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Abstract. The ability to precisely date climate proxies is
central to the reconstruction of past climate variations. To
a degree, all climate proxies are affected by age uncertain-
ties, which are seldom quantified. This article proposes a
probabilistic age model for proxies based on layer-counted
chronologies, and explores its use for annually banded
coral archives. The model considers both missing and dou-
bly counted growth increments (represented as independent
processes), accommodates various assumptions about error
rates, and allows one to quantify the impact of chronologi-
cal uncertainties on different diagnostics of variability. In the
case of a single coral record, we find that time uncertainties
primarily affect high-frequency signals but also significantly
bias the estimate of decadal signals. We further explore tun-
ing to an independent, tree-ring-based chronology as a way
to identify an optimal age model. A synthetic pseudocoral
network is used as testing ground to quantify uncertainties in
the estimation of spatiotemporal patterns of variability. Even
for small error rates, the amplitude of multidecadal variabil-
ity is systematically overestimated at the expense of interan-
nual variability (El Niño–Southern Oscillation, or ENSO, in
this case), artificially flattening its spectrum at periods longer
than 10 years. An optimization approach to correct chrono-
logical errors in coherent multivariate records is presented
and validated in idealized cases, though it is found difficult
to apply in practice due to the large number of solutions. We
close with a discussion of possible extensions of this model
and connections to existing strategies for modeling age un-
certainties.

1 Introduction

A peculiar feature of the Earth sciences is that the indepen-
dent variable used to peer into Earth’s past (the age of the
sample) is always uncertain to some degree. In paleoclima-
tology, time uncertainties depend on the record’s structure,
which belongs to one of two categories:

1. Tie-point chronologies, which include most sedi-
mentary and speleothem archives. Such records are
dated via a one-to-one mapping between sample
depth and age (that is, an age model). This model
typically assumes a piecewise-continuous accumula-
tion rate, constrained by a relatively small number
of radiometrically determined tie points (e.g.,14C
dates for sedimentary archives, or U/Th dates for
speleothem archives). Alternatively, when radiomet-
ric dating proves impossible, records are often dated
by “tuning” to a reference chronology, either derived
astronomically (orbital tuning; e.g.,Bender, 2002;
Hays et al., 1976; Lisiecki and Raymo, 2005; Martin-
son et al., 1982) or derived from a better-constrained
chronology such as the GISP2 record (Grootes et al.,
1993) or the Hulu Cave chronology (Wang et al.,
2001).

2. Layer-counted chronologies, for instance tree rings,
varved sediments, ice cores, some speleothems and
annually banded corals. For such records, a chronol-
ogy is obtained by equating the layer count with the
number of years or seasons of archive accumulation
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elapsed since the creation of the topmost (most re-
cent) observed layer. Equivalently, layers may be iden-
tified through observation of a seasonally or annually
varying quantity such as isotopic composition (Fair-
banks and Dodge, 1979). Layer-counted chronologies
are assigned ages relative to a modern tie point un-
less supplemented by independent age controls, such
as by radiometric dating (e.g.,Cobb et al., 2003; Shen
et al., 2013), and often assume continuous time res-
olution unless observations indicate otherwise (e.g.,
St. George et al., 2013).

Although records from banded archives can often reach
subannual precision, they are not time certain and these un-
certainties can have a large influence on variability and co-
herence between the records. Tree-ring chronologies are gen-
erally considered the most accurately dated, because – unlike
other proxy types – they are often built from a large num-
ber of records. Nonetheless, they require adjustments (cross-
dating) to optimize coherence across nearby sites (e.g.,Dou-
glass, 1941; Fritts, 1976; Wigley et al., 1987; Cook and Kair-
iukstis, 1990; Yamaguchi, 1991; Stokes and Smiley, 1996).
Similarly, although the quoted uncertainty on ice core layer
counting is typically on the order of 2 % (Alley et al., 1997b),
this value reflects the reproducibility from one chronolo-
gist to the next, not the uncertainty about the true date.
Seimon(2003) thus showed how two nearby Andean ice
cores (Thompson et al., 1985) differed widely when plot-
ted against their published timescales, but that simple ad-
justments based on volcanic tephra markers could bring the
records into excellent agreement. Finally,Emile-Geay et al.
(2013) showed how minor age uncertainties in several high-
resolution records (in particular coral chronologies) could
mute interannual signals in a multiproxy reconstruction of
tropical Pacific sea surface temperature.

Time uncertainties pose a serious challenge to the anal-
ysis of paleoclimate signals, as the mathematical machin-
ery devoted to time series analysis (e.g., spectral analysis,
singular spectrum analysis, wavelet analysis) or multivariate
analysis (e.g., principal component analysis, regression anal-
ysis, climate field reconstruction) implicitly assumes a per-
fectly known time axis. In the non-banded case, this prob-
lem was recognized early on and motivated the use of tun-
ing, though this approach is not without dangers (Blaauw,
2012). Recently, several studies have chosen instead to ex-
plicitly take time uncertainties into account (Huybers and
Wunsch, 2004; Blaauw, 2010; Haam and Huybers, 2010;
Blaauw and Christen, 2011; Rhines and Huybers, 2011; Bre-
itenbach et al., 2012; Anchukaitis and Tierney, 2012), which
has greatly helped quantifying the uncertainties inherent to
the interpretation of climate signals in such records.

To our knowledge, banded records have not spurred sim-
ilar modeling efforts, with the notable exception ofRhines
and Huybers(2011), whose model targeted long ice-core
chronologies like that of GISP2 (Alley et al., 1997b). Their

study used a discrete random walk, which assumes that the
probability of missing a band, or counting a band twice, is
symmetric. However, these probabilities are likely asymmet-
ric for most proxies. Further, the model forced the authors
to make some unphysical choices in order to match pub-
lished estimates of age uncertainties. The model we propose
is formulated more intuitively in terms of the probabilities
of miscounting a band, and naturally allows for asymmetries
in the probability of missing or doubly counting a band. Our
work also applies the model to multivariate data sets and ex-
plores ways to correct for age errors using information shared
amongst similar records.

Since dendroclimatology has dealt with layer-counted
chronological errors for decades, it would be tempting to
draw from their extensive literature for other proxy classes.
Unfortunately, extending dendrochronological techniques to
other proxy types spanning large spatial scales is problem-
atic, because cross-dating relies on the existence of a strong
common signal shared among series. This assumption is well
suited to trees within a restricted biome but may no longer
be valid for other proxy types with banded age models (ice
cores, annually banded corals, varved sedimentary records),
either because too few (if any) replicates are available at
a given site or because one is interested in synchronizing
records across a wide geographical area (e.g., a pan-Pacific
coral network), where the common signal may be weaker.
Nevertheless, this approach was successfully applied to repli-
cated coral records from the reefs offshore of Amédée Island,
New Caledonia (DeLon et al., 2007; DeLong et al., 2013),
and from the Gulf of Mexico (DeLong et al., 2011).

In this article we propose a new probabilistic age model
for layer-counted records (Sect.2.1) and use it to quantify
the consequences of such errors in single- and multiproxy
applications. Implicit in our approach is the assumption that
optimal sampling strategies were utilized, so chronological
errors are a leading source of uncertainty. We first use the
model to quantify the uncertainty associated with spectral es-
timates from univariate coral series (Sect.2.2). We then gen-
eralize this framework to the multivariate setting (Sect.3.1),
evaluating the impact of chronological uncertainties on prin-
cipal component analysis derived from a pan-Pacific coral
network (Sect.3.3). Leveraging the mutual information from
these signals, we then propose a method to correct for age
uncertainties in banded records (Sect.4), which we validate
on synthetic data. Discussion follows in Sect.5.

2 Banded age model: design and application

2.1 Univariate model formulation

We denote a banded time series as{x, t}, wherex is the se-
quence ofn observations andt its corresponding chronology
(i.e., theith measurementxi is assigned a timeti for i taking
values in{1, . . . ,n}). The time axis is modeled as follows:
starting from the most recent observation (collection date)
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t1 = tf , whose date is assumed to be known exactly, earlier
times are deduced by assuming that observations are consec-
utive (see Fig.1), so previous observationsti , i ∈ {2, · · · ,n}

follow the relation

ti = ti−1 − 1i, (1)

where1 is a vector of time increments taking integer val-
ues. In this study, we do not consider records derived from
multiple-year sampling intervals (Linsley et al., 2006, 2008)
nor bulk averages (Hendy et al., 2002; Calvo et al., 2007),
which are straightforward extensions of our model. Thus, for
error-free annually banded proxies,1i = 1 = 1 year exactly
(Fig. 1a). Several sources of error, however, may perturb this
ideal chronology. For instance, a coral may fail to form a
band during a year of particularly poor growing conditions
(related to water turbidity, excessive temperature, or other
ecological factors) or years may be missing due to sampling
artifacts (e.g., core breaks); a tree may fail to form an annual
growth increment in an excessively dry or cold year; an ice
core may miss a layer due to low deposition or high wind
ablation that year; and a varved sediment core may miss a
year because of low productivity in that particular year. Con-
versely, a single (large) coral band, in a fast growth state,
may be associated with two (multiple) consecutive years in-
stead of a single one. Additionally, stress bands or changes in
growth orientation (e.g., Fig.1c) may also create “false” sec-
ondary bands (seeAlibert and Kinsley, 2008; DeLong et al.,
2013). Thus, in reality, each entry1i can take any positive in-
teger value (to preserve the layer superposition principle), al-
though1i = 1 most of the time. Considering that error rates
are typically asymmetric (with double counting being more
common than missing years;DeLong et al., 2013), we use
a stochastic model (AppendixA), in which the increment
vector comprises two independent stochastic processesP θ1

andP θ2, with parametersθ1 andθ2, representing the rates of
missing and doubly counted bands, respectively.

Age errors are cumulative: for a 100-year-long record, an
error rate of 5 % forθ1 andθ2 will lead to offsets as large as
±5 years by the beginning of the sequence, with a probability
of ∼ 15 % (cf. the shifted initial dates of the perturbed signals
in Fig. 2b). Although there is partial compensation between
over- and undercounting, leading to a zeroexpectedoffset in
the symmetric case, this expectation is misleading. Indeed,
assuming the independence of age errors from one record to
another, there is a roughly 2 % chance that the oldest date of
each record will be offset by as many as 10 years (Eq.A7).
Though such probability is low, it is non-negligible, and we
shall see in Sect.3.3that in the case of a multivariate data set
it may severely bias the estimation of spatiotemporal modes
of variability, far beyond the annual scale.

This error model may be used in two ways, as illustrated
in Fig. 2 with simple sinusoidal signals:

i. Starting from an error-free chronology (Fig.2a), one
may perturb it by randomly removing or duplicating

Fig. 1. Coral core X-radiographs:(a) top of a core from Mange
Reef, Tanzania (Cole, unpublished). Each layer shows the chang-
ing density of the coral growth over a year. Observationxi could
be theδ18O measured from theith layer (most likely correspond-
ing to1i = 1 year). The collection datet1 and the oldest onetn are
also shown to illustrate our notation;(b) top of a core from Onotoa,
Republic of Kiribati (Thompson, unpublished) showing weak sea-
sonality and annual density banding;(c) Fanning Island fossil coral
V33, aged∼ 6500 years old (Cobb et al., 2013), with a varying
growth axis, which typically requires multiple sampling transects.

layers whenP θ1
i ≥ 1 orP θ2

i ≥ 1, and linearly reassign-
ing time to the corresponding observations (Fig.2b).
This allows one to explore the effect of age errors in
idealized scenarios.

ii. Starting from a real chronology, which inevitably con-
tains errors (Fig.2b), one may use the model to gener-
ate plausible corrections, given some knowledge of the
miscounting rate (Fig.2c shows the signals corrected
with the true-age model). In this case, extra data entries
must be inserted whereP θ1

i ≥ 1, while layers must be

removed whereP θ2
i ≥ 1.

The former case requires interpolation of the data where lay-
ers are believed to be missing. While linear interpolation is
often used for simplicity, it tends to suppress high-frequency
variability, hence potentially distorting a record’s spectrum.
To preserve the intrinsic autocorrelation structure of the time
series, we use singular spectrum analysis (SSA;Broomhead
and King, 1986; Fraedrich, 1986; Vautard and Ghil, 1989)
and its missing value counterpart (SSAM) (Schoellhamer,
2001) to reconstruct the time series including miscounted
layers. SSAM was shown to preserve the variance for as
many asM2 missing points within a sliding window of sizeM
(Schoellhamer, 2001). In specific applications, other meth-
ods would be relevant (e.g., the Lomb–Scargle periodogram
(Mudelsee et al., 2009) for spectral analysis with missing
data), but interpolating with SSAM allows us to apply other
analysis methods without further modification, which will
prove useful in multivariate applications (Sect.3).
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Fig. 2. Illustration of the phase distortion of coherent signals due
to miscounted annual bands withθ1 = θ2 = 0.05 and a collection
datet1 = 100.(a) Five hypothetical and identical harmonic signals
shifted vertically for clarity;(b) the same signals after introduc-
ing age perturbations and making the (erroneous) assumption that
1 layer amounts to 1 year (note the loss of coherency reflected in the
ensemble mean in gray, which is performed as part of composites
in most climate reconstructions);(c) the same age-perturbed sig-
nals, after correcting for miscounted bands and interpolating miss-
ing data with SSAM.

2.2 Uncertainty quantification in coral records

The above model is now applied to two coral data sets. The
first one is the Havannah Island fluorescence record (Isdale
et al., 1998), chosen for its particularly long, continuous time
span. Because the record already contains dating inaccura-
cies, we attempt to correct for age errors as explained in
Sect.2.1(ii). The age uncertainty in coral records is not usu-
ally known, because many of them are not site-replicated.
However,DeLong et al.(2013) suggested an error rate from
−2.1 to 3.7 % in unreplicated samples. Error rates may be
higher at sites with weak seasonality (Fig.1b) or in cores
with varying growth structures (Fig.1c). We thus assume a
conservative error rate of 0.05 for both missing and doubly
counted annual bands (i.e.,θ1 = θ2 = 0.05) and generate an
ensemble of 1000 plausible age-corrected realizations. The
95 % confidence interval (CI) of the realization ensemble is
shown along with the original time series in Fig.3a.

The corresponding spectral densities were estimated in
Fig. 3b using the multi-taper method (MTM;Thomson,
1982) for each age model realization with a conservative
time-bandwidth product of 7/2 (results are insensitive to this
choice).

It is generally presumed that dating errors should affect
the estimation of interannual variance most strongly, but only
negligibly affect decadal signals. Figure3b shows this ex-
pectation to be approximately correct, though the impact on

decadal variability is substantial. Indeed, the width of the
confidence bands roughly triples from periods of 50–5 years.

It is, however, noteworthy that the spectral uncertainties
due to the age perturbations (shaded area) are markedly nar-
rower than the uncertainties in the spectral estimates them-
selves (dashed lines, obtained via standardχ2 intervals),
even though a widening of the ensemble spread can be ob-
served as the frequency increases. This result persists with
the robust method ofChave et al.(1987) and its associated
jackknife intervals.

To check that those results are not an artifact of the choice
of coral time series, we repeat this analysis on aδ18O record
from Palmyra Island (Cobb et al., 2003). Figure3c shows
the cold-season average (December-January-February, DJF)
of a continuous splice (1636–1703) of this record, together
with the width of the age-perturbed ensemble usingθ1 =

θ2 = 0.05. Figure3d shows the impact of age uncertainties
on the estimated spectrum, and confirms the previous re-
sults: spectral energy of time-uncertain data sets leaks from
the interannual band to lower frequencies, but chronologi-
cal uncertainties generally produce narrower intervals than
those due to the spectral estimation process. Although this
record was obtained from a fossil sample for which the top-
most layer was U/Th dated, in this experiment we did not in-
clude the U/Th dating uncertainties since no spectral defor-
mation should arise from sliding the whole sequence across
the U/Th error window.

2.3 Age model identification

We have shown how the model described in Sect.2.1can be
used to generate ensembles of plausible chronologies for any
banded record given some a priori estimate of chronological
errors. Learning from other data series with more replicated
and accurate chronologies can then be used to choose an opti-
mal chronology from an ensemble of plausible chronologies.
For example,Li et al. (2011) adjusted age assignments of
U/Th-dated fossil Palmyra Island corals, observing that the
correlation between the nominally dated modern record, and
the first principal component of the North American Drought
Atlas (NADA PC1), interpreted as a proxy for El Niño–
Southern Oscillation (ENSO)-related hydroclimatic variabil-
ity, was highly significant over the 1891–1994 time period.
They then used this property to align the older sequences,
before the onset of the instrumental period, to NADA PC1
within the range of U/Th dating error. To identify an optimal
chronology, we similarly choose the realization that maxi-
mizes the correlation between the Palmyra coral record and
the NADA PC1 during their periods of overlap (Fig.4). As
in Li et al. (2011), we account for the estimated±10 years
U/Th dating errors by shifting the final timetf of the en-
semble of plausible chronologies generated with our model
across a 21-year window, so the ensemble size is 20 times
larger than in the knowntf case. For convergence purposes,
here we chose to use an ensemble size of 104 and the same
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Fig. 3. Ensemble realization (top) and power spectra (bottom) of age-perturbed coral data for(a, b) Havannah Island (Isdale et al., 1998)
and (c, d) Palmyra Islandδ18O record from 1636 to 1703 (Cobb et al., 2003), where the top layer is U/Th dated. The original data and
corresponding spectral estimates are shown in red, and the 95 % confidence intervals (CIs) and the 25–75 % interquartile range (IQR) of
the perturbed data ensemble and corresponding spectra are shown by the shaded areas. Power spectra are represented in variance-preserving
coordinates (that is, the area under the curve is an exact measure of the variance contained in each frequency band).

error rates as in the previous section (θ1 = θ2 = 0.05). The
selected chronologies (blue curves in the top Fig.4) improve
the correlation coefficient of the individual series to NADA
PC1 by a factor of 3 relative to the published chronologies
(before dating errors were corrected). Those results are com-
parable to the improvement obtained inLi et al. (2011) after
adjustments.

A caveat of this approach is that it assumes a perfectly
known NADA PC1 chronology, whereas in reality it is also
estimated from layer-counted archives. For a full appraisal of
uncertainties in this synchronization process, one would ide-
ally apply this approach to the NADA records as well. How-
ever, the large number of cross-dated tree-ring chronologies
in NADA (several thousand over this time interval) makes
it likely that these uncertainties are negligible compared to
those associated with coral dating.

3 Multivariate generalization

Climate proxies are increasingly used as part of large-scale
data syntheses (e.g.,PAGES2K Consortium, 2013; Marcott
et al., 2013; Tierney et al., 2013; Tingley and Huybers, 2013).
We thus generalize the previous model to the case of a multi-
variate network and investigate the effect of age errors on the
estimation of spatiotemporal modes of climate variability.

3.1 Model formulation

Let us consider a multivariate banded data set{ζ ,τ }, with
ζ the data matrix containingn proxy measurements atp lo-
cations (for instance,δ18O or Sr/Ca) andτ the time matrix.
Each entryζij , (i,j) ∈ {1, . . . ,n} × {1, . . . ,p} corresponds to
theith observation at thej th location, and is assigned a time
τij = t

(j)
i . At each locationj , miscounting events are repre-

sented by independent stochastic processesP θ1j andP θ2j (for
missing and double bands, respectively; see AppendixA).
This formulation allows different error parametersθ1j andθ2j
for each locationj .

As in Eq. (A3), errors are cumulative and may lead to im-
portant age offsets in the earlier portions of the data set. To
see this, consider the situation depicted in Fig.2, which con-
siders five coherent, monochromatic signals. Age errors on
these harmonic signals were simulated according to Eq. (A5),
usingθ1j = θ2j = 0.05. The figure illustrates how even small
age offsets introduce phase distortion that lowers the co-
herency between signals, producing an apparent amplitude
modulation of the periodic component, whose amplitude ap-
pears to grow over time. In Sect.4 we exploit this property to
identify age models based on their ability to correct for this
loss of coherency.

3.2 Pseudocoral benchmark

To illustrate the use of the model described above, and to val-
idate our approach, we need a data set that is free of chrono-
logical errors and measurement noise. We thus consider a
“pseudocoral” network of 22 corals, derived from simulated
climate fields. Pseudocoral locations (Table1) were chosen
to mimic the position of publicly available1 coral δ18O ob-
servations with a resolution better than 2 months (Fig.5).

The pseudocoral observationsC = {ζ ,τ } were simulated
according to the forward model ofThompson et al.(2011),
a simple representation of the effects of temperature and sea
water isotopic variation on the oxygen isotope composition
of coral aragonite:

ζij = a1SSTij + a2SSSij + σ · εij , (2)

1http://www.ncdc.noaa.gov/paleo/corals.html
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using the aligned Palmyra chronologies, andρ0 using the original
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wherea1 anda2, locally constant coefficients, describe the
dependence of oxygen isotopic equilibrium on the tempera-
ture of carbonate formation and the regional relationship be-
tween SSS and sea waterδ18O, respectively.ε ∼N (0,1) is
an uncorrelated standard Gaussian white-noise process, and
SST and SSS stand for sea surface temperature and sea sur-
face salinity, respectively.Thompson et al.(2011) demon-
strated that this simple model ofδ18Ocoral is able to capture
the dominant modes of variability observed in corals when
driven with instrumental SST and SSS.

The SST and SSS fields were extracted from the CMIP3
“H1” simulation of the Geophysical Fluid Dynamics Labora-
tory (GFDL) Coupled Model 2.0 (Knutson et al., 2006). The
GFDL CM2.0 model is a state-of-the art coupled general cir-
culation model whose performance at simulating tropical Pa-
cific climate is extensively described (Wittenberg et al., 2006;
Capotondi et al., 2006; Vecchi et al., 2006; Kug et al., 2010;
Xie et al., 2010). Briefly, the model successfully captures the
observed annual-mean trade winds and precipitation, sea sur-
face temperature, surface heat fluxes, surface currents, Equa-
torial Undercurrent, and subsurface thermal structure. CM2.0
displays a robust ENSO with multidecadal fluctuations in
amplitude, an irregular period between 2 and 5 years, and a
distribution of SST anomalies that is skewed toward warm

events as observed. Although the model is limited by biases
common to other coupled GCMs, it provides a virtual labora-
tory of adequate realism to explore the impact of pseudocoral
sampling with chronological errors. The data cover the inter-
val [1860, 2000]; the monthly output was averaged over the
DJF months to sample the period of most intense ENSO tele-
connections. Our pseudocoral matrix thus containsn = 140
samples atp = 22 sites.

In the remainder of the paper, we will useC, the pseudoco-
ral observation matrix and chronology, as a multivariate test-
ing ground for our method – in effect, a perfect model sce-
nario. For this study, we limit ourselves to the noiseless case
whereσ = 0, though in principle one would have to account
for observational noise. Since our interest lies primarily in
assessing uncertainties arising from chronological errors, a
noise-free matrix is an appropriate first step. We generate
an ensemble of age-perturbed realizations of the pseudoco-
ral data set by disturbing the chronologyτ according to the
model of Sect.3.1using againθ1 = θ2 = 0.05.

3.3 Uncertainty quantification

Inspired by the work ofAnchukaitis and Tierney(2012), we
first seek to quantify the effect of age uncertainties on the
estimation of spatiotemporal modes of variability. Since the
CM2.0 model simulates a vigorous ENSO, we seek to an-
swer the following question: were tropical climate variabil-
ity sampled according to the network of Table1, how faith-
fully would ENSO variability be captured in the presence of
chronological uncertainties? Figure5 shows the result of a
principal component analysis applied on the error-free net-
work, together with an identical analysis applied to the time-
perturbed ensemble. The visualization is analogous to that of
Tierney et al.(2013, their Fig. 2).

The unperturbed mode accounts for 25 % of the total vari-
ance, and is dominated by the contributions of central and
eastern Pacific pseudocorals. Its principal component (PC)
is characterized by a concentration of variance in the in-
terannual band (Fig.5c, red curves), and its spatial struc-
ture (light colored dots with white outline) closely matches
the SST pattern obtained by regressing the principal compo-
nent onto the SST field, meaning that SST dominates SSS
in Eq. (2), at least on interannual timescales. The same map
presents results from the time-uncertain ensemble, showing
that in the presence of time uncertainties the vast majority
of strong positive loadings (dark-colored disks, circled in
black) tend to shrink compared to their unperturbed coun-
terparts (light-colored disks, circled in white). The picture is
less clear for negative loadings, but those exert a lesser con-
trol on the overall structure. In the age-perturbed ensemble,
the amount of variance explained by the ENSO mode ranges
between 6 and 10 % (median value: 8 %) down from 25 % for
the error-free data. In such cases, the ENSO mode thus ceases
to be the leading mode, as most of its energy is transferred
to a trend mode similar to the one identified byThompson
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Table 1.List of coral locations used for the EOF analysis of Fig.5. The records were obtained from the database ofEmile-Geay and Eshleman
(2013) after selecting data sets that recordδ18O and cover the period 1860–1980.

Site Measurement Latitude Longitude Range Reference

1 Abrolhos δ18O 28.46◦ S 113.77◦ E 1794–1994 Kuhnert et al.(1999)
2 Amedee Light. δ18O 22.48◦ S 166.45◦ E 1660–1993 Quinn et al.(1998)
3 Bunaken δ18O 1.50◦ N 124.83◦ E 1860–1990 Charles et al.(2003)
4 Clipperton Atoll δ18O 10.30◦ N 109.00◦ W 1893–1994 Linsley et al.(2000)
5 Guam δ18O 13.00◦ N 145.00◦ E 1790–2000 Asami et al.(2005)
6 Ifaty δ18O 23.14◦ S 43.58◦ E 1659–1995 Zinke et al.(2004)
7 La Reunion δ18O 21.03◦ S 55.25◦ E 1832–1995 Pfeiffer et al.(2004)
8 Laing δ18O 4.15◦ S 144.88◦ E 1884–1993 Tudhope et al.(2001)
9 Lombok Strait δ18O 8.25◦ S 115.50◦ E 1782–1990 Charles et al.(2003)
10 Madang δ18O 5.22◦ S 145.82◦ E 1880–1993 Tudhope et al.(2001)
11 Mafia δ18O 8.02◦ S 39.50◦ E 1622–1722 Damassa et al.(2006)
12 Mahe δ18O 4.62◦ S 55.00◦ E 1846–1995 Charles et al.(1997)
13 Maiana Atoll δ18O 1.00◦ N 173.00◦ E 1840–1994 Urban et al.(2000)
14 Mentawai δ18O 0.13◦ S 98.52◦ E 1858–1997 Abram et al.(2008)
15 Moorea δ18O 17.50◦ S 150.00◦ W 1852–1990 Boiseau et al.(1998)
16 Ningaloo Reef δ18O 21.91◦ S 113.97◦ E 1878–1995 Kuhnert et al.(2000)
17 Palmyra δ18O 5.88◦ N 162.00◦ W 1886–1998 Cobb et al.(2001)
18 Rabaul2006 δ18O 4.19◦ S 151.98◦ E 1867–1997 Quinn et al.(2006)
19 Rarotonga(2R) δ18O 21.24◦ S 159.83◦ E 1726–1996 Linsley et al.(2008)
20 Rarotonga(3R) δ18O 21.24◦ S 159.83◦ E 1874–2000 Linsley et al.(2006)
21 Ras Umm Sidd δ18O 27.85◦ N 34.31◦ E 1751–1995 Felis et al.(2000)
22 Secas δ18O 7.98◦ N 82.00◦ W 1707–1984 Linsley et al.(1994)
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Fig. 5. Spatiotemporal uncertainty quantification on a pseudocoral network.(a) EOF loadings (circles) corresponding to the ENSO mode
of an ensemble of age-perturbed pseudocoral records with miscounting rateθ = 0.05. EOF loadings for error-free data are shown in light
colors circled in white, while the median and 95 % quantile are shown by dark disks and black-circled disks, respectively. Contours depict
the SST field associated with the mode’s principal component (PC)(b), whose power spectrum is shown in(c). Results for the time-uncertain
ensemble are shown in blue: median (solid line), 95 % confidence interval (light-filled area) and interquartile range [25–75 %] (dark-filled
area). Results for the original (error-free) data set are depicted by solid red lines. Dashed red lines denoteχ2 error estimates for the MTM
spectrum of the error-free data set.
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et al. (2011). In our case, the importance of this mode is
mainly an artifact of dating errors. A spectral analysis of the
age-perturbed PC (Fig.5c, blue colors) shows a systematic
increase in multidecadal variability (10–50-year periods) at
the expense of interannual variability. The transfer of power
from high to low frequencies may be seen by computing the
spectral slopeβ, where we fit the modelS(f ) ∝ f β to the
continuum of each spectrum (f ≤ 1/15). The spectrum of
the unperturbed ENSO PC has a slopeβ◦ = −0.72, while
the age-perturbed ensemble shows values centered around
a median valueβm = −0.22 with an interquartile range of
[−0.41,0]. The loss of coherency thus has the effect of flat-
tening the spectrum of the ENSO mode. Even when the error
rate is 50 times smaller (θ = 0.001), one still observes that
age uncertainties tend to exaggerate multidecadal (20 years
and longer) variations at the expense of interannual variations
(Fig.6). This may explain whyAult et al.(2009) found, using
a similar PCA approach, that their coral network exhibited
very energetic variability at such scales, with an amplitude
that grew back in time. The presence of small age uncertain-
ties could explain part of the multidecadal power enhance-
ment they observed in the late nineteenth century, since fewer
instrumental observations were available to provide chrono-
logical anchors to coral time series at that time than in the
twentieth century. Our analysis suggests that the accumula-
tion of age model uncertainty is one possible – non-climatic –
explanation for this apparent enhancement of low-frequency
variability in an all-coral network, though a more detailed
investigation (incorporating knowledge of error rates in each
of their records) would be required to evaluate this quantita-
tively.

4 Coherence-based identification of age models

As in Sect.2.3, one would like to choose an optimal chronol-
ogy among the ensemble of competing age models. To do so,
we apply an optimization principle based on the idea that all
pseudocorals in our network share some information about a
common signal (ENSO in our pseudocoral benchmark). In-
deed, coral networks have been shown to record spatiotem-
porally coherent climate modes (Evans et al., 1998, 2000,
2002), a property shared by our pseudocoral network bench-
mark (Fig.5). Moreover, we showed in Sect.3.3that chrono-
logical errors lead to a loss of coherency among records;
that is, we expect age errors to lower interannual coherency
among records compared to what it might otherwise be.
While chronological uncertainty is not the only source of
discrepancies among records (indeed the sampling of corals
alone may be challenging due to their biologically mediated
origins of layers), several studies (Hendy et al., 2002; De-
Lon et al., 2007; DeLong et al., 2013) highlight chronolog-
ical uncertainties associated with coral reconstructions as a
main cause for loss of coherency between records. One way
to correct for this effect is to pick the age model that maxi-
mizes interannual coherency between measurements.
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Fig. 6.Spectral density of the ENSO mode PC forθ = 0.001. Com-
pare to Fig.5, bottom right.

This exercise is, however, complicated by the large dimen-
sionality of the space of possible solutions. The dimension-
ality may be estimated in several ways: assuming that age
perturbations follow a Bernoulli process, ann × p data ma-
trix admits up to 3np age perturbation matrices. This number
quickly becomes astronomical, even for moderaten andp

(an NP-hard problem). A more relevant measure, however, is
the number of solutions for a given error rate. Given a sym-
metric error rateθ1 = θ2 = θ , one expects, on average,

( np

θ̃np

)
(wherex̃ denotes the nearest integer ofx) plausible solutions,
which induces a serious computational challenge. This is il-
lustrated in Table2, which charts the number of solutions for
various values ofnp andθ .

In practice, we generate an ensemble ofL = 105 time per-
turbations1 = {1(1),1(2), . . . ,1(L)

} according to Eq. (A5),
and choose an optimal chronology amongst those realiza-
tions. The optimization principle is described next.

4.1 Optimization scheme

Because age errors tend to lower coherency amongst records
(Fig. 2), the quantity we seek to maximize is the generalized
magnitude squared coherency (GMSC;Chakrabarty et al.,
2002; Ramirez et al., 2008, 2010), an extension of the tra-
ditional coherency to more than two time series. More pre-
cisely, we maximize this quantity over the interannual band,
where age perturbations have the largest effect on coherency.
The method proceeds as described in Algorithm 1 (Table3).

4.2 Method validation

To check that the above principle can identify the correct
age model, we employ the following strategy. A reference
age-perturbation process is used to alter the chronology of
the error-free pseudocoral data set described in Sect.3.3. We
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Table 2. Complexity as a function ofθ and the matrix dimension
np. Infinity symbols denote numbers that exceed machine capacity.

np | θ 0.01 0.03 0.05 0.07 0.09

50 2× 102 4× 105 4× 108 1011 3× 1013

100 5× 104 1× 1012 1× 1018 3× 1023 2× 1028

1000 9× 1053 1× 10132 5× 10195 4× 10250 3× 10299

5000 1× 10277
∞ ∞ ∞ ∞

then generate an ensemble of age corrections (Sect.3.1), for
the reference perturbed data setC∗

:= {ζ ∗,τ ∗
} yielding an

ensemble of candidate age-corrected data sets, and apply the
optimization scheme described above. We then verify the va-
lidity of our model by comparing the retained chronology to
the true one.

For a givenθ , the verification algorithm is explained in
Algorithm 2 (Table3).

The results (Fig.7) show the rapid loss of coherency over
the interannual band as more age errors (increasingθ param-
eter) are introduced in the time series. Indeed, theθ = 0.001
case brings the vast majority of the time-uncertain ensemble
spectra under the coherence spectrum of the original time
series, and theθ = 0.05 case suppresses nearly all the co-
herency for periods shorter than 4 years, and greatly subdues
the original peak around 5 years.

For θ = 0.05, the optimization principle failed to identify
the correct age model, as no single realization of the cor-
rected ensemble presented high GMSC values in the interan-
nual band. The issue stems from the very high dimensionality
of the space of plausible age corrections (Table2), which re-
sults in the inability of our sampled ensembles to span the
solution space effectively. We attempted to use a Latin hy-
percube sampling scheme in an effort to cover the solution
space more effectively; however we did not notice any ma-
jor improvement compared to the Monte Carlo ensemble re-
sults. More work is required here to find efficient sampling
techniques.

One way to evaluate the potential of this method to accu-
rately portray uncertainties is to compute the actual coverage
rates (Guttman, 1970) of CIs derived from our ensemble. To
do so, we evaluate the probabilities that the ensemble CIs
cover the original data set, and compare those to their nom-
inal value of 95 % (Table4). As θ increases, so do time un-
certainties, thereby widening the confidence interval of the
ensemble. The coverage probability remains high for allθ ,
since the error-free data lie within the corrected ensemble
nearly 98 % of the time. Our CIs are thus slightly conserva-
tive.

While the difficulty in solving this NP-hard optimization
problem gives little hope of finding the correct age model
even for the smallestθ (note from Table2 that the expected
number of plausible chronologies to correct 1 % age errors is
on the order of 1015), we here show that the coherence-based
optimization principle can indeed bring the age model closer
to the correct one.

To see this quantitatively, one first needs to define a
distance over age model space. The Hamming distance
dH (x,y) (Hamming, 1950) between two vectorsx andy in
Rn provides such a metric.dH (x,y) is defined as the pro-
portion of corresponding coefficients positions in which they
differ, i.e.,

dH (x,y) =
1

n

n∑
i=1

di,

where

di =

{
1 if xi = yi

0 otherwise.
(3)

Because departures from unity in1 are of prime interest,
this metric is a good one to differentiate time-shifted records
from one another. We generalize the Hamming distance to
our matrix case simply by computing and adding together
the distances at each locationj , then dividing byp.

In the following experiment, we sample ensembles of
chronologies in a restricted neighborhood around a reference
age-perturbed data setC∗. In this context, for each time per-
turbation inC∗, we sample an age correction within a neigh-
borhood of size 2∗ Nv + 1, centered around a known mis-
counted band.

Four age-corrected ensembles are generated using a neigh-
borhood size expanding fromNv = 1 to Nv = 10 annual
bands on either side of the true one. For each sampled re-
alization, we evaluate the Hamming distance to the error-
free chronology and compute the global coherence spectrum.
For each ensemble, we construct its corresponding Hamming
distance distribution and extract the realization that maxi-
mizes the GMSC according to Algorithm 1 (Table3). In
Fig. 8, the results for each ensemble is color-coded so that
one can relate the coherence spectra to the Hamming dis-
tance distributions. The green color refers to the reference
perturbed data set with an error rateθ = 0.05, and the red
is reserved for the original time series. The dark blue, blue,
pink and light brown show the results forNv = 1, 4, 7, and
10, respectively. We observe an increase in the mean of the
distance distribution as the size of the neighborhoodNv ex-
pands, yet for all the realizations the distance to the error-free
chronology was reduced relative to the distance between the
reference and the true chronologies. This experiment shows
that when the age-model ensemble includes the true solu-
tion, the optimization principle tends to effectively correct
the errors, in the sense that it reduces the Hamming dis-
tance between the original and corrected chronologies. On
the other hand, the realization that maximizes the GMSC for
each neighborhood ensemble does not consistently minimize
the Hamming distance (see the vertical bars of the ensem-
ble color in the bottom Fig.8); however, it, on average, ap-
pears on the lower half of each Hamming distance distribu-
tion. The black curve in the coherence spectra figure and the
line of the same color in the Hamming distance plot refer to
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Table 3.Computational steps to identify an optimal chronology.
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Fig. 7.Global coherence spectra for time-uncertain ensembles gen-
erated withθ1 = θ2 = 0.001 (orange),θ1 = θ2 = 0.01 (dark blue)
andθ1 = θ2 = 0.05 (gray). The ensemble medians are illustrated in
dashed lines, and their corresponding colored patches represent the
ensemble 95 % CIs. The thick red curve is the coherence spectrum
of the error-free time series.

Table 4.Time-uncertain ensemble 95 % CI width meansµ and stan-
dard deviationsσ , and probabilities of the ensemble CI covering the
original data with respect toθ .

θ 0.01 0.03 0.05 0.07 0.09

CI width, µ 0.38 0.47 0.50 0.53 0.55
CI width, σ 0.18 0.17 0.17 0.16 0.17
Coverage rate 0.97 0.99 0.97 0.98 0.98

the realization that achieves the maximum GMSC value, se-
lected from an unrestricted ensemble such as one generated
according to Eq. (A5). The sampling issue associated with
the extremely high dimensionality of the solution space can
be readily observed here, noticing that the realization maxi-
mizing the GMSC barely surpasses the reference coherence
spectrum in addition to its distance to the original chronology
exceeding the distance between the reference and true data.
The issue may be alleviated if there is some prior informa-
tion about the timing of age errors, for instance an observed
mismatch between how two series portray an event – like a
historic volcanic eruption – that should be synchronous.

5 Discussion

In this article, we put forth a probabilistic model for layer-
counted chronologies. The model was designed for univariate
as well as multivariate data sets, and is flexible enough to ac-
commodate location-specific and asymmetric error rates. We
used this model to generate ensembles of time-uncertain data
sets, which we analyzed using spectral methods and principal
component analysis.

In the univariate case, we showed that age perturba-
tions tend to blur variability between interannual and multi-
decadal scales. In the multivariate case, we showed that even
small age offsets between records may significantly lower
coherency between records, producing an apparent ampli-
tude modulation of high-frequency signals. These short-term
phase interferences thus led to long-term effects, exaggerat-
ing low-frequency variability at the expense of interannual
signals. This suggests that at least part of the reason for
the observed nineteenth century increase in the amplitude
of low-frequency variability (Ault et al., 2009) could be the
presence of age errors.

We also attempted to correct for age errors using an opti-
mization principle based on the global coherence of a mul-
tivariate record. The large dimensionality of the age model
space, however, made the random sampling scheme an inef-
ficient method of exploration. There is no easy way around
this problem. Nonetheless, we showed that our optimization
strategy was able to correct dating errors when sufficient re-
strictions were placed on the solution space, provided the
mutual information was sufficiently strong.

Clim. Past, 10, 825–841, 2014 www.clim-past.net/10/825/2014/



M. Comboul et al.: Chronological model for layer-counted proxies 835

50 20 10  5  2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Period (y)

G
lo

ba
l S

qu
ar

ed
 C

oh
er

en
cy

a) Coherence Spectra with neighborhood size   

 

 
Original series

Reference perturbed series

Max gmsc

N
v
 = 1

N
v
 = 4

N
v
 = 7

N
v
 = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
x 104

Hamming distance

F
re

q
u
e
n
c
y

b) Hamming distance distribution with neighborhood size    

 

 

Reference perturbed dataset
Max gmsc
N

v
=1

N
v
=4

N
v
=7

N
v
=10

Fig. 8.Coherence spectra (top) and Hamming distance distributions
to the original chronology (bottom) for ensembles of chronologies
sampled around the reference perturbation matrix (withθ = 0.05),
in restricted neighborhood of sizes 2∗ Nv + 1 for Nv increasing
from 1 to 10. The thick red curve represents the coherence spec-
trum for the error-free data, the results related to the reference per-
turbed data set are shown in green, and plotted in black are the re-
sults for the ensemble realization (sampled across the entire solution
space) that maximizes the GMSC for the neighborhood ensembles
(shaded areas): the 95 % CIs and Hamming distance distributions,
and corresponding realizations maximizing the GMSC (solid lines)
are shown in dark blue, blue, pink and light brown forNv = 1, 4, 7
and 10, respectively.

There are important limitations to our study. First and fore-
most, our framework assumes that the error rates are known.
Ideally, one would estimate the miscounting rate parameters
(θ1,θ2) from the data, which could be done in the presence of
independent information (replicated annual cycles in multi-
ple types of observations, absolute or independent age infor-
mation), and/or information such as the cumulative number

of material hiatuses, which may be correlated to the likeli-
hood of missing or double-counted events (e.g.,Brown et al.,
1992; Alley et al., 1997a; Juillet-Leclerc et al., 2006; Alibert
and Kinsley, 2008; DeLong et al., 2013). Future work with
the uncertainty algorithm might use such information to em-
pirically and adaptively reset accumulated age errors.

We also restricted our analysis to symmetric error rates,
which is an unlikely scenario according toDeLong et al.
(2013), who emphasized that double counting is typically
more common than missing years in coral records from the
reefs offshore of Amédée Island. Considering that the events
perturbing the chronologies are hidden states of the pro-
cess and are not being directly measured, a maximum likeli-
hood principle would have to be employed to evaluate the
error rate, which substantially complicates the problem of
designing a likelihood function. However, when the com-
mon signal driving the record is strong enough, a coherency-
based Bayesian approach could potentially learn from the
data. In this case, one would relax the assumption of known
miscounting rate parameters(θ1,θ2) in favor of prior dis-
tributions on those parameters, which would incorporate as
much scientific information as possible. In this regard, one
should note that most geochronologies are developed with
the purpose of producing the single best representation of
past changes. There would be merit in also providing raw
chronologies so that the error rate may be estimated via com-
paring it with other, absolutely dated records (for instance,
historical observations or chronostratigraphic markers). In
other words, we urge field scientists to report all the chrono-
logical information relevant to the characterization of these
error rates, rather than exclusively seeking to reduce them,
as this would greatly aid the quantification of uncertainties
associated with each record.

Second, we assumed that time perturbations follow a ho-
mogeneous Poisson process, with a uniform and symmetric
rate for all pseudocorals considered. In nature, each record
will display a different rate, and in situations of uneven dat-
ing conditions (e.g., annual bands being more or less visible
in a given time interval; see Fig.1b) an inhomogeneous Pois-
son process would constitute a more suitable model within a
single record. The error rate could change with the location
and age of the sample, and be informed by local expertise to
account for known climatic events that could have affected
the coral growth structures. Assessments of where and when
corals might have over- or undergrown impose restrictions
on the age model space, which would greatly improve the
ability of our optimization principle to identify the correct
chronology.

Third, we assumed that age perturbations taking place at
different locations are independent. Nonetheless, one could
easily conceive of a scenario in which a regional phe-
nomenon, such as ENSO extremes, would simultaneously
affect the growth of all corals located in one area. The
model would therefore have to include regional random time
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perturbations, which could be done by specifying parameters
conditional on the climate.

Fourth, we assumed that all records considered had annual
resolution, while in reality it could range from a month to
several years. Adapting the method to a network of variable
resolution would require the conditioning of the error rate
parameterθ on the resolution of the record’s chronology. For
instance, monthly data tend to present a lower error rate than
yearly data, due the presence of a well-defined annual cy-
cle, i.e., a seasonal cycle inδ18O in one or more paleodata
streams from the coral (and other annually layered archives)
that mostly “resets” age model uncertainty at some point in
the year. Yet monthly data would add subannual errors from
selecting incorrect tie points in the seasonal cycle and from
interpolating between tie points (e.g.,De Ridder et al., 2004),
particularly in regions where the seasonal cycle and annual
density banding are weak (e.g., key ENSO-sensitive regions
of the central Pacific, Fig.1b). Likewise, multiple-year sam-
pling intervals could have aliasing consequences that would
potentially add to age uncertainties.

Fifth, we assumed that the latest timetf is known exactly
(except in Sect.2.3), which is only true of records that grew
continuously until that point (e.g., living corals, living trees).
We could refine our fossil corals framework with a mixed
approach, where the age of tie points would be allowed to
vary according to their distribution (e.g., a Gaussian), and
the layer-count model would be extended on either side.

Finally, our optimization scheme was shown to be effec-
tive only in extremely restricted situations (error-free mea-
surements ofδ18O, age model ensemble spanning the true-
age model). It remains to be seen whether these conditions
could ever be met in practice. One potential problem is the
fact that the “clock” used to synchronize the records does
not beat periodically: ENSO is only a quasi-periodic phe-
nomenon, even in the GFDL CM2.0 model. Perhaps a more
regular (annual, semi-annual) cycle would provide stronger
synchronization constraints (but it would limit the analysis
to records that have seasonal or better resolution). Alterna-
tively, one could restrict the optimization process to small,
regional ensembles of proxies that share a stronger common
signal, much like dendrochronological approaches.

With these caveats in mind, several points deserve men-
tion. First, the simple example of Fig.2 demonstrates how
miscounting errors may produce an apparent amplitude mod-
ulation of otherwise stationary signals, producing spurious
trends in the average derived from them. Because climate re-
construction methods rely in some fashion on a weighted av-
erage of observations assumed to be contemporaneous, this
may partially explain why many ENSO reconstructions (e.g.,
Mann et al., 2000; Wilson et al., 2010; McGregor et al., 2010;
Li et al., 2011; Emile-Geay et al., 2013) display increasing
trends in ENSO variance over time (McGregor et al., 2013).
As pointed out in the latter study, computing ENSO vari-
ance on individual records prior to averaging them together is
more robust to chronological errors. In the meantime, inter-

preting trends in variance obtained from the average of age-
uncertain records as reflecting a response to external forc-
ing may be perilous. At the very least, a probabilistic model
such as the one proposed here can provide a null hypothesis
against which to assess such trends.

More generally, a model such as this one may be used to
evaluate the plausible impact of dating uncertainties on all
manner of inferences derived from time-uncertain records.
Just as proxy system models are now becoming a standard
tool to interpret environmental controls in paleoclimate prox-
ies, chronological models should become an integral com-
ponent of proxy system models for age-uncertain paleodata,
so that they may be used to improve interpretation, recon-
struction, uncertainty estimation, and data–model compari-
son studies (Evans et al., 2013). Because chronological errors
might themselves depend on climatic events (see Introduc-
tion), a complete proxy system model should in fact allow
environmental controls to influence chronological informa-
tion.

We hope this study stimulates a discussion on how to best
represent chronological uncertainty in layer-counted proxy
archives and leads to a better characterization of these uncer-
tainties.
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Appendix A

Stochastic model derivation

The stochastic model used to characterize the age uncertain-
ties may be derived as follows: let us denote by{Ni : i =

1,2, . . . ,n} n independent and identically distributed random
variables on the probability space{�,6,Pr} representing the
miscounting events on observed layers. EachNi is a count-
ing process on[ti, ti+1) taking values in the sample set� of
non-negative integers andNi = 0 if the layer was counted ac-
curately. Let the stochastic process{N(t) : t1 ≤ t ≤ tn} equal
the number of age perturbations in our data in the time inter-
val [t1, tn]; thenN(ti) =

∑i
k=1Nk is also a counting process.

Because of the earlier assumption on the most recent obser-
vation being known exactly, we can write thatN(t1) = 0.
We also parameterize the miscounting error rate byθ such
thatE(Ni) = θ , and we can prescribe our simulations to ac-
cumulate on averageθn perturbations. Recognizing that the
chances of miscounting more than 2 years per band are slight,
one may write

Pr{N(t + h) − N(t) = 1} = θh + o(h), (A1)

Pr{N(t + h) − N(t) ≥ 2} = o(h)2, (A2)

One recognizesN(t) as a Poisson process with rate parame-
ter θ (e.g.,Suhov and Kelbert, 2008, theorem 2.3.2b). When
the level of confidence in a particular chronology is such
thatPr(Ni) > 1 is negligible, a Bernoulli process would be
a suitable approximation forN(t) with Pr(Ni = 1) = θ , and
N(ti) would follow a Binomial distributionB(i,θ). Age per-
turbations when counting layers fall in one of two categories:
one can either miss (type 1) or double-count (type 2) a band,
so we classify perturbation events into those two types. Let
{P

θ1
i : i = 1,2, . . . ,n} count the number of missing layers be-

tween layersi − 1 andi and{P
θ2
i : i = 1,2, . . . ,n} count the

number of duplications of layeri with rate parameterθ1 and
θ2, respectively; then, if we assume that the two types of
events are independent, we can write thatNi = P

θ1
i + P

θ2
i

andθ = θ1 + θ2. The assumption of independence simplifies
the problem’s treatment, though it is obviously an idealiza-
tion. In practice, the probability of a layer being counted as
part of both categories is generally so low that it does not
materially affect the results. A stochastic parameterization of
the increment matrix may thus be expressed as follows:

∀i ∈ [1,n − 1], 1i = 1+ P
θ1
i − min

(
P

θ2
i ,1

)
, (A3)

where the perturbations{P θk

i : k = 1,2} are random variables
representing Poisson increments in[ti, ti+1) with rateθk > 0
or the outcomes of a Bernoulli process with trial probability
θk. In both instances, one may choose parameters so that the
variables are zero most of time, except for a relatively small

2f (h) = o(h) is a function such thatf (h)
h

goes to zero withh
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Fig. A1. Skellam probability mass functions for different values of
its parametersλ1 andλ2.

fraction (say 5 %) when they are positive, so1i > 1 when
P

θ1
i > 0 (i.e., a year is missing) or1i < 1 whenP θ2

i > 0 (i.e.,
a band was doubled). It follows that the chronology verifies

ti = tf − i −

i∑
k=1

P
θ1
k +

i∑
k=1

min(P
θ2
k ,1). (A4)

Extending the model formulation to multivariate banded
data sets, and indexing byj the record location, the matrix
of time increments is expressed as

1ij = 1+ P
θ1j
i − min(P

θ2j
i ,1) (A5)

and the chronology matrix verifies

τij = tf − i −

i∑
k=1

P
θ1j
k +

i∑
k=1

min
(
P

θ2j
k ,1

)
. (A6)

In the Poisson case, if we denote byN1(t) and N2(t)

the number of events
∑

k P
θ1
k and

∑
k P

θ2
k until time t , re-

spectively, then the difference between the two Poisson pro-
cessesN1(t) − N2(t) is known to follow a Skellam distribu-
tion (Skellam, 1946) with parametersλ1 = θ1t andλ2 = θ2t ,
which is given by

Pr{N1(t) − N2(t) = k} = e−(λ1+λ2)

(
λ1

λ2

)k/2

I |k|

(
2
√

λ1λ2

)
,

(A7)

whereI k(x) is a modified Bessel function of the first kind
(e.g.,Abramowitz and Stegun, 1965). The Skellam distribu-
tion is plotted in Fig.A1, and we here summarize its main
properties:
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1. Its mean is equal toλ1 − λ2, its variance toλ1 + λ2.

2. Forλ1 = λ2, the distribution is symmetric, centered at
zero.

3. Forλ1 = λ2 large enough, it is well approximated by a
normal distributionN (0,λ1 + λ2); thus the difference
between the Poisson model and the binomial model
(which also converges to a normal distribution) be-
comes negligible.
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