Articles | Volume 10, issue 2
https://doi.org/10.5194/cp-10-825-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-825-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives
M. Comboul
Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, ZHS 275, Los Angeles, California 90089, USA
J. Emile-Geay
Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, ZHS 275, Los Angeles, California 90089, USA
M. N. Evans
Department of Geology, University of Maryland, College Park, Maryland 20742, USA
N. Mirnateghi
Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, ZHS 275, Los Angeles, California 90089, USA
K. M. Cobb
Department of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, USA
D. M. Thompson
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, USA
Related authors
No articles found.
Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins
Geosci. Model Dev., 17, 3409–3431, https://doi.org/10.5194/gmd-17-3409-2024, https://doi.org/10.5194/gmd-17-3409-2024, 2024
Short summary
Short summary
Climate field reconstruction encompasses methods that estimate the evolution of climate in space and time based on natural archives. It is useful to investigate climate variations and validate climate models, but its implementation and use can be difficult for non-experts. This paper introduces a user-friendly Python package called cfr to make these methods more accessible, thanks to the computational and visualization tools that facilitate efficient and reproducible research on past climates.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Nicholas P. McKay, Julien Emile-Geay, and Deborah Khider
Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, https://doi.org/10.5194/gchron-3-149-2021, 2021
Short summary
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Robert Tardif, Gregory J. Hakim, Walter A. Perkins, Kaleb A. Horlick, Michael P. Erb, Julien Emile-Geay, David M. Anderson, Eric J. Steig, and David Noone
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, https://doi.org/10.5194/cp-15-1251-2019, 2019
Short summary
Short summary
An updated Last Millennium Reanalysis is presented, using an expanded multi-proxy database, and proxy models representing the seasonal characteristics of proxy records, in addition to the dual sensitivity to temperature and moisture of tree-ring-width chronologies. We show enhanced skill in spatial reconstructions of key climate variables in the updated reanalysis, compared to an earlier version, resulting from the combined influences of the enhanced proxy network and improved proxy modeling.
Hansi K. A. Singh, Gregory J. Hakim, Robert Tardif, Julien Emile-Geay, and David C. Noone
Clim. Past, 14, 157–174, https://doi.org/10.5194/cp-14-157-2018, https://doi.org/10.5194/cp-14-157-2018, 2018
Short summary
Short summary
The Atlantic Multidecadal Oscillation (AMO) is prominent in the climate system. We study the AMO over the last 2000 years using a novel proxy framework, the Last Millennium Reanalysis. We find that the AMO is linked to continental warming, Arctic sea ice retreat, and an Atlantic precipitation shift. Low clouds decrease globally. We find no distinct multidecadal spectral peak in the AMO over the last 2 millennia, suggesting that human activities may have enhanced the AMO in the modern era.
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
J. Emile-Geay and M. Tingley
Clim. Past, 12, 31–50, https://doi.org/10.5194/cp-12-31-2016, https://doi.org/10.5194/cp-12-31-2016, 2016
Short summary
Short summary
Ignoring nonlinearity in palaeoclimate records (e.g. continental run-off proxies) runs the risk of severely overstating changes in climate variability. Even with the correct model and parameters, some information is irretrievably lost by such proxies. However, we find that a simple empirical transform can do much to improve the situation, and makes them amenable to classical analyses. Doing so on two palaeo-ENSO records markedly changes some of the quantitative inferences made from such records.
J. Wang, J. Emile-Geay, D. Guillot, J. E. Smerdon, and B. Rajaratnam
Clim. Past, 10, 1–19, https://doi.org/10.5194/cp-10-1-2014, https://doi.org/10.5194/cp-10-1-2014, 2014
S. E. Tolwinski-Ward, K. J. Anchukaitis, and M. N. Evans
Clim. Past, 9, 1481–1493, https://doi.org/10.5194/cp-9-1481-2013, https://doi.org/10.5194/cp-9-1481-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Decadal-Seasonal
Optimizing sampling strategies in high-resolution paleoclimate records
Qualitative and quantitative reconstructions of surface water characteristics and recent hydrographical changes in the Trondheimsfjord, central Norway
Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: implications for interpreting coral stable oxygen isotope records of ENSO
Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations: paleotemperature from mollusk and coral geochemistry
Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years
Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
G. Milzer, J. Giraudeau, S. Schmidt, F. Eynaud, and J. Faust
Clim. Past, 10, 305–323, https://doi.org/10.5194/cp-10-305-2014, https://doi.org/10.5194/cp-10-305-2014, 2014
T. Russon, A. W. Tudhope, G. C. Hegerl, M. Collins, and J. Tindall
Clim. Past, 9, 1543–1557, https://doi.org/10.5194/cp-9-1543-2013, https://doi.org/10.5194/cp-9-1543-2013, 2013
M. Carré, J. P. Sachs, J. M. Wallace, and C. Favier
Clim. Past, 8, 433–450, https://doi.org/10.5194/cp-8-433-2012, https://doi.org/10.5194/cp-8-433-2012, 2012
G. M. Ganssen, F. J. C. Peeters, B. Metcalfe, P. Anand, S. J. A. Jung, D. Kroon, and G.-J. A. Brummer
Clim. Past, 7, 1337–1349, https://doi.org/10.5194/cp-7-1337-2011, https://doi.org/10.5194/cp-7-1337-2011, 2011
J. D. Carriquiry and J. A. Villaescusa
Clim. Past, 6, 401–410, https://doi.org/10.5194/cp-6-401-2010, https://doi.org/10.5194/cp-6-401-2010, 2010
Cited articles
Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., and Mudelsee, M.: Recent intensification of tropical climate variability in the Indian Ocean, Nat. Geosci., 1, 849–853, https://doi.org/10.1038/ngeo357, 2008.
Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions, National Bureau of Standards, Applied Math # 55, Dover Publications, 1965.
Alibert, C. and Kinsley, L.: A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 2. A window into variability of the New Ireland Coastal Undercurrent, J. Geophys. Res., 113, 1–10, https://doi.org/10.1029/2007JC004263, 2008.
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and Clark, P. U.: Holocene climatic instability: A prominent, widespread event 8200 yr ago, Geology, 25, 483–486, https://doi.org/10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2, 1997a.
Alley, R. B., Shuman, C. A., Meese, D. A., Gow, A. J., Taylor, K. C., Cuffey, K. M., Fitzpatrick, J. J., Grootes, P. M., Zielinski, G. A., Ram, M., Spinelli, G., and Elder, B.: Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application, J. Geophys. Res., 102, 26367–26381, https://doi.org/10.1029/96JC03837, 1997b.
Anchukaitis, K. J. and Tierney, J. E.: Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records, Clim. Dynam., 41, 1291–1306, https://doi.org/10.1007/s00382-012-1483-0, 2012.
Asami, R., Yamada, T., Iryu, Y., Quinn, T. M., Meyer, C. P., and Pauley, G.: Interannual and decadal variability of the western Pacific sea surface condition for the years 1787-2000: Reconstruction based on stable isotope record from a Guam coral, J. Geophys. Res., 110, C05018, https://doi.org/10.1029/2004JC002555, 2005.
Ault, T. R., Cole, J. E., Evans, M. N., Barnett, H., Abram, N. J., Tudhope, A. W., and Linsley, B. K.: Intensified decadal variability in tropical climate during the late 19th century, Geophys. Res. Lett., 36, L08602, https://doi.org/10.1029/2008GL036924, 2009.
Bender, M. L.: Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth Planet. Sc. Lett., 204, 275–289, https://doi.org/10.1016/S0012-821X(02)00980-9, 2002.
Blaauw, M.: Methods and code for "classical" age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512 – 518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Blaauw, M.: Out of tune: the dangers of aligning proxy archives, Quaternary Sci. Rev., 36, 38–49, https://doi.org/10.1016/j.quascirev.2010.11.012, 2012.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Analysis, 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Boiseau, M., Juillet-Leclerc, A., Yiou, P., Salvat, B., Isdale, P., and Guillaume, M.: Atmospheric and oceanic evidences of El Niño-Southern Oscillation events in the south central Pacific Ocean from coral stable isotopic records over the last 137 years, Paleoceanography, 13, 671–685, https://doi.org/10.1029/98PA02502, 1998.
Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L., Ridley, H. E., Kennett, D. J., Prufer, K. M., Aquino, V. V., Asmerom, Y., Polyak, V. J., Cheng, H., Kurths, J., and Marwan, N.: COnstructing Proxy Records from Age models (COPRA), Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, 2012.
Broomhead, D. and King, G. P.: Extracting qualitative dynamics from experimental data, Physica D, 20, 217–236, https://doi.org/10.1016/0167-2789(86)90031-X, 1986.
Brown, F. H., Sarna-Wojcicki, A. M., Meyer, C. E., and Haileab, B.: Correlation of Pliocene and Pleistocene tephra layers between the Turkana Basin of East Africa and the Gulf of Aden, Quatern. Int., 13–14, 55–67, https://doi.org/10.1016/1040-6182(92)90010-Y, 1992.
Calvo, E., Marshall, J. F., Pelejero, C., McCulloch, M. T., Lough, J. M., and Isdale, P. J.: Interdecadal climate variability in the Coral Sea since 1708 A.D., Palaeogeogr. Palaeocl,, 248, 190–201, 2007.
Capotondi, A., Wittenberg, A., and Masina, S.: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations, Ocean Model., 15, 274–298, 2006.
Chakrabarty, K., Sitharama Iyengar, S., Qi, H., and Cho, E.: Grid Coverage for Surveillance and Target Location in Distributed Sensor Networks, IEEE T. Comput., 51, 1448–1453, 2002.
Charles, C. D., Hunter, D. E., and Fairbanks, R. G.: Interaction Between the ENSO and the Asian Monsoon in a Coral Record of Tropical Climate, Science, 277, 925–928, https://doi.org/10.1126/science.277.5328.925, 1997.
Charles, C. D., Cobb, K., Moore, M. D., and Fairbanks, R. G.: Monsoon-tropical ocean interaction in a network of coral records spanning the 20th century, Mar. Geol., 201, 207–222, https://doi.org/10.1016/S0025-3227(03)00217-2, 2003.
Chave, A. D., Thomson, D. J., and Ander, M. E.: On the robust estimation of power spectra, coherences, and transfer functions, J. Geophys. Res., 92, 633–648, https://doi.org/10.1029/JB092iB01p00633, 1987.
Cobb, K. M., Charles, C. D., and Hunter, D. E.: A central tropical Pacific coral demonstrates Pacific, Indian, and Atlantic decadal climate connections, Geophys. Res. Lett., 28, 2209–2212, https://doi.org/10.1029/2001GL012919, 2001.
Cobb, K. M., Charles, C. D., Cheng, H., and Edwards, R. L.: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium, Nature, 424, 271–276, 2003.
Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Lorenzo, E. D., Cheng, H., Edwards, R. L., and Charles, C. D.: Highly Variable El Niño-Southern Oscillation Throughout the Holocene, Science, 339, 67–70, 2013.
Cook, E. R. and Kairiukstis, L. A.: Methods of dendrochronology: Applications in the environmental sciences, Springer, ISBN: 0-7923-0586-8, 1990.
Damassa, T. D., Cole, J. E., Barnett, H. R., Ault, T. R., and McClanahan, T. R.: Enhanced multidecadal climate variability in the seventeenth century from coral isotope records in the western Indian Ocean, Paleoceanography, 21, PA2016, https://doi.org/10.1029/2005PA001217, 2006.
De Ridder, F., Pintelon, R., Schoukens, J., Gillikin, D. P., André, L., Baeyens, W., de Brauwere, A., and Dehairs, F.: Decoding nonlinear growth rates in biogenic environmental archives, Geochem. Geophy. Geosy., 5, https://doi.org/10.1029/2004GC000771, 2004.
DeLong, K. L., Quinn, T. M., and Taylor, F. W.: Reconstructing twentieth-century sea surface temperature variability in the southwest Pacific: A replication study using multiple coral Sr / Ca records from New Caledonia, Paleoceanography, 22, PA4212, https://doi.org/10.1029/2007PA001444, 2007.
DeLong, K. L., Flannery, J. A., Maupin, C. R., Poore, R. Z., and Quinn, T. M.: A coral Sr / Ca calibration and replication study of two massive corals from the Gulf of Mexico, Palaeogeogr. Palaeocl., 307, 117–128, 2011.
DeLong, K. L., Quinn, T. M., Taylor, F. W., Shen, C.-C., and Lin, K.: Improving coral-base paleoclimate reconstructions by replicating 350 years of coral Sr / Ca variations, Palaeogeogr. Palaeocl., 373, 6–24, 2013.
Douglass, A. E.: Crossdating in dendrochronology, J. Forest., 39, 825–831, 1941.
Emile-Geay, J. and Eshleman, J. A.: Toward a semantic web of paleoclimatology, Geochem. Geophy. Geosy., 14, 457–469, https://doi.org/10.1002/ggge.20067, 2013.
Emile-Geay, J., Cobb, K., Mann, M., and Wittenberg, A. T.: Estimating Central Equatorial Pacific SST variability over the Past Millennium. Part 2: Reconstructions and Implications, J. Climate, 26, 2329–2352, https://doi.org/10.1175/JCLI-D-11-00511.1, 2013.
Evans, M., Tolwinski-Ward, S., Thompson, D., and Anchukaitis, K.: Applications of proxy system modeling in high resolution paleoclimatology, Quaternary Sci. Rev., 76, 16–28, 2013.
Evans, M. N., Kaplan, A., and Cane, M. A.: Optimal sites for coral-based reconstruction of global sea surface temperature, Paleoceanography, 13, 502–516, https://doi.org/10.1029/98PA02132, 1998.
Evans, M. N., Kaplan, A., and Cane, M. A.: Intercomparison of coral oxygen isotope data and historical sea surface temperature (SST): Potential for coral-based SST field reconstructions, Paleoceanogr., 15, 551–562, 2000.
Evans, M. N., Kaplan, A., and Cane, M. A.: Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis, Paleoceanogr., 17, 7–1, https://doi.org/10.1029/2000PA000590, 2002.
Fairbanks, R. G. and Dodge, R. E.: Annual periodicity of the 18O / 16O and 13C / 12C ratios in the coral Montastrea annularis, Geochim. Cosmochim. Ac., 43, 1009–1020, 1979.
Felis, T., Pätzold, J., Loya, Y., Fine, M., Nawar, A. H., and Wefer, G.: A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750, Paleoceanography, 15, 679–694, https://doi.org/10.1029/1999PA000477, 2000.
Fraedrich, K.: Estimating the Dimensions of Weather and Climate Attractors, J.Atmos. Sci., 43, 419–432, https://doi.org/10.1175/1520-0469(1986)043<0419:ETDOWA>2.0.CO;2, 1986.
Fritts, H. C.: Tree Rings and Climate, 567 pp., Academic Press, 1976.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J.: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, https://doi.org/10.1038/366552a0, 1993.
Guttman, I.: Statistical tolerance regions: classical and Bayesian, vol. 26, Griffin London, 1970.
Haam, E. and Huybers, P.: A test for the presence of covariance between time-uncertain series of data with application to the Dongge Cave speleothem and atmospheric radiocarbon records, Paleoceanography, 25, PA2209, https://doi.org/10.1029/2008PA001713, 2010.
Hamming, R. W.: Error Detecting and Error Correcting Codes, Bell Syst. Tech. J., 29, 147–160, 1950.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's Orbit: Pacemaker of the Ice Ages, Science, 194, 1121–1132, 1976.
Hendy, E. J., Gagan, M. K., Alibert, C. A., McCulloch, M. T., Lough, J. M., and Isdale, P. J.: Abrupt Decrease in Tropical Pacific Sea Surface Salinity at End of Little Ice Age, Science, 295, 1511–1514, https://doi.org/10.1126/science.1067693, 2002.
Huybers, P. and Wunsch, C.: A depth-derived Pleistocene age model: Uncertainty estimates, sedimentation variability, and nonlinear climate change, Paleoceanogr., 19, PA1028, https://doi.org/10.1029/2002PA000857, 2004.
Isdale, P. J., Stewart, B. J., Tickle, K. S., and Lough, J. M.: Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia, The Holocene, 8, 1–8, https://doi.org/10.1191/095968398670905088, 1998.
Juillet-Leclerc, A., Thiria, S., Naveau, P., Delcroix, T., Le Bec, N., Blamart, D., and Corrège, T.: SPCZ migration and ENSO events during the 20th century as revealed by climate proxies from a Fiji coral, Geophys, Res. Lett., 33, L17710, https://doi.org/10.1029/2006GL025950, 2006.
Knutson, T. R., Delworth, T. L., Dixon, K. W., Held, I. M., Lu, J., Ramaswamy, V., Schwarzkopf, M. D., Stenchikov, G., and Stouffer, R. J.: Assessment of Twentieth-Century Regional Surface Temperature Trends Using the GFDL CM2 Coupled Models, J. Climate, 19, 1624–1651, https://doi.org/10.1175/JCLI3709.1, 2006.
Kug, J.-S., Choi, J., An, S.-I., Jin, F.-F., and Wittenberg, A. T.: Warm pool and cold tongue El Niño events as simulated by the GFDL CM2.1 coupled GCM, J. Climate, 23, 1226–1239, https://doi.org/10.1175/2009JCLI43293.1, 2010.
Kuhnert, H., Pätzold, J., Hatcher, B., Wyrwoll, K. H., Eisenhauer, A., Collins, L. B., Zhu, Z. R., and Wefer, G.: A 200-year coral stable oxygen isotope record from a high-latitude reef off Western Australia, Coral Reefs, 18, 1–12, https://doi.org/10.1007/s003380050147, 1999.
Kuhnert, H., Pätzold, J., Wyrwoll, K.-H., and Wefer, G.: Monitoring climate variability over the past 116 years in coral oxygen isotopes from Ningaloo Reef, Western Australia, Int. J. Earth Sci., 88, 725–732, https://doi.org/10.1007/s005310050300, 2000.
Li, J., Xie, S.-P., Cook, E. R., Huang, G., D'Arrigo, R., Liu, F., Ma, J., and Zheng, X.-T.: Interdecadal modulation of El Niño amplitude during the past millennium, Nature Climate Change, 1, 114–118, 2011.
Linsley, B. K., Dunbar, R. B., Wellington, G. M., and Mucciarone, D. A.: A coral-based reconstruction of intertropical convergence zone variability over Central America since 1707, J. Geophys. Res., 99, 9977–9994, https://doi.org/10.1029/94JC00360, 1994.
Linsley, B. K., Ren, L., Dunbar, R. B., and Howe, S. S.: El Niño Southern Oscillation (ENSO) and decadal-scale climate variability at 10° N in the eastern Pacific from 1893 to 1994: A coral-based reconstruction from Clipperton Atoll, Paleoceanography, 15, 322–335, https://doi.org/10.1029/1999PA000428, 2000.
Linsley, B. K., Kaplan, A., Gouriou, Y., Salinger, J., deMenocal, P. B., Wellington, G. M., and Howe, S. S.: Tracking the extent of the South Pacific Convergence Zone since the early 1600s, Geochem. Geophy. Geosy., 7, https://doi.org/10.1029/2005GC001115, 2006.
Linsley, B. K., Zhang, P., Kaplan, A., Howe, S. S., and Wellington, G. M.: Interdecadal-decadal climate variability from multicoral oxygen isotope records in the South Pacific Convergence Zone region since 1650 A.D., Paleoceanography, 23, PA2219, https://doi.org/10.1029/2007PA001539, 2008.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Mann, M., Gilleb, E., Bradley, R., Hughes, M., Overpeck, J., Keimigc, F., and Gross, W.: Global temperature patterns in past centuries: An interactive presentation, Earth Interact., 4, 1–29, 2000.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A Reconstruction of Regional and Global Temperature for the Past 11,300 Years, Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
Martinson, D. G., Menke, W., and Stoffa, P.: An Inverse Approach to Signal Correlation, J. Geophys. Res., 87, 4807–4818, https://doi.org/10.1029/JB087iB06p04807, 1982.
McGregor, S., Timmermann, A., and Timm, O.: A unified proxy for ENSO and PDO variability since 1650, Clim. Past, 6, 1–17, https://doi.org/10.5194/cp-6-1-2010, 2010.
McGregor, S., Timmermann, A., England, M. H., Elison Timm, O., and Wittenberg, A. T.: Inferred changes in El Niño-Southern Oscillation variance over the past six centuries, Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, 2013.
Mudelsee, M., Scholz, D., Röthlisberger, R., Fleitmann, D., Mangini, A., and Wolff, E. W.: Climate spectrum estimation in the presence of timescale errors, Nonlin. Processes Geophys., 16, 43–56, https://doi.org/10.5194/npg-16-43-2009, 2009.
PAGES2K Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci, 6, 339–346, https://doi.org/10.1038/ngeo1797, 2013.
Pfeiffer, M., Timm, O., Dullo, W.-C., and Podlech, S.: Oceanic forcing of interannual and multidecadal climate variability in the southwestern Indian Ocean: Evidence from a 160 year coral isotopic record (La Réunion, 55° E, 21° S), Paleoceanography, 19, https://doi.org/10.1029/2003PA000964, 2004.
Quinn, T. M., Crowley, T. J., Taylor, F. W., Henin, C., Joannot, P., and Join, Y.: A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 A.D., Paleoceanography, 13, 412–426, https://doi.org/10.1029/98PA00401, 1998.
Quinn, T. M., Taylor, F. W., and Crowley, T. J.: Coral-based climate variability in the Western Pacific Warm Pool since 1867, J. Geophys. Res., 111, C11006, https://doi.org/10.1029/2005JC003243, 2006.
Ramirez, D., Via, J., and Santamaria, I.: A generalization of the magnitude squared coherence spectrum for more than two signals: definition, properties and estimation, in: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, 31 March–4 April 2008, 3769–3772, https://doi.org/10.1109/ICASSP.2008.4518473, 2008.
Ramirez, D., Via, J., Santamaria, I., and Scharf, L. L.: Detection of Spatially Correlated Gaussian Time Series, IEEE T. Signal Proces., 58, 5006–5015, 2010.
Rhines, A. and Huybers, P.: Estimation of spectral power laws in time uncertain series of data with application to the Greenland Ice Sheet Project 2 δ18O record, J. Geophys. Res., 116, D01103, https://doi.org/10.1029/2010JD014764, 2011.
Schoellhamer, D. H.: Singular spectrum analysis for time series with missing data, Geophys. Res. Lett., 28, 3187–3190, https://doi.org/10.1029/2000GL012698, 2001.
Seimon, A.: Improving climatic signal representation in tropical ice cores: A case study from the Quelccaya Ice Cap, Peru, Geophys. Res. Lett., 30, 1772, https://doi.org/10.1029/2003GL017191, 2003.
Shen, C.-C., Lin, K., Duan, W., Jiang, X., Partin, J. W., Edwards, R. L., Cheng, H., and Tan, M.: Testing the annual nature of speleothem banding, Scientific Reports, 3, 2633, https://doi.org/10.1038/srep02633, 2013.
Skellam, J. G.: The Frequency Distribution of the Difference Between Two Poisson Variates Belonging to Different Populations, J. R. Stat. Soc. Ser. A-G., 109, 296 pp., 1946.
St. George, S., Ault, T. R., and Torbenson, M. C. A.: The rarity of absent growth rings in Northern Hemisphere forests outside the American Southwest, Geophys. Res. Lett., 40, 3727–3731, https://doi.org/10.1002/grl.50743, 2013.
Stokes, M. A. and Smiley, T. L.: An Introduction to Tree-Ring Dating, The University of Chicago Press, 1996.
Suhov, Y. and Kelbert, M.: Probability and statistics by example: Markov chains: a primer in random processes and their applications, Cambridge University Press, 2008.
Thompson, D. M., Ault, T. R., Evans, M. N., Cole, J. E., and Emile-Geay, J.: Comparison of observed and simulated tropical climate trends using a forward model of coral of δ18O, Geophys. Res. Lett., 38, L14706, https://doi.org/10.1029/2011GL048224, 2011.
Thompson, L. G., Mosley-Thompson, E., Bolzan, J. F., and Koci, B. R.: A 1500-Year Record of Tropical Precipitation in Ice Cores from the Quelccaya Ice Cap, Peru, Science, 229, 971–973, https://doi.org/10.1126/science.229.4717.971, 1985.
Thomson, D. J.: Spectrum estimation and harmonic analysis, Proceedings of the IEEE, 70, 1055–1096, 1982.
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., and Seager, R.: Multidecadal variability in East African hydroclimate controlled by the Indian Ocean, Nature, 493, 389–392,https://doi.org/10.1038/nature11785, 2013.
Tingley, M. P. and Huybers, P.: Recent temperature extremes at high northern latitudes unprecedented in the past 600 years, Nature, 496, 201–205, https://doi.org/10.1038/nature11969, 2013.
Tudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R., Chappell, J., Ellam, R. M., Lea, D. W., Lough, J. M., and Shimmield, G. B.: Variability in the El Niño-Southern Oscillation Through a Glacial-Interglacial Cycle, Science, 291, 1511–1517, https://doi.org/10.1126/science.1057969, 2001.
Urban, F. E., Cole, J. E., and Overpeck, J. T.: Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record, Nature, 407, 989–993, 2000.
Vautard, R. and Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica D, 35, 395–424, 1989.
Vecchi, G. A., Soden, B. J., Wittenberg, A. T., Held, I. M., Leetmaa, A., and Harrison, M. J.: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing, Nature, 441, 73–76, 2006.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China, Science, 294, 2345–2348, https://doi.org/10.1126/science.1064618, 2001.
Wigley, T. M. L., Jones, P. D., and Briffa, K. R.: Cross-dating methods in dendrochronology, J. Archaeol. Sci., 14, 51–64, 1987.
Wilson, R., Cook, E., D'Arrigo, R., Riedwyl, N., Evans, M. N., Tudhope, A., and Allan, R.: Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections, J. Quaternary Sci., 25, 62–78, https://doi.org/10.1002/jqs.1297, 2010.
Wittenberg, A. T., Rosati, A., Lau, N.-C., and Ploshay, J. J.: GFDL's CM2 Global Coupled Climate Models. Part III: Tropical Pacific Climate and ENSO, J. Climate, 19, 698–722, https://doi.org/10.1175/JCLI3631.1, 2006.
Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T.: Global warming pattern formation: Sea surface temperature and rainfall, J. Climate, 23, 966–986, https://doi.org/10.1175/2009JCLI3329.1, 2010.
Yamaguchi, D. K.: A simple method for cross-dating increment cores from living trees, Can. J. Forest Res., 21, 414–416, 1991.
Zinke, J., Dullo, W.-C., Heiss, G. A., and Eisenhauer, A.: ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995, Earth Planet. Sc. Lett., 228, 177–194, https://doi.org/10.1016/j.epsl.2004.09.028, 2004.