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Abstract. The ability to precisely date climate proxies is 1
central to the reconstruction of past climate variations. To

Introduction

a degree, all climate proxies are affected by age uncertain® peculiar feature of the Earth sciences is that the indepen-
ties, which are seldom quantified. This article proposes alent variable used to peer into Earth’s past (the age of the
probabilistic age model for proxies based on layer-counteds@mple) is always uncertain to some degree. In paleoclima-
chronologies, and explores its use for annually bandedology, time uncertainties depend on the record’s structure,

coral archives. The model considers both missing and douwhich belongs to one of two categories:
bly counted growth increments (represented as independent Tie-point chronologies which include most sedi-

processes), accommodates various assumptions about error
rates, and allows one to quantify the impact of chronologi-
cal uncertainties on different diagnostics of variability. In the
case of a single coral record, we find that time uncertainties
primarily affect high-frequency signals but also significantly
bias the estimate of decadal signals. We further explore tun-
ing to an independent, tree-ring-based chronology as a way
to identify an optimal age model. A synthetic pseudocoral
network is used as testing ground to quantify uncertainties in
the estimation of spatiotemporal patterns of variability. Even
for small error rates, the amplitude of multidecadal variabil-
ity is systematically overestimated at the expense of interan-
nual variability (El Nifio—Southern Oscillation, or ENSO, in
this case), artificially flattening its spectrum at periods longer
than 10years. An optimization approach to correct chrono-
logical errors in coherent multivariate records is presented
and validated in idealized cases, though it is found difficult
to apply in practice due to the large number of solutions. We
close with a discussion of possible extensions of this model
and connections to existing strategies for modeling age un-
certainties.

mentary and speleothem archives. Such records are
dated via a one-to-one mapping between sample
depth and age (that is, an age model). This model
typically assumes a piecewise-continuous accumula-
tion rate, constrained by a relatively small number
of radiometrically determined tie points (e.¢:iC
dates for sedimentary archives, or/Th dates for
speleothem archives). Alternatively, when radiomet-
ric dating proves impossible, records are often dated
by “tuning” to a reference chronology, either derived
astronomically (orbital tuning; e.gBender 2002
Hays et al. 1976 Lisiecki and Raymp2005 Martin-

son et al, 1982 or derived from a better-constrained
chronology such as the GISP2 recofargotes et aJ.
1993 or the Hulu Cave chronologyWang et al.
2001).

. Layer-counted chronologiedor instance tree rings,

varved sediments, ice cores, some speleothems and
annually banded corals. For such records, a chronol-
ogy is obtained by equating the layer count with the

number of years or seasons of archive accumulation
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826 M. Comboul et al.: Chronological model for layer-counted proxies

elapsed since the creation of the topmost (most re-study used a discrete random walk, which assumes that the
cent) observed layer. Equivalently, layers may be iden-probability of missing a band, or counting a band twice, is
tified through observation of a seasonally or annually symmetric. However, these probabilities are likely asymmet-
varying quantity such as isotopic compositidraif- ric for most proxies. Further, the model forced the authors
banks and Dodgel979. Layer-counted chronologies to make some unphysical choices in order to match pub-
are assigned ages relative to a modern tie point undished estimates of age uncertainties. The model we propose
less supplemented by independent age controls, sucls formulated more intuitively in terms of the probabilities
as by radiometric dating (e.gcobb et al.2003 Shen  of miscounting a band, and naturally allows for asymmetries
et al, 2013, and often assume continuous time res- in the probability of missing or doubly counting a band. Our
olution unless observations indicate otherwise (e.g.,work also applies the model to multivariate data sets and ex-
St. George et 312013. plores ways to correct for age errors using information shared
amongst similar records.

Although records from banded archives can often reach Since dendroclimatology has dealt with layer-counted
subannual precision, they are not time certain and these urehronological errors for decades, it would be tempting to
certainties can have a large influence on variability and co-draw from their extensive literature for other proxy classes.
herence between the records. Tree-ring chronologies are getunfortunately, extending dendrochronological techniques to
erally considered the most accurately dated, because — unlikether proxy types spanning large spatial scales is problem-
other proxy types — they are often built from a large num- atic, because cross-dating relies on the existence of a strong
ber of records. Nonetheless, they require adjustments (crosgommon signal shared among series. This assumption is well
dating) to optimize coherence across nearby sites (2ayl; suited to trees within a restricted biome but may no longer
glass 1947 Fritts, 1976 Wigley et al, 1987 Cook and Kair-  be valid for other proxy types with banded age models (ice

iukstis 1990 Yamaguchi 1991 Stokes and Smileyl996. cores, annually banded corals, varved sedimentary records),
Similarly, although the quoted uncertainty on ice core layereither because too few (if any) replicates are available at
counting is typically on the order of 2 %A(ley et al., 19971, a given site or because one is interested in synchronizing

this value reflects the reproducibility from one chronolo- records across a wide geographical area (e.g., a pan-Pacific
gist to the next, not the uncertainty about the true datecoral network), where the common signal may be weaker.
Seimon (2003 thus showed how two nearby Andean ice Nevertheless, this approach was successfully applied to repli-
cores Thompson et a].1985 differed widely when plot-  cated coral records from the reefs offshore of Amédée Island,
ted against their published timescales, but that simple adNew Caledonia@elLon et al, 2007 DelLong et al. 2013,
justments based on volcanic tephra markers could bring thend from the Gulf of Mexico@eLong et al.2011).

records into excellent agreement. Finalynile-Geay et al. In this article we propose a new probabilistic age model
(2013 showed how minor age uncertainties in several high-for layer-counted records (Se@.1) and use it to quantify
resolution records (in particular coral chronologies) couldthe consequences of such errors in single- and multiproxy
mute interannual signals in a multiproxy reconstruction of applications. Implicit in our approach is the assumption that
tropical Pacific sea surface temperature. optimal sampling strategies were utilized, so chronological

Time uncertainties pose a serious challenge to the analerrors are a leading source of uncertainty. We first use the
ysis of paleoclimate signals, as the mathematical machinmodel to quantify the uncertainty associated with spectral es-
ery devoted to time series analysis (e.g., spectral analysidimates from univariate coral series (S&tR). We then gen-
singular spectrum analysis, wavelet analysis) or multivariateeralize this framework to the multivariate setting (Sécl),
analysis (e.g., principal component analysis, regression anakvaluating the impact of chronological uncertainties on prin-
ysis, climate field reconstruction) implicitly assumes a per-cipal component analysis derived from a pan-Pacific coral
fectly known time axis. In the non-banded case, this prob-network (Sect3.3). Leveraging the mutual information from
lem was recognized early on and motivated the use of tunthese signals, we then propose a method to correct for age
ing, though this approach is not without dangeBsabuw uncertainties in banded records (Seét.which we validate
2012. Recently, several studies have chosen instead to exen synthetic data. Discussion follows in Segt.
plicitly take time uncertainties into accourttiybers and
Wunsch 2004 Blaauw 201Q Haam and Huybers201Q
Blaauw and Christer?2011 Rhines and Huyber2011, Bre-
itenbach et 312012 Anchukaitis and Tiel‘ne)Q012, which 2.1 Univariate model formulation
has greatly helped quantifying the uncertainties inherent to
the interpretation of climate signals in such records. We denote a banded time series{ast}, wherex is the se-

To our knowledge, banded records have not spurred simguence of: observations andits corresponding chronology
ilar modeling efforts, with the notable exception Rhines  (i.e., theith measurement; is assigned a timg for i taking
and Huybers(2011), whose model targeted long ice-core values in{1,...,n}). The time axis is modeled as follows:
chronologies like that of GISP2\(ley et al,, 19970. Their starting from the most recent observation (collection date)

2 Banded age model: design and application
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b) Weak seasonality

1 = tf, whose date is assumed to be known exactly, earlier  a) Strong annual density banding
times are deduced by assuming that observations are consec- |

utive (see Figl), so previous observations i € {2,---,n}
follow the relation

i =1ti-1— Ai’ (1) g ¢) Growth variations
where A is a vector of time increments taking integer val- g

ues. In this study, we do not consider records derived from g

multiple-year sampling intervald.insley et al, 2006 2008 LAYER  n, i i B

nor bulk averagesHendy et al. 2002 Calvo et al, 2007, AGE  th tw t fatp

which are straightforward extensions of our model. Thus, for _ _
Fig. 1. Coral core X-radiographga) top of a core from Mange

error-free annually banded proxies; = A = 1 year exactly Reef, Tanzania (Cole, unpublished). Each layer shows the chang-

(Fig. 1a). Several sources of error, however, may perturb thlsmg density of the coral growth over a year. Observatipreould

ideal chrqnology. For 'nStajnce’ a coral may_ fail to fo_r_m @ pe thes80 measured from thith layer (most likely correspond-
band during a year of particularly poor growing conditions jng to A; = 1year). The collection datg and the oldest ong are
(related to water turbidity, excessive temperature, or otheriso shown to illustrate our notatiofi) top of a core from Onotoa,
ecological factors) or years may be missing due to samplingRepublic of Kiribati (Thompson, unpublished) showing weak sea-
artifacts (e.g., core breaks); a tree may fail to form an annuabonality and annual density bandir{g) Fanning Island fossil coral
growth increment in an excessively dry or cold year; an iceV33, aged~ 6500 years oldGobb et al. 2013, with a varying
core may miss a layer due to low deposition or high wind growth axis, which typically requires multiple sampling transects.
ablation that year; and a varved sediment core may miss a
year because of low productivity in that particular year. Con-
versely, a single (large) coral band, in a fast growth state,
may be associated with two (multiple) consecutive years in-
stead of a single one. Additionally, stress bands or changes in
growth orientation (e.g., Fig.c) may also create “false” sec-

layers whenPiel >1 orPl.e2 > 1, and linearly reassign-
ing time to the corresponding observations (Fl).
This allows one to explore the effect of age errors in
idealized scenarios.

ondary bands (seklibert and Kinsley 2008 DeLong et al, ii. Starting from a real chronology, which inevitably con-
2013. Thus, in reality, each entr; can take any positive in- tains errors (Fig2b), one may use the model to gener-
teger value (to preserve the layer superposition principle), al- ate plausible corrections, given some knowledge of the
thoughA; = 1 most of the time. Considering that error rates miscounting rate (Fig2c shows the signals corrected
are typically asymmetric (with double counting being more with the true-age model). In this case, extra data entries

common than missing yearBelLong et al. 2013, we use
a stochastic model (Appendik), in which the increment
vector comprises two independent stochastic proceB%es

and P?z, with parameters, ando,, representing the rates of The former case requires interpolation of the data where lay-
missing and doubly count_ed bands, respectively. ers are believed to be missing. While linear interpolation is
Age errors are cumulative: for a 100-year-long record, angften used for simplicity, it tends to suppress high-frequency
error rate of 5% fopy andé, will lead to offsets as large as yariability, hence potentially distorting a record’s spectrum.
+5years by the beginning of the sequence, with a probabilityrg preserve the intrinsic autocorrelation structure of the time
of ~ 15 % (cf. the shifted initial dates of the perturbed signals series, we use singular spectrum analysis (S¥apmhead
in Fig. 2b). Although there is partial compensation between gq King 1986 Fraedrich 1986 Vautard and Ghjl1989
over- and undercounting, leading to a zexpectedffset in and its missing value counterpart (SSAMjchoellnamer
the symmetric case, this expectation is misleading. Indeedzooj) to reconstruct the time series including miscounted
assuming the independence of age errors from one record t@yers, SSAM was shown to preserve the variance for as
another, there is a roughly 2 % chance that the oldest date Orfnany as"% missing points within a sliding window of size
each record will be offset by as many as 10years &&).  (Schoellhamer200]). In specific applications, other meth-
Though such probability is low, it is non-negligible, and we 54s would be relevant (e.g., the Lomb—Scargle periodogram
shall see in SecB.3that in the case of a multivariate data set (Mudelsee et al.2009 for spectral analysis with missing
it may severely bias the estimation of spatiotemporal modeqjata)' but interpolating with SSAM allows us to apply other

of variability, far beyond the annual scale. _ analysis methods without further modification, which will
This error model may be used in two ways, as illustratedproye useful in multivariate applications (Seg).

in Fig. 2 with simple sinusoidal signals:

must be inserted WherEf)l > 1, while layers must be
removed where!"f2 >1.

i. Starting from an error-free chronology (Figa), one
may perturb it by randomly removing or duplicating
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decadal variability is substantial. Indeed, the width of the
g confidence bands roughly triples from periods of 50-5 years.
It is, however, noteworthy that the spectral uncertainties
IRy N NN N due to the age perturbations (shaded area) are markedly nar-
rower than the uncertainties in the spectral estimates them-
b) Age-perturbed and layer-counted signals selves (dashed lines, obtained via standafdintervals),
\ Ny even though a widening of the ensemble spread can be ob-
served as the frequency increases. This result persists with
=i the robust method ofhave et al(1987 and its associated
jackknife intervals.
To check that those results are not an artifact of the choice
of coral time series, we repeat this analysis @1%D record
from Palmyra IslandQobb et al, 2003. Figure 3c shows

A U I ZRN

NN N the cold-season average (December-January-February, DJF)
Ememtlemenn e of a continuous splice (1636—1703) of this record, together
O SSAM interpolated missing data with the width of the age-perturbed ensemble ustag=

Fig. 2. lllustration of the phase distortion of coherent signals due 62 = 0.05. F|gure3d shows the impact gf age uncertqlntles
to miscounted annual bands wigh = 6o = 0.05 and a collection on the estimated spectru_m, and Con_f'rms the previous re-
dater; = 100.(a) Five hypothetical and identical harmonic signals sults: spectral energy of time-uncertain data sets leaks from
shifted vertically for clarity;(b) the same signals after introduc- the interannual band to lower frequencies, but chronologi-
ing age perturbations and making the (erroneous) assumption thatal uncertainties generally produce narrower intervals than
1 layer amounts to 1 year (note the loss of coherency reflected in ththose due to the spectral estimation process. Although this
ensemble mean in gray, which is performed as part of compositesecord was obtained from a fossil sample for which the top-
in most climate reconstructions(c) the same age-perturbed sig- most layer was WUTh dated, in this experiment we did not in-
nals, after correcting for miscounted bands and interpolating miss¢|yde the UTh dating uncertainties since no spectral defor-
ing data with SSAM. mation should arise from sliding the whole sequence across
the U/Th error window.

2.2 Uncertainty quantification in coral records 2.3 Age model identification

The above model is now applied to two coral data sets. ThéMe have shown how the model described in S2dtcan be

first one is the Havannah Island fluorescence recizdhale  used to generate ensembles of plausible chronologies for any
etal, 1998, chosen for its particularly long, continuous time banded record given some a priori estimate of chronological
span. Because the record already contains dating inaccur&rrors. Learning from other data series with more replicated
cies, we attempt to correct for age errors as explained irand accurate chronologies can then be used to choose an opti-
Sect.2.1(ii). The age uncertainty in coral records is not usu- mal chronology from an ensemble of plausible chronologies.
ally known, because many of them are not site-replicatedFor exampleLi et al. (2011 adjusted age assignments of
However,DelLong et al(2013 suggested an error rate from U/Th-dated fossil Palmyra Island corals, observing that the
—2.1 to 3.7% in unreplicated samples. Error rates may becorrelation between the nominally dated modern record, and
higher at sites with weak seasonality (Fidp) or in cores the first principal component of the North American Drought
with varying growth structures (Fidc). We thus assume a Atlas (NADA PC1l), interpreted as a proxy for El Nifio—
conservative error rate of 0.05 for both missing and doublySouthern Oscillation (ENSO)-related hydroclimatic variabil-
counted annual bands (i.8; = 62 = 0.05) and generate an ity, was highly significant over the 1891-1994 time period.
ensemble of 1000 plausible age-corrected realizations. Th&hey then used this property to align the older sequences,
95 % confidence interval (Cl) of the realization ensemble isbefore the onset of the instrumental period, to NADA PC1
shown along with the original time series in F&a. within the range of YTh dating error. To identify an optimal

The corresponding spectral densities were estimated irchronology, we similarly choose the realization that maxi-
Fig. 3b using the multi-taper method (MTMThomson mizes the correlation between the Palmyra coral record and
1982 for each age model realization with a conservativethe NADA PC1 during their periods of overlap (Fi). As
time-bandwidth product of /2 (results are insensitive to this in Li et al. (2011, we account for the estimated10 years
choice). U/Th dating errors by shifting the final timg of the en-

It is generally presumed that dating errors should affectsemble of plausible chronologies generated with our model
the estimation of interannual variance most strongly, but onlyacross a 21-year window, so the ensemble size is 20 times
negligibly affect decadal signals. FiguBb shows this ex- larger than in the knowr case. For convergence purposes,
pectation to be approximately correct, though the impact orhere we chose to use an ensemble size 8fat@l the same

Clim. Past, 10, 825841, 2014 www.clim-past.net/10/825/2014/
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a) Havannah island age-perturbed ensemble c) Palmyra island age-perturbed ensemble
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b) Havannah island spectral estimate d) Palmyra island (1636-1703) spectral estimate
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Fig. 3. Ensemble realization (top) and power spectra (bottom) of age-perturbed coral d@abiorlavannah Islandigdale et al. 1998

and(c, d) Palmyra Islands180 record from 1636 to 1703Cpbb et al. 2003, where the top layer is [Xh dated. The original data and
corresponding spectral estimates are shown in red, and the 95 % confidence intervals (Cls) and the 25-75 % interquartile range (IQR) of
the perturbed data ensemble and corresponding spectra are shown by the shaded areas. Power spectra are represented in variance-preser
coordinates (that is, the area under the curve is an exact measure of the variance contained in each frequency band).

error rates as in the previous sectioh £ 6, = 0.05). The  sented by independent stochastic proceg8ésand P?%i (for
selected chronologies (blue curves in the top B)Jgmprove  missing and double bands, respectively; see AppeAdix
the correlation coefficient of the individual series to NADA This formulation allows different error parametéigandéy;

PC1 by a factor of 3 relative to the published chronologiesfor each locatiory.

(before dating errors were corrected). Those results are com- As in Eq. A3), errors are cumulative and may lead to im-
parable to the improvement obtained.iret al. (2011 after portant age offsets in the earlier portions of the data set. To
adjustments. see this, consider the situation depicted in Rigvhich con-

A caveat of this approach is that it assumes a perfectlysiders five coherent, monochromatic signals. Age errors on
known NADA PC1 chronology, whereas in reality it is also these harmonic signals were simulated according toA%), (
estimated from layer-counted archives. For a full appraisal ofusingéy; = 6,5 = 0.05. The figure illustrates how even small
uncertainties in this synchronization process, one would ideage offsets introduce phase distortion that lowers the co-
ally apply this approach to the NADA records as well. How- herency between signals, producing an apparent amplitude
ever, the large number of cross-dated tree-ring chronologiesnodulation of the periodic component, whose amplitude ap-
in NADA (several thousand over this time interval) makes pears to grow over time. In Sedtwe exploit this property to
it likely that these uncertainties are negligible compared toidentify age models based on their ability to correct for this
those associated with coral dating. loss of coherency.

3 Multivariate generalization 3.2 Pseudocoral benchmark

To illustrate the use of the model described above, and to val-

. §date our approach, we need a data set that is free of chrono-
data syntheses (e.PAGES2K Consortiumn2013 Marcott logical errors and measurement noise. We thus consider a

etal, 2013 Tlerngy et al,.201_3 Tingley and Huybers2013. .“pseudocoral” network of 22 corals, derived from simulated
We thus generalize the previous model to the case of a multi-

. . ; climate fields. Pseudocoral locations (Tah)evere chosen
variate network and investigate the effect of age errors on th(?o mimic the position of publicly availablecoral 80 ob-
estimation of spatiotemporal modes of climate variability.

servations with a resolution better than 2 months (Bjg.

The pseudocoral observatiofis= {¢, t} were simulated
according to the forward model @hompson et al(2011),
a simple representation of the effects of temperature and sea
water isotopic variation on the oxygen isotope composition
of coral aragonite:

Climate proxies are increasingly used as part of large-scal

3.1 Model formulation

Let us consider a multivariate banded data {getr}, with

¢ the data matrix containing proxy measurements atlo-
cations (for instancef®0 or SyCa) andr the time matrix.
Each entryij, (i, j) € {1,...,n} x {1,..., p} corresponds to
theith observation at thgth location, and is assigned a time

Tj = tl.(j ) At each locationj, miscounting events are repre- Ihttp://www.ncdc.noaa.gov/paleo/corals.html

gij = a1SSTj +a2SS§ +o - €, (2

www.clim-past.net/10/825/2014/ Clim. Past, 10, 82841, 2014
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Palmyra age-correction: SB3, SB8 and SB13 events as observed. Although the model is limited by biases
/\«/\WWWWV common to other coupled GCMs, it provides a virtual labora-

‘ tory of adequate realism to explore the impact of pseudocoral
s \/WV\/J\\/\/ sampling with chronological errors. The data cover the inter-
o \MMW\ _:::;2;?,1‘; ﬁ“))‘(: val [1860, 2000]; the monthly output was averaged over the

5 ShI3 o — 010t DJF months to sample the period of most intense ENSO tele-

SBI3p, =-0.14 p=-0.64

connections. Our pseudocoral matrix thus contairs140
samples ap = 22 sites.
North American Drought Atlas (NADA) PC1 In the remainder of the paper, we will uSethe pseudoco-
l ral observation matrix and chronology, as a multivariate test-
I - o ing ground for our method — in effect, a perfect model sce-
iny A nario. For this study, we limit ourselves to the noiseless case
IERY VR A A VA whereo = 0, though in principle one would have to account
‘ B for observational noise. Since our interest lies primarily in
: : T : — ‘ ‘ assessing uncertainties arising from chronological errors, a

1630 1640 1650 1660 1670 1680 1690 1700 1710

Time noise-free matrix is an appropriate first step. We generate

Fig. 4. Palmyra relict corab180 records (top): published data SB3 an ensemble of gge-perturbed realizations of t.he pseudoco-
in red, SB8 in orange and SB13 in brow@dbb et al, 2003; the 'l data set by disturbing the chronologyaccording to the
shaded area is the 95 % confidence interval of the ensemble of renodel of Sect3.1using agairg; = 6, = 0.05.
alizations with final time shiftedk + 10 years and, = 6o = 0.05,
and the blue chronology corresponds to the realizations that maxi3.3 Uncertainty quantification
mize the correlation with the first principal component of the NADA
record (bottom) over each continuous section. For SB3, there wergnspired by the work oAnchukaitis and Tierney2012, we
2 added years and 2 removed years, qwebs shifted by-2years.  first seek to quantify the effect of age uncertainties on the
For SB8, there were 2 added years and 2 removed years; and ggtimation of spatiotemporal modes of variability. Since the
was shifted by 5years. For_ SB13, there were 1 added year and M2.0 model simulates a vigorous ENSO, we seek to an-
removed years, angl was shifted by-6 years. The correlation co- - - . . -
efficients with NADA PC1 are also shown, whergiris computed swer the following questlon. were tropical climate anabll-
using the aligned Palmyra chronologies, amdusing the original ity sampled accord'”g to, '_[he network of Tab],ehow faith-
chronologies. fully would ENSO variability be captured in the presence of
chronological uncertainties? FiguBeshows the result of a
principal component analysis applied on the error-free net-
wherea; anday, locally constant coefficients, describe the work, together with an identical analysis applied to the time-
dependence of oxygen isotopic equilibrium on the temperaperturbed ensemble. The visualization is analogous to that of
ture of carbonate formation and the regional relationship beTierney et al(2013 their Fig. 2).
tween SSS and sea watfO, respectivelye ~ A(0, 1) is The unperturbed mode accounts for 25 % of the total vari-
an uncorrelated standard Gaussian white-noise process, amghce, and is dominated by the contributions of central and
SST and SSS stand for sea surface temperature and sea seastern Pacific pseudocorals. Its principal component (PC)
face salinity, respectivelyThompson et al(2011) demon- is characterized by a concentration of variance in the in-
strated that this simple model 6%%0¢a is able to capture terannual band (Figsc, red curves), and its spatial struc-
the dominant modes of variability observed in corals whenture (light colored dots with white outline) closely matches
driven with instrumental SST and SSS. the SST pattern obtained by regressing the principal compo-
The SST and SSS fields were extracted from the CMIP3nent onto the SST field, meaning that SST dominates SSS
“H1” simulation of the Geophysical Fluid Dynamics Labora- in Eqg. ), at least on interannual timescales. The same map
tory (GFDL) Coupled Model 2.04nutson et al.2006§. The presents results from the time-uncertain ensemble, showing
GFDL CM2.0 model is a state-of-the art coupled general cir-that in the presence of time uncertainties the vast majority
culation model whose performance at simulating tropical Pa-of strong positive loadings (dark-colored disks, circled in
cific climate is extensively described{ttenberg et a].2006 black) tend to shrink compared to their unperturbed coun-
Capotondi et a).2006 Vecchi et al, 2006 Kug et al, 201Q terparts (light-colored disks, circled in white). The picture is
Xie et al, 2010. Briefly, the model successfully captures the less clear for negative loadings, but those exert a lesser con-
observed annual-mean trade winds and precipitation, sea sutrol on the overall structure. In the age-perturbed ensemble,
face temperature, surface heat fluxes, surface currents, Equtiie amount of variance explained by the ENSO mode ranges
torial Undercurrent, and subsurface thermal structure. CM2.(between 6 and 10 % (median value: 8 %) down from 25 % for
displays a robust ENSO with multidecadal fluctuations in the error-free data. In such cases, the ENSO mode thus ceases
amplitude, an irregular period between 2 and 5years, and & be the leading mode, as most of its energy is transferred
distribution of SST anomalies that is skewed toward warmto a trend mode similar to the one identified Bgompson

i i i i i i i i i
1630 1640 1650 1660 1670 1680 1690 1700 1710

PC1 (unitless)
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Table 1.List of coral locations used for the EOF analysis of Figrhe records were obtained from the databadtnofe-Geay and Eshleman
(2013 after selecting data sets that recé#d0O and cover the period 1860-1980.

Site Measurement  Latitude  Longitude Range Reference
1 Abrolhos §180 2846°S 11377 E 1794-1994 Kuhnert et al(1999
2 Amedee Light. s180 2248°S 16645 E 1660-1993 Quinn et al(1999
3 Bunaken s180 150°N 12483 E 1860-1990 Charles et al(2003
4 Clipperton Atoll 5180 1030°N  10900°W  1893-1994 Linsley et al.(2000
5  Guam s180 1300°N  14500°E  1790-2000 Asami et al(2005
6 Ifaty §180 2314°S  4358°E 1659-1995 Zinke et al.(2004
7  LaReunion 5180 2103°S  5525°E  1832-1995 Pfeiffer et al.(2004
8 Laing s180 415°S 14488 E 1884-1993 Tudhope et al(2001)
9  Lombok Strait s180 825°S 11550°E 1782-1990 Charles et al(2003
10 Madang 5180 522°S 14582 E 1880-1993 Tudhope et al(2001)
11 Mafia s180 802°S 3950°E 1622-1722 Damassa et a(2006
12 Mahe s180 462°S  5500°E 1846-1995 Charles et al(1997)
13 Maiana Atoll 5180 100°N  17300°E  1840-1994 Urban et al(2000
14  Mentawai s180 013*Ss 9852 E 1858-1997 Abram et al(2008
15 Moorea §180 1750°S 15000°W 1852-1990 Boiseau et al(1998
16  Ningaloo Reef 5180 2191°S 113977 E 1878-1995 Kuhnert et al(2000
17 Palmyra s180 588N 16200°W 1886-1998 Cobb et al(2001)
18 Rabaul2006 s180 419°S 15198 E 1867-1997 Quinn et al.(200§
19 Rarotonga(2R) 8180 2124°S 15983’ E 1726-1996 Linsley et al.(2008
20 Rarotonga(3R) s180 2124°S 15983 E 1874-2000 Linsley et al.(2009
21 Ras Umm Sidd 5180 2785°N  3431°E 1751-1995 Felis et al(2000
22 Secas 8180 7.98° N 8200°W 1707-1984 Linsley et al.(1999
a) ENSO mode pseudocoral EOF - 25% variance
7 - N i SR
..................... -
EOF >0 EOF <0
® median ® median
@ 95%aquantle @  95% quantile
» Y i I (I) T T T 05_1
Contours: SST ( C) regressed onto ENSO mode
b) ENSO mode PC timeseries _ c) ENSO mode PC spectrum
8 g 10
= o
5 Llé. 10
Y g 10
g

1880 1900 1920 1940 1960 1980 2000
Time

50 20

Period (y)

10 5 2

Fig. 5. Spatiotemporal uncertainty quantification on a pseudocoral net{ayEOF loadings (circles) corresponding to the ENSO mode

of an ensemble of age-perturbed pseudocoral records with miscounting=+£s®e05. EOF loadings for error-free data are shown in light
colors circled in white, while the median and 95 % quantile are shown by dark disks and black-circled disks, respectively. Contours depict
the SST field associated with the mode’s principal component ((BONhose power spectrum is shown(a). Results for the time-uncertain
ensemble are shown in blue: median (solid line), 95 % confidence interval (light-filled area) and interquartile range [25-75 %] (dark-filled
area). Results for the original (error-free) data set are depicted by solid red lines. Dashed red lineg denmteestimates for the MTM

spectrum of the error-free data set.
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et al. (2011). In our case, the importance of this mode is ENSO mode spectral estimate
mainly an artifact of dating errors. A spectral analysis of the  original series

age-perturbed PC (Figc, blue colors) shows a systematic 2 95%CI

increase in multidecadal variability (10-50-year periods) at T3 S Perimnitais e

the expense of interannual variability. The transfer of power — Ensemble median
from high to low frequencies may be seen by computing the
spectral slopes, where we fit the mode$(f) « f# to the
continuum of each spectruny (< 1/15). The spectrum of
the unperturbed ENSO PC has a slghe= —0.72, while

the age-perturbed ensemble shows values centered arouncs
a median valugsy, = —0.22 with an interquartile range of 10°
[—0.41, 0]. The loss of coherency thus has the effect of flat-
tening the spectrum of the ENSO mode. Even when the error P
rate is 50 times smalle® (= 0.001), one still observes that

age uncertainties tend to exaggerate multidecadal (20years " ° %0 20 0 5 >
and longer) variations at the expense of interannual variations Period (y)

(Fig' 6,)' This may explain whyAult ejt al.(2009 found, usipg_ Fig. 6. Spectral density of the ENSO mode PCdoe 0.001. Com-
a similar PCA approach, that their coral network exhibited pare 1o Figs, bottom right.

very energetic variability at such scales, with an amplitude

that grew back in time. The presence of small age uncertain-

ties could explain part of the multidecadal power enhance- This exercise is, however, complicated by the large dimen-
ment they observed in the late nineteenth century, since fewegionality of the space of possible solutions. The dimension-
instrumental observations were available to provide chronojity may be estimated in several ways: assuming that age
|Ogica| aI’IChOI‘S to Coral t|me Sel’ies at that t|me thal’l in theperturbations fo”OW a Bernou”i proceSS, Aarx p data ma-
twentieth century. Our analysis suggests that the accumulayix admits up to 3 age perturbation matrices. This number
explanation for this apparent enhancement of low-frequencyan NP-hard problem). A more relevant measure, however, is
variability in an all-coral network, though a more detailed the humber of solutions for a given error rate. Given a sym-
investigation (incorporating knowledge of error rates in eachmetric error rated; = 6, = 6, one expects, on aVeraQ(%nf)

P

qf their records) would be required to evaluate this q“antita'(wherei denotes the nearest integendlausible solutions,
tively. which induces a serious computational challenge. This is il-
. o lustrated in Table, which charts the number of solutions for
4 Coherence-based identification of age models various values ofip andé.
. . . In practice, we generate an ensemblé e 10° time per-
As in Sect2.3, one would like to choose an optimal chronol- turbaF:ionsA — {A(% A® ALY according to Eq £5)

ogy among the ensemble of competing age models. To do S%nd choose an optimal chronology amongst those realiza-

we apply an optimization principle based on the idea that a"tions. The optimization principle is described next.
pseudocorals in our network share some information about a

common signal (ENSO in our pseudocoral benchmark). In-4 ¢ Optimization scheme
deed, coral networks have been shown to record spatiotem-

porally coherent climate mode&\ans et a.1998 2000  Because age errors tend to lower coherency amongst records
2002, a property shared by our pseudocoral network bench{Fig. 2), the quantity we seek to maximize is the generalized
mark (Fig.5). Moreover, we showed in Se&.3that chrono- magnitude squared coherency (GMSChakrabarty et a|.
logical errors lead to a loss of coherency among recordspp02 Ramirez et al.2008 2010, an extension of the tra-
that is, we expect age errors to lower interannual coherencyitional coherency to more than two time series. More pre-
among records compared to what it might otherwise be.cjsely, we maximize this quantity over the interannual band,
While chronological uncertainty is not the only source of where age perturbations have the largest effect on coherency.

discrepancies among records (indeed the sampling of coralshe method proceeds as described in Algorithm 1 (Taple
alone may be challenging due to their biologically mediated

origins of layers), several studiesléndy et al. 2002 De- 4.2 Method validation

Lon et al, 2007 DelLong et al. 2013 highlight chronolog-

ical uncertainties associated with coral reconstructions as do check that the above principle can identify the correct
main cause for loss of coherency between records. One wagige model, we employ the following strategy. A reference
to correct for this effect is to pick the age model that maxi- age-perturbation process is used to alter the chronology of
mizes interannual coherency between measurements. the error-free pseudocoral data set described in Se:WWe

ower x Frequency
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Table 2. Complexity as a function of and the matrix dimension To see this quantitatively, one first needs to define a
np. Infinity symbols denote numbers that exceed machine capacitydistance over age model space. The Hamming distance
dg (x,y) (Hamming 1950 between two vectorg andy in

npl6  0.01 0.03 0.05 0.07 0.09 R” provides such a metrielg (x, y) is defined as the pro-
50 2x107  4x10°  4x1CP 10t 3x 1018 portion of corresponding coefficients positions in which they
100 5x10*  1x10%2 1x108 3x108 2x10%8 differ, i.e.,
1000 9x10°3  1x10%82 5x 1019 4% 10?50 3% 10799
5000 1x 10277 ) ) ) 00

1 n
dy (x,y) == d;,
n i=1

then generate an ensemble of age corrections (Sdgtfor

the reference perturbed data &t:= {¢*, z*} yielding an ~ Where
ensemble of candidate age-corrected data sets, and apply the 1
optimization scheme described above. We then verify the vadi = {
lidity of our model by comparing the retained chronology to

the true one. Because departures from unity & are of prime interest,

For a givend, the verification algorithm is explained in this metric is a good one to differentiate time-shifted records
Algorithm 2 (Table3). from one another. We generalize the Hamming distance to

The results (Fig7) show the rapid loss of coherency over our matrix case simply by computing and adding together
the interannual band as more age errors (increaspeyam-  the distances at each locatignthen dividing byp.
eter) are introduced in the time series. Indeedpthe0.001 In the following experiment, we sample ensembles of
case brings the vast majority of the time-uncertain ensemble&hronologies in a restricted neighborhood around a reference
spectra under the coherence spectrum of the original timeage-perturbed data sét. In this context, for each time per-
series, and thé = 0.05 case suppresses nearly all the co-turbation inC*, we sample an age correction within a neigh-
herency for periods shorter than 4 years, and greatly subdudsorhood of size 2 N, + 1, centered around a known mis-
the original peak around 5years. counted band.

For 6 = 0.05, the optimization principle failed to identify Four age-corrected ensembles are generated using a neigh-
the correct age model, as no single realization of the corborhood size expanding fronvy, =1 to Ny =10 annual
rected ensemble presented high GMSC values in the interarbands on either side of the true one. For each sampled re-
nual band. The issue stems from the very high dimensionalityalization, we evaluate the Hamming distance to the error-
of the space of plausible age corrections (Ta)laevhich re-  free chronology and compute the global coherence spectrum.
sults in the inability of our sampled ensembles to span the~or each ensemble, we construct its corresponding Hamming
solution space effectively. We attempted to use a Latin hy-distance distribution and extract the realization that maxi-
percube sampling scheme in an effort to cover the solutiormizes the GMSC according to Algorithm 1 (Tak®g. In
space more effectively; however we did not notice any ma-Fig. 8, the results for each ensemble is color-coded so that
jor improvement compared to the Monte Carlo ensemble re-one can relate the coherence spectra to the Hamming dis-
sults. More work is required here to find efficient sampling tance distributions. The green color refers to the reference
techniques. perturbed data set with an error rate= 0.05, and the red

One way to evaluate the potential of this method to accu-is reserved for the original time series. The dark blue, blue,
rately portray uncertainties is to compute the actual coveraggink and light brown show the results fof, =1, 4, 7, and
rates Guttman 1970 of Cls derived from our ensemble. To 10, respectively. We observe an increase in the mean of the
do so, we evaluate the probabilities that the ensemble Clslistance distribution as the size of the neighborhdgdex-
cover the original data set, and compare those to their nompands, yet for all the realizations the distance to the error-free
inal value of 95 % (Tabld). As 6 increases, so do time un- chronology was reduced relative to the distance between the
certainties, thereby widening the confidence interval of thereference and the true chronologies. This experiment shows
ensemble. The coverage probability remains high fopall that when the age-model ensemble includes the true solu-
since the error-free data lie within the corrected ensembldion, the optimization principle tends to effectively correct
nearly 98 % of the time. Our Cls are thus slightly conserva-the errors, in the sense that it reduces the Hamming dis-
tive. tance between the original and corrected chronologies. On

While the difficulty in solving this NP-hard optimization the other hand, the realization that maximizes the GMSC for
problem gives little hope of finding the correct age model each neighborhood ensemble does not consistently minimize
even for the smallegt (note from Table? that the expected the Hamming distance (see the vertical bars of the ensem-
number of plausible chronologies to correct 1 % age errors idle color in the bottom Fig8); however, it, on average, ap-
on the order of 1&), we here show that the coherence-basedpears on the lower half of each Hamming distance distribu-
optimization principle can indeed bring the age model closertion. The black curve in the coherence spectra figure and the
to the correct one. line of the same color in the Hamming distance plot refer to

if x; =y
0 otherwise

3
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Table 3. Computational steps to identify an optimal chronology.

Algorithm 1: Coherency-based optimization

Input: {, L, 0

Output: [*

Generate L age perturbation realizations (Equation AS),
A={AD AD  AD} Interpolation onto this new grid
yields L-corrected data matrices ¢ = {¢V,¢@,... ¢},
Use SSAM reconstruction to estimate the missing values of
each candidate data.

Compute the GMSC 4} of each realization ¢(.

Maximize coherency in the interannual band

"= arg max ({/%2 (w) dw) , 3)

with wy = 27 /(8yr),ws = 27/(2yT).

)

w

IS

Algorithm 2: Age model identification

Input: ¢, L, 0
Output: Confidence interval, coverage probability, {*

1 Generate a reference age perturbed chronology 7* with
01 =02=0.

2 Interpolate data ¢ onto 7* using SSAM, yielding ¢*.

3 Generate L correction matrices (Equation AS5)
A={AW;1=1,2,..., L} and corresponding corrected
candidate data ¢. = {Cgl) ;0=1,2,...,L} from reference data
¢

4+ Compute 95% confidence intervals for (.

s Compute the coverage probability of (..

¢ Find [* from Alg. 1.

Coherence spectra of time-uncertain ensembles

== Original series
Ensemble median 6=0.001
- — Ensemble median 6=0.01

06
’ -~ Ensemble median 6=0.05

Global Squared Coherency

Period (y)

Table 4.Time-uncertain ensemble 95 % CIl width mearasnd stan-
dard deviations, and probabilities of the ensemble CI covering the
original data with respect .

0 0.01 0.03 0.05 0.07 0.09

Cl width, 0.38 047 050 053 0.55
Cl width, o 0.18 0.17 0.17 0.16 0.17
Coveragerate 0.97 0.99 0.97 0.98 0.98

the realization that achieves the maximum GMSC value, se-
lected from an unrestricted ensemble such as one generated
according to Eqg. (A5). The sampling issue associated with
the extremely high dimensionality of the solution space can
be readily observed here, noticing that the realization maxi-
mizing the GMSC barely surpasses the reference coherence
spectrum in addition to its distance to the original chronology
exceeding the distance between the reference and true data.
The issue may be alleviated if there is some prior informa-
tion about the timing of age errors, for instance an observed
mismatch between how two series portray an event — like a
historic volcanic eruption — that should be synchronous.

5 Discussion

In this article, we put forth a probabilistic model for layer-
counted chronologies. The model was designed for univariate
as well as multivariate data sets, and is flexible enough to ac-
commodate location-specific and asymmetric error rates. We
used this model to generate ensembles of time-uncertain data
sets, which we analyzed using spectral methods and principal
component analysis.

In the univariate case, we showed that age perturba-
tions tend to blur variability between interannual and multi-
decadal scales. In the multivariate case, we showed that even
small age offsets between records may significantly lower
coherency between records, producing an apparent ampli-
tude modulation of high-frequency signals. These short-term
phase interferences thus led to long-term effects, exaggerat-
ing low-frequency variability at the expense of interannual
signals. This suggests that at least part of the reason for
the observed nineteenth century increase in the amplitude
of low-frequency variability Ault et al, 2009 could be the
presence of age errors.

We also attempted to correct for age errors using an opti-
mization principle based on the global coherence of a mul-
tivariate record. The large dimensionality of the age model
space, however, made the random sampling scheme an inef-

Fig. 7. Global coherence spectra for time-uncertain ensembles genficient method of exploration. There is no easy way around

erated with61 = 6> = 0.001 (orange)p; = 6o = 0.01 (dark blue)

this problem. Nonetheless, we showed that our optimization

andéd; = 6, = 0.05 (gray). The ensemble medians are illustrated in Strategy was able to correct dating errors when sufficient re-
dashed lines, and their corresponding colored patches represent tigtrictions were placed on the solution space, provided the
ensemble 95 % Cls. The thick red curve is the coherence spectrumutual information was sufficiently strong.

of the error-free time series.

Clim. Past, 10, 825841, 2014
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_a) Coherence Spectra with neighborhood size of material hiatuses, which may be correlated to the likeli-
T —— Original seres _ hood of missing or double-counted events (eBgown et al,
eference perturbed seres 1992 Alley et al, 19973 Juillet-Leclerc et a].2006 Alibert

= Max gmsc
N

and Kinsley 2008 DelLong et al. 2013. Future work with
the uncertainty algorithm might use such information to em-
pirically and adaptively reset accumulated age errors.

We also restricted our analysis to symmetric error rates,
which is an unlikely scenario according f@eLong et al.
(2013, who emphasized that double counting is typically
more common than missing years in coral records from the
reefs offshore of Amédée Island. Considering that the events
perturbing the chronologies are hidden states of the pro-
cess and are not being directly measured, a maximum likeli-
hood principle would have to be employed to evaluate the
error rate, which substantially complicates the problem of

Global Squared Coherency

> Period V) ’ designing a likelihood function. However, when the com-
b) Hamming distance distribution with neighborhood size mon signal driving the record is strong enough, a coherency-
tof 1% based Bayesian approach could potentially learn from the
[ N data. In this case, one would relax the assumption of known
Nt miscounting rate paramete(8s, 62) in favor of prior dis-
S N tributions on those parameters, which would incorporate as

‘N\:]()

ut much scientific information as possible. In this regard, one

should note that most geochronologies are developed with
the purpose of producing the single best representation of
past changes. There would be merit in also providing raw

chronologies so that the error rate may be estimated via com-
| paring it with other, absolutely dated records (for instance,

1 ‘ ‘ historical observations or chronostratigraphic markers). In

ob , ‘ other words, we urge field scientists to report all the chrono-

L \ logical information relevant to the characterization of these

‘ | L error rates, rather than exclusively seeking to reduce them,
Y By A TR T R— as this would greatly aid the quantification of uncertainties

Hamming distance associated with each record.

Fig. 8. Coherence spectra (top) and Hamming distance distributions Second, we assumed that time perturbations follow a ho-

to the original chronology (bottom) for ensembles of chronologiesmOgeneous Poisson process, _W'th a uniform and symmetric
sampled around the reference perturbation matrix (@ith0.05), rate for all pseudocorals considered. In nature, each record

in restricted neighborhood of sizesky + 1 for Ny increasing ~ Will display a different rate, and in situations of uneven dat-
from 1 to 10. The thick red curve represents the coherence spedng conditions (e.g., annual bands being more or less visible
trum for the error-free data, the results related to the reference perin a given time interval; see Figb) an inhomogeneous Pois-
turbed data set are shown in green, and plotted in black are the reson process would constitute a more suitable model within a
sults for the ensemble realization (sampled across the entire solutioging|e record. The error rate could change with the location
space) that maximizes the GMSC for the peighborhood_en_semblegnd age of the sample, and be informed by local expertise to
(shaded areas):_ the 95.% .Cls and H.a'.“m'”g distance d'St_”bl_monSaccount for known climatic events that could have affected
and corresponding realizations maximizing the GMSC (solid lines)y, o 0 growth structures. Assessments of where and when
are shown in dark blue, blue, pink and light brown féf =1, 4, 7 . - -
and 10, respectively. corals might have over- or ur_1dergrown impose restrictions
on the age model space, which would greatly improve the
ability of our optimization principle to identify the correct
chronology.

There are important limitations to our study. Firstand fore- Third, we assumed that age perturbations taking place at
most, our framework assumes that the error rates are knowrdifferent locations are independent. Nonetheless, one could
Ideally, one would estimate the miscounting rate parametergasily conceive of a scenario in which a regional phe-
(61, 62) from the data, which could be done in the presence ofnomenon, such as ENSO extremes, would simultaneously
independent information (replicated annual cycles in multi-affect the growth of all corals located in one area. The
ple types of observations, absolute or independent age informodel would therefore have to include regional random time
mation), and/or information such as the cumulative number

Frequency
T
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perturbations, which could be done by specifying parametergpreting trends in variance obtained from the average of age-
conditional on the climate. uncertain records as reflecting a response to external forc-
Fourth, we assumed that all records considered had annuahg may be perilous. At the very least, a probabilistic model
resolution, while in reality it could range from a month to such as the one proposed here can provide a null hypothesis
several years. Adapting the method to a network of variableagainst which to assess such trends.
resolution would require the conditioning of the error rate  More generally, a model such as this one may be used to
parameteé on the resolution of the record’s chronology. For evaluate the plausible impact of dating uncertainties on all
instance, monthly data tend to present a lower error rate thamanner of inferences derived from time-uncertain records.
yearly data, due the presence of a well-defined annual cydust as proxy system models are now becoming a standard
cle, i.e., a seasonal cycle M80 in one or more paleodata tool to interpret environmental controls in paleoclimate prox-
streams from the coral (and other annually layered archivesjes, chronological models should become an integral com-
that mostly “resets” age model uncertainty at some point inponent of proxy system models for age-uncertain paleodata,
the year. Yet monthly data would add subannual errors fromso that they may be used to improve interpretation, recon-
selecting incorrect tie points in the seasonal cycle and fromstruction, uncertainty estimation, and data—model compari-
interpolating between tie points (e.B¢ Ridder et a].2004), son studieskvans et a].2013. Because chronological errors
particularly in regions where the seasonal cycle and annuamight themselves depend on climatic events (see Introduc-
density banding are weak (e.g., key ENSO-sensitive regionsgion), a complete proxy system model should in fact allow
of the central Pacific, Figlb). Likewise, multiple-year sam- environmental controls to influence chronological informa-
pling intervals could have aliasing consequences that wouldion.
potentially add to age uncertainties. We hope this study stimulates a discussion on how to best
Fifth, we assumed that the latest timas known exactly  represent chronological uncertainty in layer-counted proxy
(except in Sect2.3), which is only true of records that grew archives and leads to a better characterization of these uncer-
continuously until that point (e.g., living corals, living trees). tainties.
We could refine our fossil corals framework with a mixed
approach, where the age of tie points would be allowed to
vary according to their distribution (e.g., a Gaussian), andAcknowledgementsM. Comboul, J. Emile-Geay, M. N. Evans,
the layer-count model would be extended on either side. ~ N- Mimateghi, and D. M. Thompson acknowledge funding from
Finally, our optimization scheme was shown to be effec- NOAA award NATOOARA310115. The authors also acknowledge
tive only in extremely restricted situations (error-free mea_the anonymous reviewer’s effort in making useful comments that

18 - _improved the paper. Matlab code implementing the age model
surements 06°°0, age model ensemble spanning the true ensembles is freely available on the Common Climate Google Code

age model). It remains to be seen whether these condition%pository bttps://code.google.com/p/common-climpitéhill be

could ever be met in practice. One potential problem is therejeased after manuscript acceptance).

fact that the “clock” used to synchronize the records does

not beat periodically: ENSO is only a quasi-periodic phe- Edited by: P. Braconnot
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Appendix A Skellam distribution

—o =005 1,=005

—o =200, A, =001
7»1 =0.50; }'2 =0.50

Stochastic model derivation 09 >

The stochastic model used to characterize the age uncertaii |
ties may be derived as follows: let us denote (¥ : i = 07
1,2,...,n} nindependent and identically distributed random 1
variables on the probability spat®, 3, Pr} representing the ]
miscounting events on observed layers. EAghs a count- . 05
ing process ofi;, t; 1) taking values in the sample s@tof 1
non-negative integers amd = 0 if the layer was counted ac-
curately. Let the stochastic procd26(r) : 11 <t < t,} equal 7] ?
the number of age perturbations in our data in the time inter- ,_|
val [11, t,]; thenN (1;) = >, _; Ni is also a counting process. 1 T

k)

P(X

Because of the earlier assumption on the most recent obse " | . T

vation being known exactly, we can write that(z1) = 0. 04O 908 8 nﬁi’ﬁaﬁam
We also parameterize the miscounting error rated tsuch * o . 2 0 2 : o §
that E(N;) = 6, and we can prescribe our simulations to ac-

cumulate on averagén perturbations. Recognizing that the Fig. Al. Skellam probability mass functions for different values of
chances of miscounting more than 2 years per band are slighi{S Parameters; anda..

one may write

PHN(t +h) — N(t) =1} = 0h +o(h), (Al

fraction (say 5%) when they are positive, 1 when
PH{N(r+h)— N(@) > 2} = o(h)?, (A2) (say 5%) y p AQ >

Pfl > 0 (i.e., ayearis missing) a; < 1whenPl.92 >0(i.e.,

One recognized (1) as a Poisson process with rate parame-& band was doubled). It follows that the chronology verifies

teré (e.g.,Suhov and Kelber2008 theorem 2.3.2b). When ; ;

the level of confidencg .in a particular.chronology is suchy, — 4 —j — Zp]fl +Zmin(}>92’ 1). (A4)

that Pr(N;) > 1 is negligible, a Bernoulli process would be =1 =1

a suitable approximation fav (¢+) with Pr(N; = 1) =6, and ) . o

N(1;) would follow a Binomial distributior3(i, 0). Age per- Extending th_e m0(_je| formulation to mulpvanate banQed

turbations when counting layers fall in one of two categories:data sets, and indexing biythe record location, the matrix

one can either miss (type 1) or double-count (type 2) a band®f ime increments is expressed as

so we classify perturbation events into those two types. LetA__ _ 1. p% i P 1 AS

{Piel :i =1,2,...,n} count the number of missing layers be- =" — + £ —min(F ", 1) (A5)

tween layers — 1 andi and{Pl.‘92 :i=1,2,...,n}countthe  and the chronology matrix verifies

number of duplications of layerwith rate parametef; and

62, respectively; then, if we assume that the two types of N 0 . [ 0o

events are independent, we can write that= P + p2 i =11 _I;Pk J+’;m|n<Pk E 1)' (A6)

andd = 01 + 62. The assumption of independence simplifies - -

the problem’s treatment, though it is obviously an idealiza- In the Poisson case, if we denote B¥i(r) and N»(t)

tion. In practice, the probability of a layer being counted asthe number of eventy_, pk"l andy", p]fz until time ¢, re-

part of both categories is generally so low that it does notspectively, then the difference between the two Poisson pro-

materially affect the results. A stochastic parameterization ofcessesvy (1) — N2(¢) is known to follow a Skellam distribu-

the increment matrix may thus be expressed as follows: tion (Skellam 1946 with parameters; = 617 andi, = 6ot,

. ) _ ; which is given by

Vielln—1], Aj=1+ Pl.l—mln<Pl.2,l), (A3) o
|k

_ Al
. _ Pr{N1(t) — No(t) =k} = e~ M1t [ = 2/ h2),
where the perturbauor{stk :k =1, 2} are random variables (N () 2(1) b=e Ao ( ! 2)

representing Poisson incrementgant 1) with rated; > 0 (A7)
or the outcomes of a Bernoulli process with trial probability ) -~ ] . .
6. In both instances, one may choose parameters so that thyherel, (x) is a modified Bessel function of the first kind

variables are zero most of time, except for a relatively small(€-9-Abramowitz and Stegyri963. The Skellam distribu-
tion is plotted in Fig.A1, and we here summarize its main

2f(h) = o(h) is a function such th&% goes to zero with properties:
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1. Its mean is equal td; — Ao, its variance to.1 + As. 3. Fori; = A2 large enough, it is well approximated by a
normal distribution\ (0, A1 + A2); thus the difference
between the Poisson model and the binomial model
(which also converges to a normal distribution) be-
comes negligible.

2. For A1 = A2, the distribution is symmetric, centered at
Zero.
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