
Baturin, G. N.: Issue of the relationship between primary productivity of
organic carbon in ocean and phosphate accumulation (Holocene – Late
Jurassic), Lithol. Miner. Resour., 42, 318–348, 2007.
Baturin, G. N. and Savenko, V. S.: Phosphorus in oceanic sedimentogenesis,
Oceanology, 37, 107–113, 1997.
Berelson, W. E., Balch, W. M., Najjar, R., Feely, R. A., Sabine, C., and
Lee, K.: Relating estimates of CaCO3 production, export, and
dissolution in the water column to measurements of CaCO3 rain into
sediment traps and dissolution on the sea floor: A revised global carbonate
budget, Global Biogeochem. Cy., 21, GB1024, https://doi.org/10.1029/2006GB002803, 2007.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 Million years, Quaternary Sci. Rev., 10, 297–317, 1991.
Berger, W. H.: Increase of carbon dioxide in the atmosphere during
deglaciation: The coral reef hypothesis, Naturwissenschaften, 69, 87–88,
1982.
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern
ocean: Its geochemical and environmental significance, Am. J. Sci., 282, 451–473, 1982.
Berner, R. A.: The Phanerozoic Carbon Cycle: CO2 and O2, Oxford
University Press, Oxford, 150 pp., 2004.
Berner, R. A. and Rao, J.-J.: Phosphorus in sediments of the Amazon River
and estuary: Implications for the global flux of phosphorus to the sea,
Geochim. Cosmochim. Ac., 58, 2333–2339, 1994.
Bohlen, L., Dale, A., and Wallmann, K.: Simple transfer functions for
calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in
global biogeochemical models, Global Biogeochem. Cy., 26,
GB3029, https://doi.org/10.1029/2011GB004198, 2012.
Bordelon-Katrynski, L. A. and Schneider, B.: Feedbacks of CO2 dependent dissolved organic
carbon production on atmospheric CO2 in an ocean biogeochemical model, Biogeosciences Discuss., 9, 7983–8011, https://doi.org/10.5194/bgd-9-7983-2012, 2012.
Boyle, E. A. and Keigwin, L. D.: Deep circulation of the North Atlantic
over the last 200 000 years: Geochemical evidence, Science, 218, 784–787,
1982.
Broecker, W. S.: Glacial to interglacial changes in ocean chemistry, Prog.
Oceanogr., 11, 151–197, 1982a.
Broecker, W. S.: Ocean chemistry during glacial time, Geochim. Cosmochim. Ac., 46, 1689–1705, 1982b.
Broecker, W. S.: The great ocean conveyor, Oceanography, 4, 79–90, 1991.
Broecker, W. S., Peacock, S. L., Walker, S., Weiss, R., Fahrbach, E.,
Schroeder, M., Mikolajewic, U., Heinze, C., Key, R., Peng, T.-H., and Rubin,
S.: How much deep water is formed in the Southern Ocean?, J. Geophys. Res., 103, 15833–15843, 1998.
Broecker, W. S., Clark, E., Hajdas, I., and Bonani, G.: Glacial ventilation
rates for the deep Pacific Ocean, Paleoceanography, 19, PA2002,
https://doi.org/10.1029/2003PA000974, 2004.
Brovkin, V. and Ganopolski, A.: The role of the terrestrial biosphere in
CLIMBER-2 simulations of the last 4 glacial CO2 cycles, Nova Acta
Leopoldina NF, 121, 43–47, 2015.
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial CO2 cycle as a succession of
key physical and biogeochemical processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012, 2012.
Bryan, S. P., Marchitto, T. M., and Lehman, S. J.: The release of
14C-depleted carbon from the deep ocean during the last deglaciation:
Evidence from the Arabian Sea, Earth Planet. Sci. Lett., 298,
244–254, 2010.
Burdige, D. J.: Preservation of organic matter in marine sediments:
Controls, mechanisms, and an imbalance in sediment organic carbon budgets?,
Chem. Rev., 107, 467–485, 2007.
Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson,
H. F., and Otto, J. B.: Variation of seawater 87Sr/86Sr throughout
Phanerozoic time, Geology, 10, 516–519, 1982.
Burwicz, E. B., Rüpke, L. H., and Wallmann, K.: Estimation of the global
amount of submarine gas hydrates formed via microbial methane formation
based on numerical reaction-transport modeling and a novel parameterization
of Holocene sedimentation, Geochim. Cosmochim. Acta, 75, 4562–4576, 2011.
Clark, J. A., Farrell, W. E., and Peltier, W. R.: Global changes in
postglacial sea level: A numerical calculation, Quaternary Sci. Rev.,
9, 265–287, 1978.
Conkright, M. E., Locarnini, R. A., Garcia, H. E., O'Brien, T. D., Boyer, T.
P., Stephens, C., and Antonov, J. I.: World Ocean Atlas 2001: Objective
Analyses, Data Statistics, and Figures, National Oceanographic Data Center,
Silver Spring, MD, 17, 2002.
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the
distribution of d13C of SCO2 in the western Atlantic Ocean,
Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021, 2005.
Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., Gier, J., Hensen, C.,
Dengler, M., Stolpovsky, K., Bryant, L. D., and Wallmann, K.: Organic carbon production, mineralisation
and preservation on the Peruvian margin, Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, 2015.
Daly, R. A.: The Changing World of the Ice Age, Yale University Press, New
Haven, 1934.
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer,
J. M., and Putnam, A. E.: The Last Glacial Termination, Science, 328,
1652–1656, 2010.
Deutsch, C., Gruber, N., Key, R. M., and Sarmiento, J. L.: Denitrification
and N2 fixation in the Pacific Ocean, Global Biogeochem. Cy., 15,
483–506, 2001.
Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N., and Haug, G. H.:
Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen
budget, Global Biogeochem. Cy., 18, GB4012, https://doi.org/10.1029/2003GB002189,
2004.
Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global
particle export from the surface ocean and cycling through the ocean
interior and on the seafloor, Global Biogeochem. Cy., 21, GB4006,
https://doi.org/10.1029/2006GB002907, 2007.
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo,
D., and Kallel, N.: Deepwater source variations during the last climatic
cycle and their impact on the global deepwater circulation,
Paleoceanography, 3, 343–360, 1988.
Eakins, B. W. and Sharman, G. F.: Hypsographic curve of Earth's surface
from ETOPO1, NOAA National Geophysical Data Center, Boulder, CO, 2012.
Eugster, O., Gruber, N., Deutsch, C., Jaccard, S. L., and Payne, M. R.: The
dynamics of the marine nitrogen cycle across the last deglaciation,
Paleoceanography, 28, 116–129, https://doi.org/10.1002/palo.20020, 2013.
Frank, M., Schwarz, B., Baumann, S., Kubik, P. W., Suter, M., and Mangini,
A.: A 200 kyr record of cosmogenic radionuclide production rate and
geomagnetic field intensity from 10Be in globally stacked deep-sea
sediments, Earth Planet. Sci. Lett., 149, 121–129, 1997.
Franke, J., Paul, A., and Schulz, M.: Modeling variations of marine reservoir ages
during the last 45 000 years, Clim. Past, 4, 125–136, https://doi.org/10.5194/cp-4-125-2008, 2008.
Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R., and DeVries,
T.: The marine phosphorus cycle, Am. J. Sci., 282, 474–511,
1982.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in
100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Ganopolski, A., Rahmstorf, S., Petoukhov, V., and Claussen, M.: Simulation
of modern and glacial climates with a coupled global model of intermediate
complexity, Nature, 391, 351–356, 1998.
Ganopolski, A., Calov, R., and Claussen, M.: Simulation of the last glacial cycle with a
coupled climate ice-sheet model of intermediate complexity, Clim. Past, 6, 229–244, https://doi.org/10.5194/cp-6-229-2010, 2010.
García, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better
fitting equations, Limnol. Oceanogr., 37, 1307–1312, 1992.
Gebhardt, H., Sarnthein, M., Grootes, P. M., Kiefer, T., Kuehn, H.,
Schmieder, F., and Röhl, U.: Paleonutrient and productivity records from
the subarctic North Pacific for Pleistocene glacial terminations I to V,
Paleoceanography, 23, PA4212, https://doi.org/10.1029/2007PA001513, 2008.
Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C., and Ragueneau, O.: Reconciling surface
ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model,
Biogeosciences, 3, 521–537, https://doi.org/10.5194/bg-3-521-2006, 2006.
Gnanadesekian, A. and Hallberg, R.: Physical oceanography, thermal
structure and general circulation, in: Encyclopedia of Physical Science and
Technology, edited by: Meyers, R. A., Academic Press, San Diego, 189–210,
2002.
Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of
oxygen exposure time on organic carbon preservation in continental margin
sediments, Nature, 391, 572–574, 1998.
Hay, W. W.: Pleistocene-Holocene Fluxes Are Not the Earth's Norm, in:
Material Fluxes on the Surface of the Earth, edited by: Hay, W. W. and
Usselman, T., Studies in Geophysics, National Academy Press, Washington,
15–27, 1994.
Hay, W. W. and Southam, J. R.: Modulation of marine sedimentation by the
continental shelves, in: The Fate of Fossil Fuel CO2 in the Oceans,
edited by: Andersen, N. R. and Malahoff, A., Plenum Press, New York,
569–604, 1977.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115, 1995.
Heinze, C., Maier-Reimer, E., Winguth, A. M. E., and Archer, D.: A global
oceanic sediment model for long-term climate studies, Global Biogeochem. Cy., 13, 221–250, 1999.
Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.:
Particulate organic carbon fluxes to the ocean interior and factors
controlling the biological pump: A synthesis of global sediment trap
programs since 1983, Progr. Oceanogr., 76, 217–285, https://doi.org/10.1016/j.pocean.2007.11.003, 2008.
Imbrie, J. and Imbrie, J. Z.: Modeling the climatic response to orbital
variations, Science, 207, 943–953, 1980.
Imbrie, J., Berger, A., E. A., B., Clemens, S. C., Duffy, A., Howard, W. R.,
Kukja, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C.,
Molfino, B., Morley, J. J., Peterson, L. C., Pjsias, N. G., Prell, W. L.,
Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R.: On the structure and
origin of major glaciation cycles 2, The 100 000-year cycle,
Paleoceanography, 8, 699–735, 1993.
Ingall, E. D. and Jahnke, R. A.: Evidence for enhanced phosphorus
regeneration from marine sediments overlain by oxygen depleted waters,
Geochim. Cosmochim. Ac., 58, 2571–2575, 1994.
Jaccard, S. L. and Galbraith, E. D.: Large climate-driven changes of
oceanic oxygen concentrations during the last deglaciation, Nat. Geosci., 5, 151–156, 2012.
Jahnke, R. A.: The global ocean flux of particulate organic carbon: Areal
distribution and magnitude, Global Biogeochem. Cy., 10, 71–88, 1996.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J.
L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004.
Kleypas, J. A.: Modeled estimates of global reef habitat and carbonate
production since the last glacial maximum, Paleoceanogr., 12, 533–545, 1997.
Köhler, P. and Fischer, H.: Simulating changes in the terrestrial
biosphere during the last glacial/interglacial transition, Global Planet. Change, 43, 33–55, 2004.
Köhler, P., Fischer, H., Munhoven, G., and Zeebe, R. E.: Quantitative
interpretation of atmospheric carbon records over the last glacial
termination, Global Biogeochem. Cy., 19, GB4020, https://doi.org/10.1029/2004GB002345, 2005.
Köhler, P., Muscheler, R., and Schmitt, J.: A model-based interpretation
of low-frequency changes in the carbon cycle during the last 120 000 years
and its implications for the reconstruction of atmospheric Δ14C, Geochem. Geophys. Geosys., 7, Q11N06,
https://doi.org/10.1029/2008PA001703, 2006.
Körtzinger, A., Hedges, J. I., and Quay, P. D.: Redfield ratios
revisited: Removing the biasing effect of anthropogenic CO2, Limnol. Oceanogr., 46, 964–970, 2001.
Krom, M. D. and Berner, R. A.: The diagenesis of phosphorus in a nearshore
marine sediment, Geochim. Cosmochim. Ac., 45, 207–216, 1981.
Laj, C., Kissel, C., Mazaud, A., Michel, E., Muscheler, R., and Beer, J.:
Geomagnetic field intensity, North Atlantic Deep Water circulation and
atmospheric D14C during the last 50 kyr, Earth Planet. Sci. Lett., 200, 177–190, 2002.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA,
111, 15296–15303, 2014.
Lambert, F., Tagliabue, A., Shaffer, G., Lamy, F., Winckler, G., Farias, L.,
Gallardo, L., and De Pol-Holz, R.: Dust fluxes and iron fertilization in
Holocene and Last Glacial Maximum climates, Geophys. Res. Lett.,
42, 6014–6023, https://doi.org/10.1002/2015gl064250, 2015.
Lomnitz, U., Sommer, S., Dale, A. W., Löscher, C. R., ke, A. N., K.
Wallmann, and Hensen, C.: Benthic phosphorus cycling in the Peruvian oxygen
minimum zone, Biogeosciences Discuss., 12, 16755–16801,
https://doi.org/10.5194/bgd-12-16755-2015, 2015.
Madec, G., Delecluse, P., Imbard, M., and Levy, C.: OPA8.1 Ocean general
circulation model reference manual, Notes du pôle de modél. 11,
Inst. Pierre-Simon Laplace, Paris, 91, 1998.
Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L.,
Cuffey, K. M., Fudge, T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L.,
McConnell, J. R., Sowers, T., Taylor, K. C., White, J. W. C., and Brook, E.
J.: Centennial-scale changes in the global carbon cycle during the last
deglaciation, Nature, 514, 616–619, 2014.
Marinov, I., Gnanadesikan, A., Toggweiler, J. R., and Sarmiento, J. L.: The
Southern Ocean biogechemcial divide, Nature, 441, 964–967, 2006.
Martin, J. H.: Glacial-interglacial CO2 change: The iron hypothesis,
Paleoceanography, 5, 1–13, 1990.
Martınez-Garcia, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub, M.,
Hodell, D. A., Jaccard, S. L., Eglinton, T., and Haug, G. H.: Iron
fertilization of the Subantarctic Ocean during the last ice age, Science,
343, 1347–1350, 2014.
Mayer, L. M., Schick, L. L., Hardy, K. R., Wagal, R., and McCarthy, J.:
Organic matter in small mesopores in sediments and soils, Geochim. Cosmochim. Ac., 68, 3863–3872, 2004.
McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D., and
Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428, 834–837, 2004.
Menviel, L., Joos, F., and Ritz, S. P.: Simulating atmospheric CO2, C-13 and
the marine carbon cycle during the Last Glacial-Interglacial cycle: possible
role for a deepening of the mean remineralization depth and an increase in
the oceanic nutrient inventory, Quaternary Sci. Rev., 56, 46–68,
https://doi.org/10.1016/j.quascirev.2012.09.012, 2012.
Middelburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R.:
Denitrification in marine sediments: A model study, Global Biogeochem. Cy., 10, 661–673, 1996.
Milankovitch, M.: Kanon der Erdbestrahlung und Seine Anwendung auf das
Eiszeitenproblem, Royal Serbian Academy Special Publication, Royal Serbian
Academy, Belgrade, Serbia, 1941.
Milliman, J. D. and Droxler, A. W.: Neritic and pelagic carbonate
sedimentation in the marine environment: ignorance is not a bliss, Geol.
Rundsch., 85, 496–504, 1996.
Milne, G. A. and Mitrovica, J. X.: Searching for eustasy in deglacial
sea-level histories, Quaternary Sci. Rev., 27, 2292–2302, 2008.
Monnin, E., Indermühle, A., Dallenbach, A., Flückiger, J., Stauffer,
B., Stocker, T. F., Raynaud, D., and Barnola, J.-M.: Atmospheric CO2
concentrations over the Last Glacial Termination, Science, 291, 112–114,
2001.
Monnin, E., Steig, E. J., Siegenthaler, U., Kawamura, K., Schwander, J.,
Stauffer, B., Stocker, T. F., Morse, D. L., Barnola, J.-M., Bellier, B.,
Raynaud, D., and Fischer, H.: Evidence for substantial accumulation rate
variability in Antarctica during the Holocene, through synchronization of
CO2 in the Taylor Dome, Dome C and DML ice cores, Earth Planet. Sci. Lett., 224, 45–54, 2004.
Mook, W. G. and Plicht, J. v. d.: Reporting C-14 activities and
concentrations, Radiocarbon, 41, 227–239, 1999.
Munhoven, G.: Glacial-interglacial changes of continental weathering:
estimates of the related CO2 and HCO3− flux variations and
their uncertainties, Global Planet. Change, 33, 155–176, 2002.
Muscheler, R., Beer, J., Kubik, P. W., and Synal, H.-A.: Geomagnetic field
intensity during the last 60,000 years based on 10Be and 36Cl from
the Summit ice cores and 14C., Quaternary Sci. Rev., 24,
1849–1860, 2005.
Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T.,
Graco, M., and Wallmann, K.: Benthic iron and phosphorus fluxes across the
Peruvian oxygen minimum zone, Limnol. Oceanogr., 57, 851–867, 2012.
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M., Rickaby, R. E. M.,
Edwards, N. R., and Elderfield, H.: A synthesis of marine sediment core δ13C data over the last 150 000 years,
Clim. Past, 6, 645–673, https://doi.org/10.5194/cp-6-645-2010, 2010.
Opdyke, B. N. and Walker, J. C. G.: Return of the coral reef hypothesis:
Basin to shelf partitioning of CaCO3 and its effect on atmospheric
CO2, Geology, 20, 733–736, 1992.
Peterson, C. D., Lisiecki, L. E., and Stern, J. V.: Deglacial whole-ocean
δ13C change estimated from 480 benthic foraminiferal records,
Paleoceanography, 29, 549–563, https://doi.org/10.1002/2013PA002552, 2014.
Petit, L. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M.,
Basile, I., Bender, M., Chappelaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420 000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, 1999.
Piotrowski, A. M., Goldstein, S. L., Hemming, S. R., and Fairbanks, R. G.:
Temporal relationships of carbon cycling and ocean circulation at glacial
boundaries, Science, 307, 1933–1937, 2005.
Pollard, D.: Ice-age simulations with a calving ice-sheet model, Quaternary
Research, 20, 30–48, 1983.
Rae, J. W. B., Sarnthein, M., Foster, G. L., Ridgwell, A., Grootes, P. M.,
and Elliott., T.: Deep water formation in the North Pacific and deglacial
CO2 rise, Paleoceanography, 29, 645–667, https://doi.org/10.1002/2013PA002570, 2014.
Raitzsch, M., Hathorne, E. C., Kuhnert, H., Groeneveld, J., and Bickert, T.:
Modern and late Pleistocene B ∕ Ca ratios of the benthic foraminifer
Planulina wuellerstorfi determined with laser ablation ICP-MS, Geology, 39, 1039–1042, 2011.
Raymo, M. E., Oppo, D. W., and Curry, W.: The mid-Pleistocene climate
transition: A deep sea carbon isotope perspective, Paleoceanogr., 12,
546–559, 1997.
Redfield, A. C.: The biological control of chemical factors in the
environment, American Scientist, 46, 205–221, 1958.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P.
M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.
J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and Plicht, J. v. D.:
IntCal13 and marine13 radiocarbon age calibration curves 0–50 000 years
Cal BP, Radiocarbon, 55, 1869–1887, 2013.
Ridgewell, A.: Glacial-interglacial perturbations in the global carbon
cycle, PhD, University of East Anglia, Norwich, UK, 2001.
Roberts, N. L., Piotrowski, A. M., McManus, J. F., and Keigwin, L. D.:
Synchronous deglacial overturning and water mass source changes, Science,
327, 75–78, 2010.
Robinson, L. F., Adkins, J. F., Keigwin, L. D., Southon, J., Fernandez, D.
P., Wang, S.-L., and Scheirer, D. S.: Radiocarbon Variability in the Western
North Atlantic During the Last Deglaciation, Science, 310, 1469–1473, 2005.
Romanek, C. S., Grossman, E. L., and Morse, J. W.: Carbon isotope
fractionation in synthetic aragonite and calcite: Effects of temperature and
precipitation rate, Geochim. Cosmochim. Ac., 56, 419–430, 1992.
Roth, R., Ritz, S. P., and Joos, F.: Burial-nutrient feedbacks amplify the sensitivity of
atmospheric carbon dioxide to changes in organic matter remineralisation, Earth Syst. Dynam., 5, 321–343, https://doi.org/10.5194/esd-5-321-2014, 2014.
Ruddiman, W. F., Fuller, D. Q., Kutzbach, J. E., Tzedakis, P. C., Kaplan, J.
O., Ellis, E. C., Vavrus, S. J., Roberts, C. N., Fyfe, R., He, F., Lemmen,
C., and Woodbridge, J.: Late Holocene climate: natural or anthropogenic,
Rev. Geophys., online first, https://doi.org/10.1002/2015RG000503, 2016.
Ruttenberg, K. C.: Development of a sequential extraction method for
different forms of phosphorus in marine sediments, Limnol. Oceanogr., 37,
1460–1482, 1992.
Ruttenberg, K. C. and Berner, R. A.: Authigenic apatite formation and
burial in sediments from non-upwelling, continental margin environments,
Geochim. Cosmochim. Ac., 57, 991–1007, 1993.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Cycles, Princeton
University Press, Princeton, 503 pp., 2006.
Sarnthein, M., Winn, K., Jung, S. J. A., Duplessy, J.-C., Labeyrie, L.,
Erlenkeuser, H., and Ganssen, G.: Changes in east Atlantic deepwater
circulation over the last 30 000 years: Eight time slice reconstructions,
Paleoceanography, 9, 209–267, 1994.
Sarnthein, M., Schneider, B., and Grootes, P. M.: Peak glacial 14C ventilation
ages suggest major draw-down of carbon into the abyssal ocean, Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, 2013.
Sarnthein, M., Balmer, S., Grootes, P. M., and Mudelsee, M.: Planktic and
benthic 14C reservoir ages for three ocean basins, calibrated by a
suite of 14C plateaus in the glacial-to-deglacial Suigetsu atmospheric
14C record, Radiocarbon, 57, 129–151, 2015.
Schenau, S. J. and De Lange, G. J.: Phosphorus regeneration vs. burial in
sediments of the Arabian Sea, Mar. Chem., 75, 201–217, 2001.
Schlünz, B., Schneider, R. R., Müller, P. J., Swowers, W. J., and
Wefer, G.: Terrestrial organic carbon accumulation on the Amazon deep sea
fan during the last glacial sea level stand, Chem. Geol., 159,
263–281, 1999.
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A.,
Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M.,
and Fischer, H.: Carbon isotope constraints on the deglacial CO2 rise
from ice cores, Science, 336, 711–714, 2012.
Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U.,
Bartlein, P. J., Mix, A. C., and Rosell-Melé, A.: Climate sensitivity
estimated from temperature reconstructions of the Last Glacial Maximum,
Science, 334, 1385–1388, 2011.
Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., and Westberry, T. K.:
Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in
the ocean, Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, 2013.
Seiter, K., Hensen, C., and Zabel, M.: Benthic carbon mineralization on a
global scale, Global Biogeochem. Cy., 19, GB1010, https://doi.org/10.1029/2004GB002225,
2005.
Shackleton, N. J.: Carbon-13 in Uvigerina: Tropical rainforest history in
the equatorial Pacific carbonate dissolution cycles, in: The Fate of Fossil
Fuel in the Oceans, edited by: Andersen, N. R., and Malahoff, A., Plenum,
New York, 401–427, 1977.
Skinner, L. C.: Glacial-interglacial atmospheric CO2 change: a possible “standing volume” effect on deep-ocean carbon
sequestration, Clim. Past, 5, 537–550, https://doi.org/10.5194/cp-5-537-2009, 2009.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the deep Southern Ocean and deglacial CO2 rise, Science,
328, 1147–1151, 2010.
Skinner, L. C., Waelbroeck, C., Scrivner, A. E., and Fallon, S. J.:
Radiocarbon evidence for alternating northern and southern sources of
ventilation of the deep Atlantic carbon pool during the last deglaciation,
P. Natl. Acad. Sci. USA, 111, 5480–5484, 2014.
Stanford, J. D., Hemingway, R., Rohling, E. J., Challenor, P. G.,
Medina-Elizalde, M., and Lester, A. J.: Sea-level probability for the last
deglaciation: A statistical analysis of far-field records, Global Planet. Change, 79, 193–203, 2011.
Stolpovsky, K., Dale, A. W., and Wallmann, K.: Toward a parameterization of
global-scale organic carbon mineralization kinetics in surface marine
sediments, Global Biogeochem. Cy., 29, 812–829, https://doi.org/10.1002/2015gb005087,
2015.
Stuiver, M. and Polach, H. A.: Discussion: Reporting of 14C data,
Radiocarbon, 19, 355–363, 1977.
Suess, E.: Particulate organic carbon flux in the oceans – Surface
productivity and oxygen utilization, Nature, 288, 260–263, 1980.
Tamburini, F. and Föllmi, K. B.: Phosphorus burial in the ocean over glacial-interglacial
time scales, Biogeosciences, 6, 501–513, https://doi.org/10.5194/bg-6-501-2009, 2009.
Thornalley, D. J. R., Barker, S., Broecker, W. S., Elderfield, H., and
McCave, N.: The Deglacial Evolution of North Atlantic Deep Convection,
Science, 331, 202–205, 2011.
Toggweiler, J. R.: Variation of atmospheric CO2 by ventilation of the
ocean's deepest water, Paleoceanography, 14, 571–588, 1999.
Tschumi, T., Joos, F., Gehlen, M., and Heinze, C.: Deep ocean ventilation, carbon
isotopes, marine sedimentation and the deglacial CO2 rise, Clim. Past, 7, 771–800, https://doi.org/10.5194/cp-7-771-2011, 2011.
Tyrrell, T.: The relative influences of nitrogen and phosphorus on oceanic
primary production, Nature, 400, 525–531, 1999.
Ushie, H. and Matsumoto, K.: The role of shelf nutrients on
glacial-interglacial CO2: A negative feedback, Global Biogeochem. Cy., 26, GB2039,
https://doi.org/10.1029/2011GB004147, 2012.
Van Cappellen, P. and Ingall, E. D.: Benthic phosphorus regeneration, net
primary production, and ocean anoxia: A model of the coupled marine
biogeochemical cycles of carbon and phosphorus, Paleoceanography, 9,
677–692, 1994.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.-C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305, 2002.
Wallmann, K.: Feedbacks between oceanic redox states and marine
productivity: A model perspective focused on benthic phosphorus cycling,
Global Biogeochem. Cy., 17, 1084, https://doi.org/10.1029GB001968, 2003.
Wallmann, K.: Phosphorus imbalance in the global ocean?, Global Biogeochem. Cy., 24, GB4030,
https://doi.org/10.1029/2009GB003643, 2010.
Wallmann, K.: Is late Quaternary climate change governed by self-sustained
oscillations in atmospheric CO2?, Geochim. Cosmochim. Ac., 132,
413–439, 10.1016/j.gca.2013.10.046, 2014.
Wallmann, K., Pinero, E., Burwicz, E., Haeckel, M., Hensen, C., Dale, A.,
and Ruepke, L.: The global inventory of methane hydrate in marine sediments:
A theoretical approach, Energies, 5, 2449–2498, 2012.
Walsh, J. J., Rowe, G. T., Iverson, R. L., and McRoy, C. P.: Biological
export of shelf carbon is a sink of the global CO2 cycle, Nature, 291,
196–201, 1981.
Watson, A. J., Vallis, G. K., and Nikurashin, M.: Southern Ocean buoyancy
forcing of ocean ventilation and glacial atmospheric CO2, Nat. Geosci., 8, 861–864,
https://doi.org/10.1038/NGEO2538, 2015.
Yu, J., Elderfield, H., and Piotrowski, A. M.: Seawater carbonate
ion-δ13C systematics and application to glacial-interglacial North
Atlantic ocean circulation, Earth Planet. Sci. Lett., 271, 209–220, 2008.
Yu, J., Broecker, W. S., Elderfield, H., Jin, Z., McManus, J., and Zhang,
F.: Loss of carbon from the deep sea since the Last Glacial Maximum,
Science, 330, 1084–1087, 2010.
Yu, J., Anderson, R. F., Jin, Z., Rae, J. W. B., Opdyke, B. N., and Eggins,
S. M.: Responses of the deep ocean carbonate system to carbon reorganization
during the Last Glacial-interglacial cycle, Quaternary Sci. Rev., 76,
39–52, 2013.
Yu, J., Anderson, R. F., Jin, Z., Menviel, L., Zhang, F., Ryerson, F. J.,
and Rohling, E. J.: Deep South Atlantic carbonate chemistry and increased
interocean deep water exchange during last deglaciation, Quaternary Sci. Rev., 90, 80–89, 2014.
Zeebe, R. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics
and Isotopes, Elsevier Oceanography Series, Elsevier, Amsterdam, 346 pp.,
2001.
Zhang, J., Quay, P. D., and Wilbur, D. O.: Carbon-isotope fractionation
during gas-water exchange and dissolution of CO2, Geochim. Cosmochim. Ac., 59, 107–114, 1995.
Short summary
An Earth system model was set up and applied to evaluate the effects of sea-level change, ocean dynamics, and nutrient utilization on seawater composition and atmospheric pCO2 over the last glacial cycle. The model results strongly suggest that global sea-level change contributed significantly to the slow glacial decline in atmospheric pCO2 and the gradual pCO2 increase over the Holocene whereas the rapid deglacial pCO2 rise was induced by fast changes in ocean dynamics and nutrient utilization.
An Earth system model was set up and applied to evaluate the effects of sea-level change, ocean...