Articles | Volume 12, issue 9
https://doi.org/10.5194/cp-12-1805-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-12-1805-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate
Godwin Laboratory for Palaeoclimate Research, Department of Earth
Sciences, Downing Street, Cambridge, CB2 3EQ, UK
James E. T. Channell
Department of Geological Sciences, University of Florida, 241
Williamson Hall, PO Box 112120, Gainesville 32611, USA
Related authors
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
D. A. Hodell, L. Lourens, D. A. V. Stow, J. Hernández-Molina, C. A. Alvarez Zarikian, and the Shackleton Site Project Members
Sci. Dril., 16, 13–19, https://doi.org/10.5194/sd-16-13-2013, https://doi.org/10.5194/sd-16-13-2013, 2013
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
Julia Homann, Niklas Karbach, Stacy A. Carolin, Daniel H. James, David Hodell, Sebastian F. M. Breitenbach, Ola Kwiecien, Mark Brenner, Carlos Peraza Lope, and Thorsten Hoffmann
Biogeosciences, 20, 3249–3260, https://doi.org/10.5194/bg-20-3249-2023, https://doi.org/10.5194/bg-20-3249-2023, 2023
Short summary
Short summary
Cave stalagmites contain substances that can be used to reconstruct past changes in local and regional environmental conditions. We used two classes of biomarkers (polycyclic aromatic hydrocarbons and monosaccharide anhydrides) to detect the presence of fire and to also explore changes in fire regime (e.g. fire frequency, intensity, and fuel source). We tested our new method on a stalagmite from Mayapan, a large Maya city on the Yucatán Peninsula.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Eric W. Wolff, Hubertus Fischer, Tas van Ommen, and David A. Hodell
Clim. Past, 18, 1563–1577, https://doi.org/10.5194/cp-18-1563-2022, https://doi.org/10.5194/cp-18-1563-2022, 2022
Short summary
Short summary
Projects are underway to drill ice cores in Antarctica reaching 1.5 Myr back in time. Dating such cores will be challenging. One method is to match records from the new core against datasets from existing marine sediment cores. Here we explore the options for doing this and assess how well the ice and marine records match over the existing 800 000-year time period. We are able to recommend a strategy for using marine data to place an age scale on the new ice cores.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
D. A. Hodell, L. Lourens, D. A. V. Stow, J. Hernández-Molina, C. A. Alvarez Zarikian, and the Shackleton Site Project Members
Sci. Dril., 16, 13–19, https://doi.org/10.5194/sd-16-13-2013, https://doi.org/10.5194/sd-16-13-2013, 2013
D. Liebrand, L. J. Lourens, D. A. Hodell, B. de Boer, R. S. W. van de Wal, and H. Pälike
Clim. Past, 7, 869–880, https://doi.org/10.5194/cp-7-869-2011, https://doi.org/10.5194/cp-7-869-2011, 2011
Related subject area
Subject: Feedback and Forcing | Archive: Marine Archives | Timescale: Millenial/D-O
A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic
Abrupt climate changes and the astronomical theory: are they related?
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023, https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary
Short summary
We produced a 1.5-million-year-long history of climate change at International Ocean Discovery Program Site U1385 of the Iberian margin, a well-known location for rapidly accumulating sediments on the seafloor. Our record demonstrates that longer-term orbital changes in Earth's climate were persistently overprinted by abrupt millennial-to-centennial climate variability. The occurrence of abrupt climate change is modulated by the slower variations in Earth's orbit and climate background state.
Denis-Didier Rousseau, Witold Bagniewski, and Michael Ghil
Clim. Past, 18, 249–271, https://doi.org/10.5194/cp-18-249-2022, https://doi.org/10.5194/cp-18-249-2022, 2022
Short summary
Short summary
The study of abrupt climate changes is a relatively new field of research that addresses paleoclimate variations that occur in intervals of tens to hundreds of years. Such timescales are much shorter than the tens to hundreds of thousands of years that the astronomical theory of climate addresses. We revisit several high-resolution proxy records of the past 3.2 Myr and show that the abrupt climate changes are nevertheless affected by the orbitally induced insolation changes.
Cited articles
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahaski, K., and Blatter, J.: Insolation-driven 100 000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–194, 2013.
Alley, R. B., Andrews, J. T. Barber, D. C., and Clark, P. U.: Comment on “Catastrophic ice shelf breakup as the source of Heinrich event icebergs” by C. L. Hulbe et al., Paleoceanography, 20, PA1009, https://doi.org/10.1029/2004PA001086, 2005.
Ashkenazy, Y. and Tziperman, E.: Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing?, Quaternary Sci. Rev., 23, 1879–1890, 2004.
Bailey, I., Hole, G. M., Foster, G. L., Wilson, P. A., Storey, C. D., Trueman, C. N., and Raymo M. E.:An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris, Quaternary Sci. Rev., 75, 181–194, 2013.
Bailey, I., Bolton, C. T., DeConto, R. M., Pollard, D., Schiebel, R., and Wilson, P. A.: A low threshold for North Atlantic ice rafting from “low-slung slippery” late Pliocene ice sheets, Paleoceanography, 25, PA1212, https://doi.org/10.1029/2009PA001736, 2010.
Bailey, I., Foster, G. L., Wilson, P. A., Jovane, L., Storey, C. D., Trueman, C. N., and Becker, J.: Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum, Earth Planet. Sc. Lett., 341–344, 222–233, 2012.
Balco, G. and Rovey, C. W.: Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet, Geology, 38, 795–798, 2010.
Balsam, W. L. and Williams, D.: Transport of carbonate sediment in the western North Atlantic: Evidence from oxygen and carbon isotopes, Mar. Geol., 112, 23–34, 1993.
Barker, S., Chen, J., Gong, X., Jonkers, L, Knorr, G., and Thornalley, D.: Icebergs not the trigger for North Atlantic cold events, Nature, 520, 333–338, 2015.
Bartoli, G., Sarnthein, M., and Weinelt, M.: Late Pliocene millennial-scale climate variability in the northern North Atlantic prior to and after the onset of Northern Hemisphere glaciation, Paleoceanography, 21, PA4205, https://doi.org/10.1029/2005PA001185, 2006.
Bartoli, G., Hönisch, B., and Zeebe, R. E.: Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations, Paleoceanography, 26, PA4213, https://doi.org/10.1029/2010PA002055, 2011.
Bell, D., Jung, S. J. A., and Kroon, D.: The Plio-Pleistocene development of Atlantic deep-water circulation and its influence on climate trends, Quaternary Sci. Rev., 123, 265–282, 2015.
Bender, M. L.: Paleoclimate, Princeton Primers in Climate Series, Princeton University Press, Princeton, NJ, 309 pp., 2013.
Berger, W. H.: On the Milankovitch sensitivity of the Quaternary deep-sea record, Clim. Past, 9, 2003–2011, https://doi.org/10.5194/cp-9-2003-2013, 2013.
Berger, W. H. and Jansen, E.: Mid-Pleistocene climate shift – the Nansen connection, in: The Polar Oceans and Their Role in Shaping the Global Environment, edited by: Johannessen, O. M., Muench, R. D., and Overland, J. E., AGU Geophysical Monograph, 84, 295–311, 1994.
Berger, W. H., Bickert, T., Schmidt, H., and Wefer, G.: Quaternary oxygen isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau, in: Proceedings of the Ocean Drilling Program, Scientific Results, edited by: Berger, W. H., Kroenke, L. W., Mayer, L. A. et al., College Station, TX (Ocean Drilling Program), 130, 381-3-95, https://doi.org/10.2973/odp.proc.sr.130.023.1993, 1993.
Berger, W. H., Kasuda, M. K., Bickert, T., Wefer, G., and Takayama, T.: Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806, Geology, 22, 463–467, 1994.
Bintanja, R. and van de Wal, R. S. W.: North American ice-sheet dynamics and the onset of 100 000-year glacial cycles, Nature, 454, 869–872, 2008.
Birner, B., Hodell, D. A., Tzedakis, P. C., and Skinner, L. C.: Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3, Paleoceanography, 31, 203–217, 2016.
Bolton, C. T., Wilson, P. A., Bailey, I., Friedrich, O., Beer, C. J., Becker, J., Baranwal, S., and Schiebel, R.: Millennial-scale climate variability in the subpolar North Atlantic Ocean during the late Pliocene, Paleoceanography, 25, PA4218, https://doi.org/10.1029/2010PA001951, 2010.
Bond, G. C. and Lotti, R.: Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation, Science, 267, 1005–1010, 1995.
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S.: Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period, Nature, 360, 245–249, 1992.
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143–147, 1993.
Bond, G. C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G., and Johnson, S: The North Atlantic's 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age, in Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr. Ser., vol. 112, edited by: Clark, P. U., Webb, R. S., and Keigwin, L. D., 35–58, AGU, Washington, DC, 1999.
Broecker, W. S. and Denton, G. H.: The role of ocean-atmosphere reorganizations in glacial cycles, Geochem. Cosmochim. Ac., 53, 2465–2501, 1989.
Broecker, W. S., Bond, G., Klas, M., Clark, E., and McManus, J.: Origin of the northern Atlantic's Heinrich events, Clim. Dynam., 6, 265–273, 1992.
Channell, J. E. T. and Hodell, D. A.: Magnetic signatures of Heinrich-like detrital layers in the Quaternary of the North Atlantic, Earth Planet. Sc. Lett., 369–37, 260–270, 2013.
Channell, J. E. T., Mazaud, A., Sullivan, P., Turner, S., and Raymo, M. E.: Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin), J. Geophys. Res., 107, 2114–2127, 2002.
Channell, J. E. T., Hodell, D. A., Xuan, C., Mazaud, A., and Stoner, J. S.: A calibrated 1.5 Myr record of relative paleointensity from IODP Site U1308 (North Atlantic), Earth Planet. Sc. Lett., 274, 59–71, 2008.
Channell, J. E. T., Hodell, D. A., Romero, O., Hillaire-Marcel, C., de Vernal, A., Stoner, J. S., Mazaud, A., and Röhl, U.: A 750 kyr detrital-layer stratigraphy for the North Atlantic (IODP Sites U1302–U1303, Orphan Knoll, Labrador Sea). Earth Planet. Sc. Lett., 317–318, 218–230, 2012.
Channell, J. E. T., Hodell, D. A., and Curtis, J. H.: Relative paleointensity (RPI) and oxygen isotope stratigraphy at IODP Site U1308: North Atlantic RPI stack for 1.2–2.2 Ma (NARPI-2200) and age of the Olduvai Subchron, Quaternary Sci. Rev., 131, 1–19, 2016.
Chiang, J. C. H. and Bitz, C. M.: The influence of high latitude ice on the position of the marine Intertropical Convergence Zone, Clim. Dynam., 25, 477, https://doi.org/10.1007/s00382-005-0040-5, 2005.
Clark, P. U. and Pollard, D.: Origin of the middle Pleistocene transition by ice sheet erosion of regolith, Paleoceanography, 13, 1–9, 1998.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2, Quaternary Sci. Rev., 25, 3150–3184, 2006.
Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene climate theory, Philos. T. R. Soc. A, 370, 1140–1165, 2012.
Curry, W. B. and Lohmann, G. P.: Reduced advection into the Atlantic Ocean eastern basins during the Last Glacial Maximum, Nature, 306, 577–580, 1983.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G: Evidence for general instability of past climate from a 250 kyr ice-core record, Nature, 364, 218–220, 1993.
Denton, G. H. and Hughes, T. J. (Eds.): The Last Great Ice Sheets, Wiley, New York, 484 pp., 1981.
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M., and Putnam, A. E.: The Last Glacial Termination, Science, 328, 1652–1656, 2010.
Ditlevsen, P. D.: Bifurcation structure and noise-assisted transitions in the Pleistocene glacial cycles, Paleoceanography, 24, PA3204, https://doi.org/10.1029/2008PA001673, 2009.
Drewry, D. J. and Cooper, A. P. R.: Processes and models of Antarctic glaciomarine sedimentation, Ann. Glaciol., 2, 117–122, 1981.
Einarsson, T. and Albertsson, K. J.: The glacial history of Iceland during the past three million years, Philos. T. R. Soc. Lond. B, 318, 637–644, 1988.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D. A., and Piotrowski, A. M. : Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition, Science, 337, 704–709, 2012.
Expedition 303 Scientists: Site U1308, in: Proc. IODP, 303/306: College Station TX (Integrated Ocean Drilling Program Management International, Inc.), edited by: Channell, J. E. T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C. A., Malone, M. J., and the Expedition 303/306 Scientists, https://doi.org/10.2204/iodp.proc.303306.108.2006, 2006a.
Expedition 303 Scientists: Site U1302–U1308 methods, in: Proc. IODP, 303/306: College Station TX (Integrated Ocean Drilling Program Management International, Inc.), edited by: Channell, J. E. T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C. A., Malone, M. J., and the Expedition 303/306 Scientists, https://doi.org/10.2204/iodp.proc.303306.102.2006, 2006b.
Expedition 303 Scientists: Site U1304, in: Proc. IODP, 303/306: College Station TX (Integrated Ocean Drilling Program Management International, Inc.), edited by: Channell, J. E. T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C. A., Malone, M. J., and the Expedition 303/306 Scientists, https://doi.org/10.2204/iodp.proc.303306.104.2006, 2006c.
Flower, B. P.: Overconsolidated section on the Yermak Plateau, Arctic Ocean: Ice sheet grounding prior to ca. 660 ka?, Geology, 25, 147–150, 1997.
Geirsdóttir, Á.: Extent and chronology of Glaciations in Iceland; a brief overview of the glacial history, in: Quaternary Glaciations – Extent and Chronology, Part I: Europe, Developments in Quaternary Science, edited by: Ehlers, J. and Gibbard, P. L., v. 2a, Elsevier, Amsterdam, 175–182, 2004.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Proc. Geoph., 11, 561–566, 2004.
Hagelberg, T. K., Bond, G. B., and deMenocal, P.: Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene, Paleoceanography, 9, 545–558, 1994.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's orbit: pacemaker of the Ice Ages, Science, 194, 1121–1132, 1976.
Head, M. J. and Gibbard, P. L.: Early-Middle Pleistocene transitions: Linking terrestrial and marine realms, Quatern. Int., 389, 7–46, 2015.
Henrich, R. and Baumann, K. -H.: Evolution of the Norwegian Current and the Scandinavian Ice Sheets during the past 2.6 m.y.: Evidence from ODP Leg 104 biogenic carbonate and terrigenous records, Palaeogeogr. Palaeocl., 108, 75–94, 1994.
Hodell, D. A. and Venz, K. V.: Toward a high-resolution stable isotopic record of the Southern Ocean during the Pliocene-Pleistocene (4.8 to 0.8 Ma), in: The Antarctic Paleoenvironment: A Perspective on Global Change, edited by: Kennett, J. P. and Warnke, D. A., Antarctic Research Series, 56, 265–310, 1992.
Hodell, D. A. and Curtis, J. H.: Oxygen and carbon isotopes of detrital carbonate in North Atlantic Heinrich Events, Mar. Geol., 256, 30–35, 2008.
Hodell, D. A., Curtis, J. H., Sierro, F. J., and Raymo, M. E.: Correlation of late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic, Paleoceanography, 16, 164–178, 2001.
Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O., and Röhl, U.: Onset of “Hudson Strait” Heinrich Events in the Eastern North Atlantic at the end of the Middle Pleistocene Transition ( ∼ 640 ka)?, Paleoceanography, 23, PA4218, https://doi.org/10.1029/2008PA001591, 2008.
Hodell, D. A., Lourens, L., Crowhurst, S. J., Konijnendijk, T., Tjallingii, R., Jimenez-Espejo, F., Skinner, L. C., Tzedakis, P. C., and Members of the Shackleton Site Project: A reference time scale for Site U1385 (Shackleton Site) on the Iberian Margin, Global Planet. Change, 133, 49–64, 2015.
Hönisch, B., Hemming, G., Archer, D., Siddall, M., and McManus, J. F.: Atmospheric carbon dioxide concentration across the Mid-Pleistocene Transition, Science, 334, 1551–1554, 2009.
Hulbe, C. L., MacAyeal, D. R., Denton, G. H., Kleman, J., and Lowell, T. V.: Catastrophic ice shelf breakup as the source of Heinrich event icebergs, Paleoceanography, 19, PA1004, https://doi.org/10.1029/2003PA000890, 2004.
Huybers, P.: Pleistocene glacial variability as a chaotic response to obliquity forcing, Clim. Past, 5, 481–488, https://doi.org/10.5194/cp-5-481-2009, 2009.
Huybers, P. and Wunsch, C.: Obliquity pacing of the late Pleistocene glacial terminations, Nature, 434, 491–494, 2005.
Khélifi, N. and Frank, M.: A major change in North Atlantic deep water circulation 1.6 million years ago, Clim. Past, 10, 1441–1451, https://doi.org/10.5194/cp-10-1441-2014, 2014.
Kleiven, H. F., Jansen, E., Fronval, T., and Smith, T. M.: Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma) – ice-rafted detritus evidence, Palaeogeogr. Palaeocl., 184, 213–223, 2002.
Kleman, J., Fastook, J., Ebert, K., Nilsson, J., and Caballero, R.: Pre-LGM Northern Hemisphere ice sheet topography, Clim. Past, 9, 2365–2378, https://doi.org/10.5194/cp-9-2365-2013, 2013.
Löfverström, M., Caballero, R., Nilsson, J., and Kleman, J.: Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle, Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, 2014.
Lang, D. C., Bailey, I., Wilson, P. A., Chalk, T. B., Foster, G. L., and Gutjahr, M.: Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification, Nat. Geosci., 9, 375–379, 2016.
Lang, D. C., Bailey, I., Wilson, P. A., Beer, C. J., Bolton, C. T., Friedrich, O., Newsam, C., Spencer, M. R., Gutjahr, M., Foster, G. L., Cooper, M. J., and Milton, J. A.: The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site, Quaternary Sci. Rev., 93, 125–141, 2014.
Lawrence, K. T., Sosdian, White, H. E., and Rosenthal, Y: North Atlantic climate evolution through the Plio-Pleistocene climate transitions, Earth Planet. Sc. Lett., 300, 329–342, https://doi.org/10.1016/j.epsl.2010.10.013, 2010.
Lisiecki, L. E.: Atlantic overturning responses to obliquity and precession over the last 3 Myr, Paleoceanography, 29, 71–86, https://doi.org/10.1002/2013PA002505, 2014.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lunt, D. J., Foster, G. L., Haywood, A. M., and Stone, E. J.: Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels, Nature, 454, 1102–1105, 2008.
Marino, M., Maiorano, P., and Flower, B. P.: Calcareous nannofossil changes during the Mid-Pleistocene Revolution: Paleoecologic and paleoceanographic evidence from North Atlantic Site 980/981, Palaeogeogr. Palaeocl., 306, 58–69, 2011.
Marshall, S. J. and Koutnik, M. R.: Ice sheet action versus reaction: distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North Atlantic, Paleoceanography, 21, PA2021, https://doi.org/10.1029/2005PA001247, 2006.
Martinez-Garcia, A., Rosell-Mele, A., Jaccard, S. L., Geibert, W., Sigman, D. M., and Haug, G. H.: Southern Ocean dust-climate coupling over the past four million years, Nature, 476, 312–315, 2011.
Martínez-Botí, M., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D. J., Pancost, R. D., Badger, M. P. S., and Schmidt, D. N.: Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records, Nature, 518, 49–54, 2015.
Maslin, M. A. and Ridgewell, A.: Mid-Pleistocene Revolution and the Eccentricity Myth, in: Special Publication of the Geological Society of London, 247, 19–34, 2005.
Maslin, M. A. and Brierley, C. M.: The role of orbital forcing in the Early Middle Pleistocene Transition, Quat. Int., 389, 47–55, 2015.
Maslin, M. A., Li, X. S., Loutre, M. F., and Berger, A.: The contribution of orbital forcing to the progressive intensification of Northern Hemisphere Glaciation, Quaternary Sci. Rev., 17, 411–426, 1998.
McIntyre, K., Delaney, M. L., and Ravelo, A. C.: Millennial-scale climate change and oceanic processes in the late Pliocene and early Pleistocene, Paleoceanography, 16, 535–543, https://doi.org/10.1029/2000PA000526, 2001.
McManus, J., Oppo, D. W., and Cullen, J. L.: A 0.5-million year record of millennial-scale climate variability in the North Atlantic, Science, 238, 971–975, 1999.
Meyers, S. R. and Hinnov, L. A.: Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise, Paleoceanography, 25, PA3207, https://doi.org/10.1029/2009PA001834, 2010.
Mudelsee, M. and Stattegger, K.: Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis, Geol. Rundsch., 86, 499–511, 1997.
Naafs, B. D. A., Hefter, J., Acton, G., Haug, G. H., Martinez-Garcia, A., Pancost, R., and Stein, R: Strengthening of North American dust sources during the late Pliocene (2.7 Ma), Earth Planet. Sc. Lett., 317–318, 8–19, 2012.
Naafs, B. D. A., Hefter, J., and Stein, R: Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) Events during the late Pliocene and Pleistocene: a review, Quaternary Sci. Rev., 80, 1–28, 2013.
Obrochta, S. P., Miyahara, H., Yokoyama, Y., and Crowley, T. J.: A re-examination of evidence for the North Atlantic “1500-year cycle” at Site 609, Quaternary Sci. Rev., 55, 23–33, 2012.
Obrochta, S. P., Crowley, T. J., Channell, J. E. T., Hodell, D. A., Baker, P. A., Seki, A., and Yokoyama, Y: Climate variability and ice-sheet dynamics during the last three glaciations, Earth Planet. Sc. Lett., 406, 198–212, 2014.
Paillard, D.: Quaternary glaciations: from observations to theories, Quaternary Sci. Rev., 107, 11–24, 2015.
Peck, V. L., Hall, I. R., Zahn, R., Elderfield, H., Grousset, F., Hemming, S. R., and Scourse, J. D.: High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation, Earth Planet. Sc. Lett., 243, 476–488, 2006.
Pena, L. D. and Goldstein, S. L.: Thermohaline circulation crisis and impacts during the mid-Pleistocene transition, Science, 345, 318–322, 2014.
Perc, M. and Gosak, M.: Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators, New J. Phys., 10, 053008, 2008.
Pisias, N. G. and Moore, T. C.: The evolution of Pleistocene climate: A time series approach, Earth Planet. Sc. Lett., 52, 450–458, 1981.
Raymo, M. E.: The timing of major climate terminations, Paleoceanography, 12, 577–585, 1997.
Raymo, M. E. and Huybers, P.: Unlocking the mysteries of the ice ages, Nature, 451, 284–285, 2008.
Raymo, M. E., Ruddiman, W. F., and Clement, B. M.: Pliocene/Pleistocene paleoceanography of the North Atlantic at DSDP Site 609, Initial Reports of the Deep Sea Drilling Project, 94, 895–901, 1986.
Raymo, M. E., Ruddiman, W.F., Shackleton, N. J., and Oppo, D. W.: Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 m.y., Earth Planet. Sc. Lett., 97, 353–368, 1990.
Raymo, M. E., Hodell, D. A., and Jansen, E.: Response of deep ocean circulation to initiation of Northern Hemisphere glaciation (3–2 m.y.), Paleoceanography, 7, 645–672, 1992.
Raymo, M. E., Oppo, D. W., and Curry, W.: The mid-Pleistocene transition: A deep sea carbon isotope perspective, Paleoceanography, 12, 546–559, 1997.
Raymo, M., Ganley, K., Carter, S., Oppo, D., and McManus, J.: Millennial-scale climate instability during the early Pleistocene epoch, Nature, 542, 699–702, https://doi.org/10.1038/33658, 1998.
Roberts, W. H. G., Valdes, P. J., and Payne, A. J.: Topography's crucial role in Heinrich Events, P. Natl. Acad. Sci. USA, 111, 16688–16693, 2014.
Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E., and Williams, F.: Sea-level and deep-sea-temperature variability over the past 5.3 million years, Nature 508, 477–482, 2014.
Ruddiman, W. F.: Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65° N), Geol. Soc. Am. B., 88, 1813–1827, 1977.
Ruddiman, W. F., McIntyre, A., and Raymo, M.: Paleoenvironmental results from North Atlantic Sites 607 and 609, Initial Reports of the Deep Sea Drilling Project, 94, 855–878, 1986.
Ruggieri, E.: A Bayesian approach to detecting change points in climatic records, Int. J. Climatol., 33, 520–528,, https://doi.org/10.1002/joc.3447, 2012.
Rutherford, S. and D'Hondt, S.: Early onset and tropical forcing of 100 000-year Pleistocene glacial cycles, Nature, 408, 72–75, 2000.
Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci., 28, 421–426, 2002.
Scourse, J. D., Hall, I. R., McCave, I. N., Young, J. R., and Sugdon, C.: The origin of Heinrich layers: evidence from H2 for European precursor events, Earth Planet. Sc. Lett., 182, 187–195, 2000.
Shackleton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J. B., Kaltenback, A. J., Krumsiek, K. A. O., Morton, A. C., Murray, J. W., and Westberg-Smith, J.: Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region, Nature, 307, 620–623, 1984.
Sima, A., Paul, A., and Schulz, M.: The Younger Dryas – an intrinsic feature of late Pleistocene climate change at millennial timescales, Earth Planet. Sc. Lett., 222, 741–750, 2004.
Skinner, L., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.: Ventilation of the deep Southern Ocean and deglacial CO2 rise, Science, 328, 1147–1151, 2010.
Spötl, C. and Vennemann, T. W.: Continuous flow isotope ratio mass spectrometric analysis of carbonate minerals, Rapid Commun. Mass Spectrom., 17, 1004–1006, 2003.
Stokes, C. R. and Clark, C. D.: Palaeo-ice streams, Quaternary Sci. Rev., 20, 1437–1457, 2001.
Timmermann, A., Knies, J., Timm, O. E., Abe-Ouchi, A., and Friedrich, T.: Promotion of glacial ice sheet buildup 60–115 kyr B.P. by precessionally paced Northern Hemispheric meltwater pulses, Paleoceanography, 25, PA4208, https://doi.org/10.1029/2010PA001933, 2010.
Tziperman, E. and Gildor, H.: On the mid-Pleistocene transition to 100 kyr glacial cycles and the asymmetry between glaciation and deglaciation times, Paleoceanography, 18, 1001, https://doi.org/10.1029/2001PA000627, 2003.
Ullman, D. J., LeGrande, A. N., Carlson, A. E., Anslow, F. S., and Licciardi, J. M.: Assessing the impact of Laurentide Ice Sheet topography on glacial climate, Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, 2014.
Venz, K. A. and Hodell, D. A.: New evidence for changes in Plio-Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090, Palaeogeogr. Palaeocl., 182, 197–220, 2002.
Venz, K. A., Hodell, D. A., Stanton, C., and Warnke, D. A.: A 1.0 Ma record of Glacial North Atlantic Intermediate Water variability from ODP Site 982 in the northeast Atlantic, Paleoceanography, 14, 42–52, 1999.
Weirauch, D., Billups, K., and Martin, P.: Evolution of millennial-scale climate variability during the mid-Pleistocene, Paleoceanography, 23, PA3216, https://doi.org/10.1029/2007PA001584, 2008.
Willeit, M., Ganopolski, A., Calov, R., Robinson, A., and Maslin,, M.: The role of CO2 decline for the onset of Northern Hemisphere Glaciation, Quaternary Sci. Rev., 119, 22–34, 2015.
Wunsch, C.: Abrupt climate change: An alternative view, Quatern. Res., 65, 191–203, 2006.
Xuan, C., Channell, J. E. T., and Hodell, D. A.: Quaternary paleomagnetic and oxygen isotope records from diatom-rich sediments from the southern Gardar Drift (IODP Site U1304, North Atlantic), Quaternary Sci. Rev., 142, 74–89, 2016.
Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate shifts controlled by ice sheet changes, Nature, 512, 290–294, 2014.
Short summary
For the past 2.7 million years the Earth's climate has switched more than 50 times between a cold glacial and warm interglacial state. We found the trend towards larger ice sheets over the past 2.7 million years was accompanied by changes in the style, frequency, and intensity of shorter-term (millennial) variability. We suggest the interaction between millennial climate change and longer-term variations in the Earth's orbit may be important for explaining the patterns of Quaternary climate.
For the past 2.7 million years the Earth's climate has switched more than 50 times between a...