Articles | Volume 12, issue 6
Clim. Past, 12, 1281–1296, 2016
https://doi.org/10.5194/cp-12-1281-2016
Clim. Past, 12, 1281–1296, 2016
https://doi.org/10.5194/cp-12-1281-2016

Research article 02 Jun 2016

Research article | 02 Jun 2016

Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios

Carl Wunsch

Related subject area

Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Lower oceanic 𝛿13C during the Last Interglacial compared to the Holocene
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-73,https://doi.org/10.5194/cp-2020-73, 2020
Revised manuscript accepted for CP
Short summary
Change in the North Atlantic circulation associated with the mid-Pleistocene transition
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018,https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Thermocline state change in the eastern equatorial Pacific during the late Pliocene/early Pleistocene intensification of Northern Hemisphere glaciation
Kim Alix Jakob, Jörg Pross, Christian Scholz, Jens Fiebig, and Oliver Friedrich
Clim. Past, 14, 1079–1095, https://doi.org/10.5194/cp-14-1079-2018,https://doi.org/10.5194/cp-14-1079-2018, 2018
Short summary
A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea
Dorothea Bunzel, Gerhard Schmiedl, Sebastian Lindhorst, Andreas Mackensen, Jesús Reolid, Sarah Romahn, and Christian Betzler
Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017,https://doi.org/10.5194/cp-13-1791-2017, 2017
Short summary
Central Arctic Ocean paleoceanography from  ∼  50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017,https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary

Cited articles

Adkins, J. F. and Schrag, D. P.: Pore fluid constraints on deep ocean temperature and salinity during the last glacial maximum, Geophys. Res. Lett., 28, 771–774, 2001.
Adkins, J. F. and Schrag, D. P.: Reconstructing Last Glacial Maximum bottom water salinities from deep-sea sediment pore fluid profiles, Earth Planet. Sc. Lett., 216, 109–123, 2003.
Adkins, J. F., McIntyre, K., and Schrag, D. P.: The salinity, temperature, and δ18O of the glacial deep ocean, Science, 298, 1769–1773, 2002.
Amrhein, D. E., Gebbie, G., Marchal, O., and Wunsch, C.: Inferring surface water equilibrium calcite δ18O during the last deglacial period from benthic foraminiferal records: Implications for ocean circulation, Paleoceanography, 2014, 30, PA002743, https://doi.org/10.1002/2014PA002743, 2015.
Berner, R. A.: Early Diagenesis: A Theoretical Approach, xii, 241 pp., Princeton University Press, Princeton, NJ, 1980.
Download
Short summary
This paper examines the oxygen isotope data in several deep-sea cores. The question addressed is whether those data support an inference that the abyssal ocean in the Last Glacial Maximum period was significantly colder than it is today. Along with a separate analysis of salinity data in the same cores, it is concluded that a cold, saline deep ocean is consistent with the available data but so is an abyss much more like that found today. LGM model testers should beware.