Articles | Volume 11, issue 2
https://doi.org/10.5194/cp-11-253-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-11-253-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A comparison of model simulations of Asian mega-droughts during the past millennium with proxy reconstructions
B. Fallah
CORRESPONDING AUTHOR
Institut für Meteorologie, Freie Universität Berlin, Germany
U. Cubasch
Institut für Meteorologie, Freie Universität Berlin, Germany
Related authors
No articles found.
Zhihong Zhuo, Ingo Kirchner, and Ulrich Cubasch
Clim. Past, 19, 835–849, https://doi.org/10.5194/cp-19-835-2023, https://doi.org/10.5194/cp-19-835-2023, 2023
Short summary
Short summary
Precipitation distribution is uneven in monsoon and westerlies-dominated subregions of Asia. Multi-model data from PMIP3 and CMIP5 show a distinct inverse pattern of climatological conditions after NHVAI, with an intensified aridity in the relatively wettest area but a weakened aridity in the relatively driest area of the AMR. The hydrological impacts relate to the dynamical response of the climate system to the radiative effect of volcanic aerosol and the subsequent local physical feedbacks.
Ulrich Cubasch
E&G Quaternary Sci. J., 70, 225–227, https://doi.org/10.5194/egqsj-70-225-2021, https://doi.org/10.5194/egqsj-70-225-2021, 2021
Short summary
Short summary
Flohn's publication discusses the state of knowledge of the Pleistocene climate from the perspective of atmospheric sciences, which in 1963 was mainly based on geological and geomorphological evidence. The paper discusses to what extent Flohn's conclusions are still valid and how new findings, methods, and ideas have added to our present-day picture of the Pleistocene climate.
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
Short summary
The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Emmanuele Russo, Ingo Kirchner, Stephan Pfahl, Martijn Schaap, and Ulrich Cubasch
Geosci. Model Dev., 12, 5229–5249, https://doi.org/10.5194/gmd-12-5229-2019, https://doi.org/10.5194/gmd-12-5229-2019, 2019
Short summary
Short summary
This is an investigation of COSMO-CLM 5.0 sensitivity for the CORDEX Central Asia domain, with the main goal of evaluating general model performances for the area, proposing a model optimal configuration to be used in projection studies.
Results show that the model seems to be particularly sensitive to those parameterizations that deal with soil and surface features and that could positively affect the repartition of incoming radiation.
Bijan Fallah, Emmanuele Russo, Walter Acevedo, Achille Mauri, Nico Becker, and Ulrich Cubasch
Clim. Past, 14, 1345–1360, https://doi.org/10.5194/cp-14-1345-2018, https://doi.org/10.5194/cp-14-1345-2018, 2018
Short summary
Short summary
We try to test and evaluate an approach for using two main sources of information on the climate of the past: climate model simulations and proxies. This is done via data assimilation (DA), a method that blends these two sources of information in an intelligent way. However, DA and climate models are computationally very expensive. Here, we tested the ability of a computationally affordable DA to reconstruct high-resolution climate fields.
Bo Huang, Ulrich Cubasch, and Christopher Kadow
Earth Syst. Dynam., 9, 985–997, https://doi.org/10.5194/esd-9-985-2018, https://doi.org/10.5194/esd-9-985-2018, 2018
Short summary
Short summary
We find that CMIP5 models show more significant improvement in predicting zonal winds with initialisation than without initialisation based on the knowledge that zonal wind indices can be used as potential predictors for the EASM. Given the initial conditions, two models improve the seasonal prediction skill of the EASM, while one model decreases it. The models have different responses to initialisation due to their ability to depict the EASM–ESNO coupled mode.
Stella Babian, Jens Grieger, and Ulrich Cubasch
Atmos. Chem. Phys., 18, 6749–6760, https://doi.org/10.5194/acp-18-6749-2018, https://doi.org/10.5194/acp-18-6749-2018, 2018
Short summary
Short summary
One of the most prominent asymmetric features of the southern hemispheric (SH) circulation is the split jet over Australia and New Zealand in austral winter. We propose a new, hemispherical index that is based on the principal components (PCs) of the zonal wind field for the SH winter. The new PC-based index (PSI) suggests that the SH split jet is strongly associated with the AAO. Furthermore, both flavors of ENSO and the PSA-1 pattern produce favorable conditions for a SH split event.
Walter Acevedo, Bijan Fallah, Sebastian Reich, and Ulrich Cubasch
Clim. Past, 13, 545–557, https://doi.org/10.5194/cp-13-545-2017, https://doi.org/10.5194/cp-13-545-2017, 2017
Short summary
Short summary
The purpose of this study is to contribute to the present knowledge of paleo data assimilation techniques by addressing the following two questions: (i) Does the off-line regime naturally appear for the assimilation of tree-ring-width records into an AGCM? (ii) Is the fuzzy logic (FL)-based extension of a forward model still useful to improve the performance of a time-averaged ensemble Kalman filter technique when a climate model is used?
Emmanuele Russo and Ulrich Cubasch
Clim. Past, 12, 1645–1662, https://doi.org/10.5194/cp-12-1645-2016, https://doi.org/10.5194/cp-12-1645-2016, 2016
Short summary
Short summary
In this study we use a RCM for three different goals.
Proposing a model configuration suitable for paleoclimate studies; evaluating the added value of a regional climate model for paleoclimate studies; investigating temperature evolution of the European continent during mid-to-late Holocene.
Results suggest that the RCM seems to produce results in better agreement with reconstructions than its driving GCM. Simulated temperature evolution seems to be too sensitive to changes in insolation.
S. Polanski, B. Fallah, S. Prasad, and U. Cubasch
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-703-2013, https://doi.org/10.5194/cpd-9-703-2013, 2013
Preprint withdrawn
Cited articles
Adams, J., Mann, M. and Ammann, C.: Proxy evidence for an El Niño-like response to volcanic forcing, Nature, 426, 274–278, 2003.
Anchukaitis, K. J., Buckley, B. M., Cook, E. R., Cook, B. I., D'Arrigo, R. D., and Ammann, C. M.: Influence of volcanic eruptions on the climate of the Asian monsoon region, Geophys. Res. Lett., 37, L22703, https://doi.org/10.1029/2010GL044843, 2010.
Bretherton, C., Smith, C., and Wallace, J.: An intercomparison of methods for finding coupled patterns in climate data, J. Climate, 5, 541–560, 1992.
Buckley, B. M., Palakit, K., Duangsathaporn, K., Sanguantham, P., and Prasomsin, P.: Decadal scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and Indian Ocean sectors, Clim. Dynam., 29, 63–71, 2007.
Buckley, B. M., Anchukaitis, K. J., Penny, D., Fletcher, R., Cook, E. R., Sano, M., Nam, L. C., Wichienkeeo, A., Minh, T. T., and Hong, T. M.: Climate as a contributing factor in the demise of Angkor, Cambodia, P. Natl. Acad. Sci. USA, 107, 6748–6752, 2010.
Burke, E. J. and Brown, S. J.: Evaluating uncertainties in the projection of future drought, J. of Hydrometeorol., 2, 292–299, 2008.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian monsoon failure and megadrought during the last millennium, Science, 328, 486–489, 2010.
Dai, A.: Characteristics and trends in various forms of the Palmer drought severity index during 1900–2008, J. Geophys. Res.-Atmos., 116, D12115, https://doi.org/10.1029/2010JD015541, 2011.
Dai, A.: Increasing drought under global warming in observations and models, Nature, Clim. Change, 3, 52–58, 2013.
D'Arrigo, R. and Wilson, R.: The impact of volcanic forcing on tropical temperatures during the past four centuries, Nat. Geosci., 2, 51–56, 2009.
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus, Nature Clim. Change, 4, 222–227, 2014.
Grove, R. H.: The Great El Niño of 1789–1793 and its Global Consequences: Reconstructing an Extreme Climate Event in World Environmental History, The Med. Hist. J., 10, 75–98,2007.
Hannachi, A. and Turner, A. G.: Isomap nonlinear dimensionality reduction and bimodality of Asian monsoon convection, Geophys. Res. Lett., 40, 1653–1658, 2013.
IPCC, 2013: Climate Change: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carbon-cycle variability over the last millennium, Clim. Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010, 2010.
Kalnay, E., Hunt, B., Ott, E. and Szunyogh, I.: Predictability of Weather and Climate-Chapter, Chapter 7: Ensemble forecasting and data assimilation: two problems with the same solution?, Cambridge University Press, 2006.
Krishnamurthy, V. and Shukla, J.: Intraseasonal and seasonally persisting patterns of indian monsoon rainfall, J. Climate, 20, 3–20, 2007.
Krishnan, R., Kumar, V., Sugi, M. and Yoshimura, J:Internal Feedbacks from Monsoon–Midlatitude Interactions during Droughts in the Indian Summer Monsoon, J. Atmos. Sci., 66, 553–578 ,2009.
Lambert, S., J. and Boer, G. J.: CMIP1 evaluation and intercomparison of coupled climate models, 17, 83–106, 2001.
Li, J., Xie, S.-P., Cook, E. R., Morales, M. S., Christie, D. A., Johnson, N. C., Chen, F., D'Arrigo, R., Fowler, A. M., Gou, X., and Fang, K.: El Niño modulations over the past seven centuries, Nature, Clim. Change , 3, 822–826, 2013.
Lieberman, V.: Southeast Asia in Global Context, c. 800–1830, vol. 2, Cambridge University Press, Cambridge, 2009.
Mann, M. E., Cane, M. A., Zebiak, S. E. and Clement, A: Volcanic and Solar Forcing of the Tropical Pacific over the Past 1000 Years. J. Climate, 18, 447–456, 2005.
Mariotti, A.: How ENSO impacts precipitation in southwest central Asia, Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007GL030078, 2007.
Meehl, G. A. and Hu, A.: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies, J. Clim., 19, 1605–1623, 2006.
Palmer, W.: Meteorological Drought, Research paper, US Department of Commerce Weather Bureau, 45 pp., 1965.
Polanski, S., Fallah, B., Befort, D. J., Prasad, S., and Cubasch, U.: Regional moisture change over India during the past Millennium: A comparison of multi-proxy reconstructions and climate model simulations, Glob. Plan. Chan., 122, 176–185, 2014.
Rind, D., Goldberg, R., Hansen, J., Rosenzweig, C., and Ruedy, R.: Potential evapotranspiration and the likelihood of future drought, J. Geophys. Res.-Atmos., 95, 9983–10004, 1990.
Ropelewski, and Halpert: Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation, Am. Meteorol. Soc., 115, 1606–1626, 1987.
Sano, M., Buckley, B. M., and Sweda, T.: Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought and tropical Pacific influence, Clim. Dynam., 33, 331–340, 2009.
Schiermeier, Q.: Climate models fail to "predict" US droughts, Nature, 496, 284–284, 2013.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.0), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1), Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012, 2012.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.-H., Cheng, Y., Clune, T. L., Del Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., and Zhang, J.: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, J. Adv. Model. Earth Syst., 6, 141–184, 2014.
Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.-P., Harnik, N., Leetmaa, A., Lau, N.-C., Li, C., Velez, J., and Naik, N.: Model projections of an imminent transition to a more arid climate in southwestern North America, Science, 316, 1181–1184, 2007.
Shaw, R. and Nguyen, H.: Droughts in Asian Monsoon Region, in: Community, Environment and Disaster Risk Management, vol. 8, Emerald Group Publishing Limited, UK, 2011.
Sheffield, J. and Wood, E. F.: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven Simulations of the terrestrial hydrologic cycle, J. Climate, 21, 432–458, 2008.
Shen, C., Wang, W.-C., Hao, Z., and Gong, W.: Exceptional drought events over eastern China during the last five centuries, Clim. Change, 85, 453–471, 2007.
Shi, F., Yang, B., Mairesse, A., von Gunten, L., Li, J., Braeuning, A., Yang, F., and Xiao, X.: Northern Hemisphere temperature reconstruction during the last millennium using multiple annual proxies, Clim. Res., 56, 231–244, 2013.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (Eds.): Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, 2007.
Turner, A. G. and Hannachi, A.: Is there regime behavior in monsoon convection in the late 20th century?, Geophys. Res. Lett., 37, L16706, https://doi.org/10.1029/2010GL044159, 2010.
Wahl, E. R. and Morrill, C.: CLIMATE CHANGE toward understanding and predicting monsoon patterns, Science, 328, 437–438, https://doi.org/10.1126/science.1188926, 2010.
Wang, G.: Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment, Clim. Dynam., 25, 739–753, 2005.
Wells, N., Goddard, S., and Hayes, M.: A self-calibrating Palmer drought severity index, J. Climate, 17, 2335–2351, 2004.
Zhang, P., Cheng, H., Edwards, R. L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, J., An, C., Dai, Z., Zhou, J., Zhang, D., Jia, J., Jin, L., and Johnson, K. R.: A test of climate, sun, and culture relationships from an 1810-year Chinese cave record, Science, 322, 940–942, 2008.
Short summary
Our results show that state-of-the-art climate model simulations are able to capture historically recorded Asian monsoon failures during the past millennium at the right time and with a comparable spatial distribution. During the Little Ice Age, both model and proxy reconstructions point to fewer monsoon failures. The results suggest an influential impact of volcanic eruptions on the atmosphere-ocean interactions throughout the past millennium.
Our results show that state-of-the-art climate model simulations are able to capture...