Articles | Volume 10, issue 6
https://doi.org/10.5194/cp-10-2007-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-2007-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The global monsoon across timescales: coherent variability of regional monsoons
State Key Laboratory of Mar. Geol., Tongji University, Shanghai 200092, China
B. Wang
CORRESPONDING AUTHOR
Department of Meteorology, University of Hawaii at Manoa, Honolulu, HI 96825, USA
H. Cheng
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
J. Fasullo
CAS/NCAR, National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301, USA
Z. T. Guo
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
T. Kiefer
PAGES International Project Office, Zähringerstrasse 25, 3012 Bern, Switzerland
Z. Y. Liu
Laboratory Climate, Ocean and Atmospheric Studies, School of Physics, Peking University, Beijing 100871, China
Center for Climatic Research, University of Wisconsin Madison, Madison, WI 53706, USA
Related authors
Pinxian Wang, Ryuji Tada, and Steven Clemens
Sci. Dril., 24, 87–91, https://doi.org/10.5194/sd-24-87-2018, https://doi.org/10.5194/sd-24-87-2018, 2018
Short summary
Short summary
This brief paper reports on a workshop held last September in Shanghai to promote global monsoon research in the paleoclimate community. In the framework of the international ocean drilling program, seven expeditions have been completed within the last years to recover long-term records of the global monsoon, and forty-eight scientists from 12 countries exchanged scientific findings based on the expeditions. The workshop came up with four recommendations for the future ocean drillings.
Nadia Pinardi, Bart van den Hurk, Michael Depuydt, Thorsten Kiefer, Petra Manderscheid, Lavinia Giulia Pomarico, and Kanika Singh
State Planet, 3-slre1, 2, https://doi.org/10.5194/sp-3-slre1-2-2024, https://doi.org/10.5194/sp-3-slre1-2-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (KH-SLR), a joint effort between JPI Climate and JPI Oceans, addresses the critical need for science-based information on sea level changes in Europe. The KH-SLR actively involves stakeholders through a co-design process discussing the impacts, adaptation planning, and policy requirements related to SLR in Europe. Its primary output is the KH Assessment Report (KH-AR), which is described in this volume.
Lingwei Li, Zhengyu Liu, Jinbo Du, Lingfeng Wan, and Jiuyou Lu
Clim. Past, 20, 1161–1175, https://doi.org/10.5194/cp-20-1161-2024, https://doi.org/10.5194/cp-20-1161-2024, 2024
Short summary
Short summary
Radiocarbon proxies suggest that the deep waters are poorly ventilated during the Last Glacial Maximum (LGM). Here we use two transient simulations with tracers of radiocarbon and ideal age to show that the deep-ocean ventilation age is not much older at the LGM compared to the present day because of the strong glacial Antarctic Bottom Water transport. In contrast, the ventilation age is older during deglaciation mainly due to weakening of Antarctic Bottom Water transport.
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Yongyun Hu, Yan Xia, Zhengyu Liu, Yuchen Wang, Zhengyao Lu, and Tao Wang
Clim. Past, 16, 199–209, https://doi.org/10.5194/cp-16-199-2020, https://doi.org/10.5194/cp-16-199-2020, 2020
Short summary
Short summary
The paper shows, using climate simulations, that the Pacific–North American (PNA) teleconnection was distorted or completely broken at the Last Glacial Maximum (LGM). The results suggest that ENSO would have little direct impact on North American climates at the LGM.
Ning Tan, Camille Contoux, Gilles Ramstein, Yong Sun, Christophe Dumas, Pierre Sepulchre, and Zhengtang Guo
Clim. Past, 16, 1–16, https://doi.org/10.5194/cp-16-1-2020, https://doi.org/10.5194/cp-16-1-2020, 2020
Short summary
Short summary
To understand the warm climate during the late Pliocene (~3.205 Ma), modeling experiments with the new boundary conditions are launched and analyzed based on the Institut Pierre Simon Laplace (IPSL) atmosphere–ocean coupled general circulation model (AOGCM). Our results show that the warming in mid- to high latitudes enhanced due to the modifications of the land–sea mask and land–ice configuration. The pCO2 uncertainties within the records can produce asymmetrical warming patterns.
Lingfeng Wan, Zhengyu Liu, Jian Liu, Weiyi Sun, and Bin Liu
Clim. Past, 15, 1411–1425, https://doi.org/10.5194/cp-15-1411-2019, https://doi.org/10.5194/cp-15-1411-2019, 2019
Short summary
Short summary
The linearity of the climate response is strong on orbital and millennial scales throughout the Holocene but poor on the centennial and decadal scale. The regions of strong linear response on the millennial scale are mostly consistent with the orbital scale, notably western Eurasian, North Africa, the subtropical North Pacific, the tropical Atlantic and the Indian Ocean. This finding can improve our understanding of the regional climate response to various climate forcings.
Yating Lin, Gilles Ramstein, Haibin Wu, Raj Rani, Pascale Braconnot, Masa Kageyama, Qin Li, Yunli Luo, Ran Zhang, and Zhengtang Guo
Clim. Past, 15, 1223–1249, https://doi.org/10.5194/cp-15-1223-2019, https://doi.org/10.5194/cp-15-1223-2019, 2019
Short summary
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
Pinxian Wang, Ryuji Tada, and Steven Clemens
Sci. Dril., 24, 87–91, https://doi.org/10.5194/sd-24-87-2018, https://doi.org/10.5194/sd-24-87-2018, 2018
Short summary
Short summary
This brief paper reports on a workshop held last September in Shanghai to promote global monsoon research in the paleoclimate community. In the framework of the international ocean drilling program, seven expeditions have been completed within the last years to recover long-term records of the global monsoon, and forty-eight scientists from 12 countries exchanged scientific findings based on the expeditions. The workshop came up with four recommendations for the future ocean drillings.
Chenxi Xu, Masaki Sano, Ashok Priyadarshan Dimri, Rengaswamy Ramesh, Takeshi Nakatsuka, Feng Shi, and Zhengtang Guo
Clim. Past, 14, 653–664, https://doi.org/10.5194/cp-14-653-2018, https://doi.org/10.5194/cp-14-653-2018, 2018
Short summary
Short summary
We have constructed a regional tree ring cellulose oxygen isotope record using a total of five chronologies obtained from the Himalaya. Centennial changes in the regional tree ring record indicate a trend of weakened Indian summer monsoon (ISM) intensity since 1820. Decreasing ISM activity is also observed in various high-resolution ISM records from southwest China and Southeast Asia, and may be the result of reduced land–ocean thermal contrasts since 1820.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Sifan Gu and Zhengyu Liu
Geosci. Model Dev., 10, 4723–4742, https://doi.org/10.5194/gmd-10-4723-2017, https://doi.org/10.5194/gmd-10-4723-2017, 2017
Short summary
Short summary
Both biotic 231Pa and 230Th and abiotic 231Pa and 230Th have been implemented in the ocean model of CESM. Under present-day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and the sediment 231Pa-to-230Th activity ratio in good agreement with observations. In HOSING experiments, the biotic and abiotic sediment 231Pa-to-230Th activity ratios behave similarly over large areas of low productivity, but can differ substantially in some regions of high productivity.
Yuxin Zhao, Xiong Deng, Shaoqing Zhang, Zhengyu Liu, Chang Liu, Gabriel Vecchi, Guijun Han, and Xinrong Wu
Nonlin. Processes Geophys., 24, 681–694, https://doi.org/10.5194/npg-24-681-2017, https://doi.org/10.5194/npg-24-681-2017, 2017
Short summary
Short summary
Here with a simple coupled model that simulates typical scale interactions in the climate system, we study the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA. Results show that an optimal OTW determined from the de-correlation timescale provides maximal observational information that best fits the characteristic variability of the coupled medium during the data blending process.
Sifan Gu, Zhengyu Liu, Alexandra Jahn, Johannes Rempfer, Jiaxu Zhang, and Fortunat Joos
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-40, https://doi.org/10.5194/gmd-2017-40, 2017
Revised manuscript not accepted
Short summary
Short summary
This paper is the documentation of the implementation of neodymium (Nd) isotopes in the ocean model of CESM. Our model can simulate both Nd concentration and Nd isotope ratio in good agreement with observations. Our Nd-enabled ocean model makes it possible for direct model-data comparison in paleoceanographic studies, which can help to resolve some uncertainties and controversies in our understanding of past ocean evolution. Therefore, our model provides a useful tool for paleoclimate studies.
Zhengyao Lu, Zhengyu Liu, Guangshan Chen, and Jian Guan
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-128, https://doi.org/10.5194/cp-2016-128, 2017
Revised manuscript not accepted
Short summary
Short summary
We use complex climate model simulations to study how the intensity of El Niño-Southern Oscillation (ENSO) changed for the last 300 thousand years. We consider external climatic forcings like orbital variations, greenhouse gases and ice-sheets. We find that orbital forcing dominates slow ENSO evolution by modulating the change of the coupled ocean-atmosphere instability, while the effects of GHGs and ice-sheet forcing tend to compensate each other.
Xinyu Wen, Zhengyu Liu, Zhongxiao Chen, Esther Brady, David Noone, Qingzhao Zhu, and Jian Guan
Clim. Past, 12, 2077–2085, https://doi.org/10.5194/cp-12-2077-2016, https://doi.org/10.5194/cp-12-2077-2016, 2016
Short summary
Short summary
In this paper, we challenge the usefulness of temperature effect and amount effect, the basic assumptions in past climate reconstruction using a stable water isotope proxy, in East Asia on multiple timescales. By modeling several time slices in the past 22 000 years using an isotope-enabled general circulation model, we suggest great caution when interpreting δ18O records in this area as indicators of surface temperature and/or local monsoonal precipitation, especially on a millennial timescale.
Tianjun Zhou, Andrew G. Turner, James L. Kinter, Bin Wang, Yun Qian, Xiaolong Chen, Bo Wu, Bin Wang, Bo Liu, Liwei Zou, and Bian He
Geosci. Model Dev., 9, 3589–3604, https://doi.org/10.5194/gmd-9-3589-2016, https://doi.org/10.5194/gmd-9-3589-2016, 2016
Short summary
Short summary
This paper tells why to launch the Global Monsoons Model Inter-comparison Project (GMMIP) and how to achieve its scientific goals on monsoon variability. It addresses the scientific questions to be answered, describes three tiered experiments comprehensively and proposes a basic analysis framework to guide future research. It will help the monsoon research communities to understand the objectives of the GMMIP and the modelling groups involved in the GMMIP conduct the experiments successfully.
J. Ruan, F. Kherbouche, D. Genty, D. Blamart, H. Cheng, F. Dewilde, S. Hachi, R. L. Edwards, E. Régnier, and J.-L. Michelot
Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, https://doi.org/10.5194/cp-12-1-2016, 2016
A. Jahn, K. Lindsay, X. Giraud, N. Gruber, B. L. Otto-Bliesner, Z. Liu, and E. C. Brady
Geosci. Model Dev., 8, 2419–2434, https://doi.org/10.5194/gmd-8-2419-2015, https://doi.org/10.5194/gmd-8-2419-2015, 2015
Short summary
Short summary
Carbon isotopes have been added to the ocean model of the Community Earth System Model version 1 (CESM1). This paper describes the details of how the abiotic 14C tracer and the biotic 13C and 14C tracers were added to the existing ocean model of the CESM. In addition, it shows the first results of the new model features compared to observational data for the 1990s.
S. J. Burns, L. C. Kanner, H. Cheng, and R. Lawrence Edwards
Clim. Past, 11, 931–938, https://doi.org/10.5194/cp-11-931-2015, https://doi.org/10.5194/cp-11-931-2015, 2015
M. Van Rampelbergh, S. Verheyden, M. Allan, Y. Quinif, H. Cheng, L. R. Edwards, E. Keppens, and P. Claeys
Clim. Past, 11, 789–802, https://doi.org/10.5194/cp-11-789-2015, https://doi.org/10.5194/cp-11-789-2015, 2015
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, https://doi.org/10.5194/cp-11-153-2015, 2015
J. Apaéstegui, F. W. Cruz, A. Sifeddine, M. Vuille, J. C. Espinoza, J. L. Guyot, M. Khodri, N. Strikis, R. V. Santos, H. Cheng, L. Edwards, E. Carvalho, and W. Santini
Clim. Past, 10, 1967–1981, https://doi.org/10.5194/cp-10-1967-2014, https://doi.org/10.5194/cp-10-1967-2014, 2014
Short summary
Short summary
In this paper we explore a speleothem δ18O record from Palestina cave, northwestern Peru, on the eastern side of the Andes cordillera, in the upper Amazon Basin. The δ18O record is interpreted as a proxy for South American Summer Monsoon (SASM) intensity and allows the reconstruction of its variability during the last 1600 years. Replicating regional climate signals from different sites and using different proxies is essential for a comprehensive understanding of past changes in SASM activity.
J.-J. Yin, D.-X. Yuan, H.-C. Li, H. Cheng, T.-Y. Li, R. L. Edwards, Y.-S. Lin, J.-M. Qin, W. Tang, Z.-Y. Zhao, and H.-S. Mii
Clim. Past, 10, 1803–1816, https://doi.org/10.5194/cp-10-1803-2014, https://doi.org/10.5194/cp-10-1803-2014, 2014
J. M. Marson, I. Wainer, M. M. Mata, and Z. Liu
Clim. Past, 10, 1723–1734, https://doi.org/10.5194/cp-10-1723-2014, https://doi.org/10.5194/cp-10-1723-2014, 2014
Q. Z. Yin, U. K. Singh, A. Berger, Z. T. Guo, and M. Crucifix
Clim. Past, 10, 1645–1657, https://doi.org/10.5194/cp-10-1645-2014, https://doi.org/10.5194/cp-10-1645-2014, 2014
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
G.-S. Chen, Z. Liu, and J. E. Kutzbach
Clim. Past, 10, 1269–1275, https://doi.org/10.5194/cp-10-1269-2014, https://doi.org/10.5194/cp-10-1269-2014, 2014
Y. Peng, C. Shen, H. Cheng, and Y. Xu
Clim. Past, 10, 1079–1091, https://doi.org/10.5194/cp-10-1079-2014, https://doi.org/10.5194/cp-10-1079-2014, 2014
H. Wu, C. Peng, T. R. Moore, D. Hua, C. Li, Q. Zhu, M. Peichl, M. A. Arain, and Z. Guo
Geosci. Model Dev., 7, 867–881, https://doi.org/10.5194/gmd-7-867-2014, https://doi.org/10.5194/gmd-7-867-2014, 2014
M. Berkelhammer, A. Sinha, M. Mudelsee, H. Cheng, K. Yoshimura, and J. Biswas
Clim. Past, 10, 733–744, https://doi.org/10.5194/cp-10-733-2014, https://doi.org/10.5194/cp-10-733-2014, 2014
G.-J. Han, X.-F. Zhang, S. Zhang, X.-R. Wu, and Z. Liu
Nonlin. Processes Geophys., 21, 357–366, https://doi.org/10.5194/npg-21-357-2014, https://doi.org/10.5194/npg-21-357-2014, 2014
H. Wu, C. Peng, M. Lucotte, N. Soumis, Y. Gélinas, É. Duchemin, J.-B. Plouhinec, A. Ouellet, and Z. Guo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-3509-2013, https://doi.org/10.5194/gmdd-6-3509-2013, 2013
Revised manuscript not accepted
Y. Y. Yu, P. A. Finke, H. B. Wu, and Z. T. Guo
Geosci. Model Dev., 6, 29–44, https://doi.org/10.5194/gmd-6-29-2013, https://doi.org/10.5194/gmd-6-29-2013, 2013
Related subject area
Subject: Atmospheric Dynamics | Archive: Terrestrial Archives | Timescale: Centennial-Decadal
South American Summer Monsoon variability over the last millennium in paleoclimate records and isotope-enabled climate models
Long-term global ground heat flux and continental heat storage from geothermal data
Past African dust inputs in the western Mediterranean area controlled by the complex interaction between the Intertropical Convergence Zone, the North Atlantic Oscillation, and total solar irradiance
Two types of North American droughts related to different atmospheric circulation patterns
Centennial-scale precipitation anomalies in the southern Altiplano (18° S) suggest an extratropical driver for the South American summer monsoon during the late Holocene
Early summer hydroclimatic signals are captured well by tree-ring earlywood width in the eastern Qinling Mountains, central China
A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees
Variability of summer humidity during the past 800 years on the eastern Tibetan Plateau inferred from δ18O of tree-ring cellulose
Persistent decadal-scale rainfall variability in the tropical South Pacific Convergence Zone through the past six centuries
Evaluating climate field reconstruction techniques using improved emulations of real-world conditions
Climate patterns in north central China during the last 1800 yr and their possible driving force
The reconstruction of easterly wind directions for the Eifel region (Central Europe) during the period 40.3–12.9 ka BP
Rebecca Orrison, Mathias Vuille, Jason E. Smerdon, James Apaéstegui, Vitor Azevedo, Jose Leandro P. S. Campos, Francisco W. Cruz, Marcela Eduarda Della Libera, and Nicolás M. Stríkis
Clim. Past, 18, 2045–2062, https://doi.org/10.5194/cp-18-2045-2022, https://doi.org/10.5194/cp-18-2045-2022, 2022
Short summary
Short summary
We evaluated the South American Summer Monsoon over the last millennium and dynamically interpreted the principal modes of variability. We find the spatial patterns of the monsoon are an intrinsic feature of the climate modulated by external forcings. Multi-centennial mean state departures during the Medieval Climate Anomaly and Little Ice Age show regionally coherent patterns of hydroclimatic change in both a multi-archive network of oxygen isotope records and isotope-enabled climate models.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Pierre Sabatier, Marie Nicolle, Christine Piot, Christophe Colin, Maxime Debret, Didier Swingedouw, Yves Perrette, Marie-Charlotte Bellingery, Benjamin Chazeau, Anne-Lise Develle, Maxime Leblanc, Charlotte Skonieczny, Yoann Copard, Jean-Louis Reyss, Emmanuel Malet, Isabelle Jouffroy-Bapicot, Maëlle Kelner, Jérôme Poulenard, Julien Didier, Fabien Arnaud, and Boris Vannière
Clim. Past, 16, 283–298, https://doi.org/10.5194/cp-16-283-2020, https://doi.org/10.5194/cp-16-283-2020, 2020
Short summary
Short summary
High-resolution multiproxy analysis of sediment core from a high-elevation lake on Corsica allows us to reconstruct past African dust inputs to the western Mediterranean area over the last 3 millennia. Millennial variations of Saharan dust input have been correlated with the long-term southward migration of the Intertropical Convergence Zone, while short-term variations were associated with the North Atlantic Oscillation and total solar irradiance after and before 1070 cal BP, respectively.
Angela-Maria Burgdorf, Stefan Brönnimann, and Jörg Franke
Clim. Past, 15, 2053–2065, https://doi.org/10.5194/cp-15-2053-2019, https://doi.org/10.5194/cp-15-2053-2019, 2019
Short summary
Short summary
The western USA is frequently affected by multiannual summer droughts. They can be separated into two groups with distinct spatial patterns. This study analyzes the atmospheric circulation during multiannual droughts in a new 3-D climate reconstruction. We confirm two distinct drought types differing with respect to atmospheric circulation as well as sea surface temperatures. Our results suggest that both the Pacific and the extratropical North Atlantic region affect North American droughts.
Ignacio A. Jara, Antonio Maldonado, Leticia González, Armand Hernández, Alberto Sáez, Santiago Giralt, Roberto Bao, and Blas Valero-Garcés
Clim. Past, 15, 1845–1859, https://doi.org/10.5194/cp-15-1845-2019, https://doi.org/10.5194/cp-15-1845-2019, 2019
Short summary
Short summary
The South American summer monsoon (SASM) is the most important climate system of South America. However, little is known about its long-term variability. Here we present a new SASM reconstruction from Lago Chungará in the southern Altiplano (18°S). We show important changes in SASM precipitation at timescales of centuries. Our results suggest that SASM variability was controlled not only by tropical climates but was also influenced by precipitation outside the tropics.
Yesi Zhao, Jiangfeng Shi, Shiyuan Shi, Xiaoqi Ma, Weijie Zhang, Bowen Wang, Xuguang Sun, Huayu Lu, and Achim Bräuning
Clim. Past, 15, 1113–1131, https://doi.org/10.5194/cp-15-1113-2019, https://doi.org/10.5194/cp-15-1113-2019, 2019
Short summary
Short summary
We found that the tree-ring earlywood width (EWW) of Pinus tabuliformis from the eastern Qinling Mountains (central China) showed stronger response to May–July scPDSI than the tree-ring total width and latewood width. Therefore, variations in May–July scPDSI were reconstructed back to 1868 CE using the EWW chronology. The reconstruction exhibited a strong in-phase relationship with the East Asian summer monsoon intensity before the 1940s, which was different from that found in recent decades.
M. Naulier, M. M. Savard, C. Bégin, F. Gennaretti, D. Arseneault, J. Marion, A. Nicault, and Y. Bégin
Clim. Past, 11, 1153–1164, https://doi.org/10.5194/cp-11-1153-2015, https://doi.org/10.5194/cp-11-1153-2015, 2015
Short summary
Short summary
This paper presents a millennial δ18O series and the reconstruction of the maximal temperature. The maximal replication and annual resolution have been obtained by using cohort sampling method. Three contrasted climatic periods have been identified: the medieval warm period (~997-1250; the warmest), the little ice age (~1450-1880) and the modern period (1970-2000) that is one of the fastest warming over the last millennium.
J. Wernicke, J. Grießinger, P. Hochreuther, and A. Bräuning
Clim. Past, 11, 327–337, https://doi.org/10.5194/cp-11-327-2015, https://doi.org/10.5194/cp-11-327-2015, 2015
C. R. Maupin, J. W. Partin, C.-C. Shen, T. M. Quinn, K. Lin, F. W. Taylor, J. L. Banner, K. Thirumalai, and D. J. Sinclair
Clim. Past, 10, 1319–1332, https://doi.org/10.5194/cp-10-1319-2014, https://doi.org/10.5194/cp-10-1319-2014, 2014
J. Wang, J. Emile-Geay, D. Guillot, J. E. Smerdon, and B. Rajaratnam
Clim. Past, 10, 1–19, https://doi.org/10.5194/cp-10-1-2014, https://doi.org/10.5194/cp-10-1-2014, 2014
L. Tan, Y. Cai, Z. An, L. Yi, H. Zhang, and S. Qin
Clim. Past, 7, 685–692, https://doi.org/10.5194/cp-7-685-2011, https://doi.org/10.5194/cp-7-685-2011, 2011
S. Dietrich and K. Seelos
Clim. Past, 6, 145–154, https://doi.org/10.5194/cp-6-145-2010, https://doi.org/10.5194/cp-6-145-2010, 2010
Cited articles
Adams, J. and Faure, H.: Global land environments since the last interglacial, Oak Ridge National Laboratory, TN, USA, 1997.
Adkins, J., Demenocal, P., and Eshel, G.: The "African humid period" and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C, Paleoceanography, 21, PA1013, https://doi.org/10.1029/2005PA001200, 2006.
Agnihotri, R., Dutta, K., Bhushan, R., and Somayajulu, B. L. K.: Evidence for solar forcing on the Indian monsoon during the last millennium, Earth Planet. Sci. Lett., 198, 521–527, 2002.
Alisov, B. P.: Die Klimat der Erde, Deutscher Verlag, Berlin, 1954.
Alley, R., Meese, D., Shuman, C., Gow, A., Taylor, K., Grootes, P., White, J., Ram, M., Waddington, E., and Mayewski, P.: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event, Nature, 362, 527–527, 1993.
An, Z., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times, Nature, 411, 62–66, 2001.
An, Z., Clemens, S. C., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell, W. L., Luo, J., Wang, S., and Xu, H.: Glacial-interglacial Indian summer monsoon dynamics, Science, 333, 719–723, 2011.
Armstrong, H. A., Baldini, J., Challands, T. J., Gröcke, D. R., and Owen, A. W.: Response of the Inter-tropical Convergence Zone to Southern Hemisphere cooling during Upper Ordovician glaciation, Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 227–236, 2009.
Asmerom, Y., Polyak, V. J., and Burns, S. J.: Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts, Nat. Geosci., 3, 114–117, 2010.
Ayliffe, L., Gagan, M., Zhao, J.-X., Drysdale, R., Hellstrom, J., Hantoro, W., Griffiths, M. L., Scott-Gagan, H., St. Pierre, E., Cowley, J. A., and Suwargadi, B.: Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation, Nature Commun., 4, 2908, https://doi.org/10.1038/ncomms3908, 2013.
Baker, A. and Bradley, C. Modern stalagmite δ18O: Instrumental calibration and forward modeling, Glob. Planet. Change, 201–206, 2010.
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. J.: Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals, Geochimica et Cosmochimica Acta, 67, 3181–3199, 2003.
Bard, E., Ménot, G., Rostek, F., Licari, L., Böning, P., Edwards, R. L., Cheng, H., Wang, Y. J., and Heaton, T. J.: Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian Margins, Radicarbon, 55, 1–21, 2013.
Bassinot, F. C., Beaufort, L., Vincent, E., Labeyrie, L. D., Rostek, F., Müller, P. J., Quidelleur, X., and Lancelot, Y.: Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1500 kyr record of carbonate dissolution, Paleoceanography, 9, 579–600, 1994.
Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot, F., and Labeyrie, L.: Insolation cycles as a major control of equatorial Indian Ocean primary productivity, Science, 278, 1451–1454, 1997.
Beaufort, L., van der Kaars, S., Bassinot, F. C., and Moron, V.: Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept, Clim. Past, 6, 695–706, https://doi.org/10.5194/cp-6-695-2010, 2010.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present, Earth System Science Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Bender, M., Sowers, T., and Labeyrie, L.: The Dole effect and its variations during the last 130 000 years as measured in the Vostok ice core, Global Biogeochem. Cy., 8, 363–376, 1994.
Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, S., Meko, D., and Lindström, S.: Holocene multidecadal and multicentennial droughts affecting Northern California and Nevada, Quat. Sci. Rev., 21, 659–682, 2002.
Berger, A.: Long-term variations of caloric insolation resulting from the Earth's orbital elements, Quat. Res., 9, 139–167, 1978.
Berger, A. and Loutre, M.-F.: Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 10, 297–317, 1991.
Berger, A. and Loutre, M.-F.: Intertropical latitudes and precessional and half-precessional cycles, Science, 278, 1476–1478, 1997.
Berger A., Loutre, M. F., and Laskar, J.: Stability of the astronomical frequencies over the Earth's history for paleoclimate studies, Science, 255, 560–566, 1992.
Berger, A., Loutre, M. F., and Mélice, J. L.: Equatorial insolation: from precession harmonics to eccentricity frequencies, Clim. Past, 2, 131–136, https://doi.org/10.5194/cp-2-131-2006, 2006.
Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F., and Yoshimura, K.: An abrupt shift in the Indian Monsoon 4000 years ago, Geophys. Monogr. Ser., 198, 75–87, 2012.
Bianchi, G. G. and McCave, I. N.: Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland, Nature, 397, 515–517, 1999.
Billups, K., Channell, K. J. E. T., and Zachos, J.: Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic, Paleoceanography, 17, 4, https://doi.org/10.1029/2000PA000568, 2002
Bird, B. W., Abbott, M. B., Vuille, M., Rodbell, D. T., Stansell, N. D., and Rosenmeier, M. F.: A 2300-year-long annually resolved record of the South Ameri- can summer monsoon from the Peruvian Andes, P. Natl. Acad. Sci. USA, 108, 8583–8588, 2011.
Bjerklie, D. M., Lawrence Dingman, S., Vorosmarty, C. J., Bolster, C. H., and Congalton, R. G.: Evaluating the potential for measuring river discharge from space, J. Hydrol., 278, 17–38, 2003.
Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science, 291, 109–112, 2001.
Bluthgen, J.: Allgemeine Klimageographie. Second edition, de Gruyter, Berlin, 1966.
Boening, C., Willis, J. K., Landerer, F. W., Nerem, S., and Fasullo, J.: The 2011 La Niña: So strong, the oceans fell, Geophys. Res. Lett., 39, L19602, https://doi.org/10.1029/2012GL053055, 2011
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143–147, 1993.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science, 278, 1257–1266, 1997.
Bond, G. C. and Lotti, R.: Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation, Science, 267, 1005–1010, 1995.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, 2001.
Bowen, G. J., Bralower, T. J., Delaney, M. L., Dickens, G. R., Kelly, D. C., Koch, P. L., Kump, L. R., Meng, J., Sloan, L. C., and Thomas, E.: Eocene hyperthermal event offers insight into greenhouse warming, Eos, Trans. Ame. Geophys. Un., 87, 165–169, 2006.
Bowler, J. M., Wyrwoll, K.-H., and Lu, Y.: Variations of the northwest Australian summer monsoon over the last 300 000 years: the paleohydrological record of the Gregory (Mulan) Lakes System, Quat. Internat., 83, 63–80, 2001.
Broecker, W. S., Peteet, D. M., and Rind, D.: Does the ocean-atmosphere system have more than one stable mode of operation?, Nature, 315, 21–26, 1985.
Broecker, W. S. and Denton, G. H.: The role of ocean-atmosphere reorganizations in glacial cycles, Geochimica et Cosmochimica Acta, 53, 2465–2501, 1989.
Broecker, W. S.: Paleocean circulation during the last deglaciation: a bipolar seesaw?, Paleoceanography, 13, 119–121, 1998.
Broecker, W. S.: Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?, Science, 300, 1519–1522, 2003.
Brovkin, V. and Claussen, M.: Comment on "Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years", Science, 322, 1326–1326, 2008.
Burns, S. J., Fleitmann, D., Matter, A., Kramers, J., and Al-Subbary, A. A.: Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13, Science, 301, 1365–1367, 2003.
Bush, A. B.: Numerical simulation of the Cretaceous Tethys circumglobal current, Science, 275, 807–810, 1997.
Cai, Y., Cheng, H., An, Z., Edwards, R. L., Wang, X., Tan, L., and Wang, J.: Large variations of oxygen isotopes in precipitation over south-central Tibet during Marine Isotope Stage 5, Geology, 38, 243–246, 2010a.
Cai, Y., Tan, L., Cheng, H., An, Z., Edwards, R. L., Kelly, M. J., Kong, X., and Wang, X.: The variation of summer monsoon precipitation in central China since the last deglaciation, Earth Planet. Sci. Lett., 291, 21–31, 2010b.
Cai, Y., Zhang, H., Cheng, H., An, Z., Lawrence Edwards, R., Wang, X., Tan, L., Liang, F., Wang, J., and Kelly, M.: The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections, Earth Planet. Sci. Lett., 335, 135–144, 2012.
Caley, T., Malaizé, B., Zaragosi, S., Rossignol, L., Bourget, J., Eynaud, F., Martinez, P., Giraudeau, J., Charlier, K., and Ellouz-Zimmermann, N.: New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon, Earth Planet. Sci. Lett., 308, 433–444, 2011.
Chang, C. P., Lei, Y., Sui, C. H., Lin, X., and Ren, F.: Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052945 2012.
Chao, W. C. and Chen, B.: The origin of monsoons, J. Atmos. Sci., 58, 3497–3507, 2001.
Chappellaz, J., Barnola, J., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: Ice-core record of atmospheric methane over the past 160 000 years, Nature, 345, 127–131, 1990.
Cheng, H., Edwards, R. L., Wang, Y., Kong, X., Ming, Y., Kelly, M. J., Wang, X., Gallup, C. D., and Liu, W.: A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations, Geology, 34, 217–220, 2006.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y., Zhang, R., and Wang, X.: Ice age terminations, Science, 326, 248–252, 2009a.
Cheng, H., Fleitmann, D., Edwards, R. L., Wang, X., Cruz, F. W., Auler, A. S., Mangini, A., Wang, Y., Kong, X., and Burns, S. J.: Timing and structure of the 8.2 kyr BP event inferred from δ18O records of stalagmites from China, Oman, and Brazil, Geology, 37, 1007–1010, 2009b.
Cheng, H., Sinha, A., Wang, X., Cruz, F. W., and Edwards, R. L.: The Global Paleomonsoon as seen through speleothem records from Asia and the Americas, Clim. Dynam., 39, 1045–1062, 2012a.
Cheng, H., Zhang, P., Spötl, C., Edwards, R., Cai, Y., Zhang, D., Sang, W., Tan, M., and An, Z.: The climatic cyclicity in semiarid central Asia over the past 500 000 years, Geophys. Res. Lett., 39, L01705, https://doi.org/10.1029/2011GL050202, 2012b.
Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., d'Horta, F. M., Ribas, C. C., Vuille, M., Stott, L. D., and Auler, A. S.: Climate change patterns in Amazonia and biodiversity, Nature Commun., 4, 1411, https://doi.org/10.1038/ncomms2415, 2013.
Cheng, H. and Edwards, R. L.: Asian Monsoon Footprints in Chinese Cultural History, in: Des climats et des hommes, Découverte, 291–306, 2012.
Chou, C., Neelin, J., and Su, H.: Ocean-tmosphere-land feedbacks in an idealized monsoon, Quart. J. Roy. Meteorol. Soc., 127, 1869–1891, 2001.
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, R., Jones, R., Kolli, R. K., Kwon, W., and Laprise, R.: Regional climate projections, Climate Change, 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, University Press, Cambridge, Chapter 11, 847–940, 2007.
Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P., and Pachur, H. J.: Simulation of an abrupt change in Saharan vegetation in the Mid-Holocene, Geophys. Res. Lett., 26, 2037–2040, 1999.
Clemens, S.: Extending the historical record by proxy, in: The Asian Monsoon, edited by: Wang, B., Springer, 615–630, 2006
Clemens, S., Prell, W., Murray, D., Shimmield, G., and Weedon, G.: Forcing mechanisms of the Indian Ocean monsoon, Nature, 353, 720–725, 1991.
Clemens, S. C., Murray, D. W., and Prell, W. L.: Nonstationary phase of the Plio-Pleistocene Asian monsoon, Science, 274, 943–948, 1996.
Clemens, S. C. and Prell, W. L.: A 350 000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea, Mar. Geol., 201, 35–51, 2003.
Clemens, S. C. and Prell,W. L.: The timing of orbital-scale Indian monsoon changes. Quat. Sci. Rev., 26, 275–278, 2007.
Clemens, S. C., Prell, W. L., and Sun, Y.: Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ18O, Paleoceanography, 25, PA4207, https://doi.org/10.1029/2010PA001926, 2010.
Clift, P. D., Tada, R., and Zheng, H. (Eds.): Monsoon evolution and tectonic-climate linkage in Asia: Introduction, Geol. Soc. London, Special Publication, 342, 185–218, 2010.
Clift, P. D., Wan, S., and Blusztajn, J.: Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the northern South China Sea: A review of competing proxies, Earth-Sci. Rev., 130, 86–102, 2014.
Cobb, K. M., Charles, C. D., Cheng, H., and Edwards, R. L.: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium, Nature, 424, 271–276, 2003.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R., Yin, X., Gleason, B., Vose, R., Rutledge, G., and Bessemoulin, P.: The twentieth century reanalysis project, Quart. J. Roy. Meteorol. Soc., 137, 1–28, 2011.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian monsoon failure and megadrought during the last millennium, Science, 328, 486–489, 2010.
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M. P.: Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n), Paleoceanography, 18, 1097, https://doi.org/10.1029/2003PA000909, 2003.
Cramp, A. and O'Sullivan, G.: Neogene sapropels in the Mediterranean: a review, Mar. Geol., 153, 11–28, 1999.
Cremaschi, M., Fedoroff, N., Guerreschi, A., Huxtable, J., Colombi, N., Castelletti, L., and Maspero, A.: Sedimentary and pedological processes in the Upper Pleistocene loess of northern Italy. The Bagaggera sequence, Quat. Internat., 5, 23–38, 1990.
Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., Ferrari, J. A., Dias, P. L. S., and Viana, O.: Insolation-driven changes in atmospheric circulation over the past 116 000 years in subtropical Brazil, Nature, 434, 63–66, 2005.
Cruz Jr, F. W., Burns, S. J., Jercinovic, M., Karmann, I., Sharp, W. D., and Vuille, M.: Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite, Geochimica et Cosmochimica Acta, 71, 2250–2263, 2007.
Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gundestrup, N., Hammer, C., Hvidberg, C., Steffensen, J., Sveinbjörnsdottir, A., and Jouzel, J.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Dayem, K. E., Molnar, P., Battisti,D. S., and Roe, G. H.: Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia, Earth Planet. Sci. Lett., 295, 219–230, 2010.
De Vleeschouwer, D., Da Silva, A. C., Boulvain, F., Crucifix, M., and Claeys, P.: Precessional and half-precessional climate forcing of Mid-Devonian monsoon-like dynamics, Clim. Past, 8, 337–351, https://doi.org/10.5194/cp-8-337-2012, 2012.
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., and Bauer, P.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quart. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
deMenocal, P. B. and Rind, D.: Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography, J. Geophys. Res. Atmos. (1984–2012), 98, 7265–7287, 1993.
deMenocal, P. B.: Plio-pleistocene African climate, Science, 270, 53–59, 1995.
deMenocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M.: Coherent High- and Low-Latitude Climate Variability During the Holocene Warm Period, Science, 288, 2198–2202, 2000.
Denton, G. H. and Karlén, W.: Holocene climatic variations–-their pattern and possible cause, Quat. Res., 3, 155–205, 1973.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y., Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., and Sigman, D. M.: Links between tropical rainfall and North Atlantic climate during the last glacial period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/NGEO1712, 2013.
Dercourt, J., Ricou, L.-E., and Vrielynck, B.: Atlas Tethys palaeoenvironmental maps, Gauthier-Villars, 1993.
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability, Clim. Dynam., 38, 527–546, 2012.
Ding, Z., Sun, J., Liu, T., Zhu, R., Yang, S., and Guo, B.: Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China, Earth Planet. Sci. Lett., 161, 135–143, 1998.
Ding, Z., Derbyshire, E., Yang, S., Sun, J., and Liu, T.: Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution, Earth Planet. Sci. Lett., 237, 45–55, 2005.
Dirmeyer, P. A., Jin, Y., Singh, B., and Yan, X.: Trends in Land-Atmosphere Interactions from CMIP5 Simulations, J. Hydrometeorol., 14, 829–849, 2013.
Dykoski, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J.: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, Earth Planet. Sci. Lett., 233, 71–86, 2005.
Emeis, K.-C. and Shipboard Scientific Party: Paleoceanography and sapropel introduction, in: Proc. ODP, Init. Repts., edited by: Emeis, K.-C., Robertson, A. H. F., Richter, C., et al., College Station, TX (Ocean Drilling Program), 160, 21–28, 1996
FAO-UNESCO: Soil Map of The World, Volume 1UNESCO, Paris, 1974.
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., and McDermott, F.: Edinburgh Ion Microprobe Facility, Modification and preservation of environmental signals in speleothems, Earth-Sci. Rev., 75, 105–153, 2006.
Fasullo, J.: A mechanism for land–ocean contrasts in global monsoon trends in a warming climate, Clim. Dynam., 39, 1137–1147, 2012.
Fasullo, J. T. and Trenberth, K. E.: A less cloudy future: The role of subtropical subsidence in climate sensitivity, Science, 338, 792–794, 2012.
Fasullo, J. T., Boening, C., Landerer, F. W., and Nerem, R. S.: Australia's unique influence on global sea level in 2010–2011, Geophys. Res. Lett., 40, 4368–4373, 2013.
Fawcett, P. J., Werne, J. P., Anderson, R. S., Heikoop, J. M., Brown, E. T., Berke, M. A., Smith, S. J., Goff, F., Donohoo-Hurley, L., and Cisneros-Dozal, L. M.: Extended megadroughts in the southwestern United States during Pleistocene interglacials, Nature, 470, 518–521, 2011.
Fedoroff, N. and Goldberg, P.: Comparative micromorphology of two late Pleistocene paleosols (in the Paris Basin), Catena, 9, 227–251, 1982.
Feng, X., Cui, H., and Conkey, L. E.: Reply to the Letter to the Editor by Zhou on "Tree-Ring δD as an Indicator of Asian Monsoon Intensity", Quat. Res., 58, 212–213, 2002.
Feng, X., Cui, H., Tang, K., and Conkey, L. E.: Tree-ring δD as an indicator of Asian monsoon intensity, Quat. Res., 51, 262–266, 1999.
Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A.: Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman, Science, 300, 1737–1739, 2003.
Fleitmann, D., Burns, S. J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A. A., Buettner, A., and Hippler, D.: Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra), Quat. Sci. Rev., 26, 170–188, 2007.
Floegel, S., Hay, W. W., DeConto, R. M., and Balukhovsky, A. N.: Formation of sedimentary bedding couplets in the Western Interior Seaway of North America–-implications from climate system modeling, Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 125–143, 2005.
Fluteau, F., Ramstein, G., and Besse, J.: Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model, J. Geophys. Res. Atmos. (1984–2012), 104, 11995–12018, 1999.
Fluteau, F., Besse, J., Broutin, J., and Ramstein, G.: The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude?, Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 39–71, 2001.
Foreman, B. Z., Heller, P. L., and Clementz, M. T.: Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary, Nature, 2012.
France-Lanord, C. and Derry, L. A.: δ13C of organic carbon in the Bengal Fan: Source evolution and transport of C3 and C4 plant carbon to marine sediments, Geochimica et Cosmochimica Acta, 58, 4809–4814, 1994.
Frierson, D. M. W., Hwang, Y.-T., Fučkar, N. S., Seager, R., Kang, S.M., Donohoe, A., Maroon, E. A., Liu, X. J., and Battisti, D. S.: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere, Nat. Geosci., 6, 940–944, 2013.
Fujioka, T. and Chappell, J.: History of Australian aridity: chronology in the evolution of arid landscapes, Geological Society, London, Special Publications, 346, 121–139, 2010.
Gadgil, S.: Recent advances in monsoon research with particular reference to the Indian monsoon, Aust. Meteorol.Mag., 36, 193–204, 1988.
Garcin, Y., Williamson, D., Taieb, M., Vincens, A., Mathé, P.-E., and Majule, A.: Centennial to millennial changes in maar-lake deposition during the last 45 000 years in tropical Southern Africa (Lake Masoko, Tanzania), Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 334–354, 2006.
Garcin, Y., Vincens, A., Williamson, D., Buchet, G., and Guiot, J.: Abrupt resumption of the African Monsoon at the Younger Dryas – Holocene climatic transition, Quat. Sci. Rev., 26, 690–704, 2007.
Gasse, F., Lédée, V., Massault, M., and Fontes, J.-C.: Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation, Nature, 342, 57–59, 1989.
Gasse, F.: Hydrological changes in the African tropics since the Last Glacial Maximum, Quat. Sci. Rev., 19, 189–211, 2000.
Gasse, F., Chalié, F., Vincens, A., Williams, M. A., and Williamson, D.: Climatic patterns in equatorial and southern Africa from 30 000 to 10 000 years ago reconstructed from terrestrial and near-shore proxy data, Quat. Sci. Rev., 27, 2316–2340, 2008.
Ge, Q. S., Zheng, J. Y., Fang, X. Q., Zhang, X. Q., and Zhang, P. W.: Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years, Holocene, 13, 933–940, 2003.
Gill, A. E.: Some simple solutions for heat-induced tropical circulation, Quart. J. Roy. Meteorol. Soc., 106, 447–462, 1980.
Giosan, L., Clift, P. D., Macklin, M. G., Fuller, D. Q., Constantinescu, S., Durcan, J. A., Stevens, T., Duller, G. A., Tabrez, A. R., and Gangal, K.: Fluvial landscapes of the Harappan civilization, P. Natl. Acad. Sci. USA, 109, E1688–E1694, 2012.
Gordon, W. A.: Distribution by latitude of Phanerozoic evaporite deposits, J. Geol., 83, 671–684, 1975.
Goswami, B. N., Madhusoodanan, M., Neema, C., and Sengupta, D.: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon, Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803, 2006.
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M., and Xavier, P. K.: Increasing trend of extreme rain events over India in a warming environment, Science, 314, 1442–1445, 2006b.
Griffiths, M., Drysdale, R., Gagan, M., Zhao, J.-X., Ayliffe, L., Hellstrom, J., Hantoro, W., Frisia, S., Feng, Y.-X., and Cartwright, I.: Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise, Nat. Geosci., 2, 636–639, 2009.
Grootos, P., Stulvor, I., and Whltoi, J.: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice core, Nature, 366, 552–554, 1993.
Guo, Q. Y.: The summer monsoon intensity index in east Asia and its variation (in Chinese), Ac. Geogr. Sinica, 3, 207–217, 1983.
Guo, Z., Liu, T., Guiot, J., Wu, N., Lü, H., Han, J., Liu, J., and Gu, Z.: High frequency pulses of East Asian monsoon climate in the last two glaciations: link with the North Atlantic, Clim. Dynam., 12, 701–709, 1996.
Guo, Z., Liu, T., Fedoroff, N., Wei, L., Ding, Z., Wu, N., Lu, H., Jiang, W., and An, Z.: Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic, Glob. Planet. Change, 18, 113–128, 1998.
Guo, Z., Biscaye, P., Wei, L., Chen, X., Peng, S., and Liu, T.: Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China, Geophys. Res. Lett., 27, 1751–1754, 2000.
Guo, Z., Ruddiman, W. F., Hao, Q., Wu, H., Qiao, Y., Zhu, R. X., Peng, S., Wei, J., Yuan, B., and Liu, T.: Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature, 416, 159–163, 2002.
Guo, Z., Peng, S., Hao, Q., Biscaye, P. E., An, Z., and Liu, T.: Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China, Glob. Planet. Change, 41, 135–145, 2004.
Guo, Z. T., Sun, B., Zhang, Z. S., Peng, S. Z., Xiao, G. Q., Ge, J. Y., Hao, Q. Z., Qiao, Y. S., Liang, M. Y., Liu, J. F., Yin, Q. Z., and Wei, J. J.: A major reorganization of Asian climate by the early Miocene, Clim. Past, 4, 153–174, https://doi.org/10.5194/cp-4-153-2008, 2008.
Guo, Z., Zhou, X., and Wu, H.: Glacial-interglacial water cycle, global monsoon and atmospheric methane changes, Clim. Dynam., 39, 1073–1092, 2012.
Guo, Z.: 22–8 Ma eolian deposits and the monsoon history, in: A synthetic study on the environmental evolution in western China, Science Press, Beijing, 1–19, 2010.
Gupta, A. K., Anderson, D. M., and Overpeck, J. T.: Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean, Nature, 421, 354–357, 2003.
Hadley, G.: Concerning the Cause of the General Trade-Winds: By Geo. Hadley, Esq; FRS, Philosophical Transactions, 39, 58–62, 1735.
Halley, E.: An Historical Account of the Trade Winds, and Monsoons, Observable in the Seas between and Near the Tropicks, with an Attempt to Assign the Phisical Cause of the Said Winds, By E. Halley, Philos. Trans., 16, 153–168, 1686.
Hann, J.: Handbuch der Klimatologie, vol. i and iii, Part II, 1908.
Hao, Q. and Guo, Z.: Magnetostratigraphy of a late Miocene-Pliocene loess-soil sequence in the western Loess Plateau in China, Geophys. Res. Lett., 31, L09209, https://doi.org/10.1029/2003GL019392, 2004.
Hao, Q. and Guo, Z.: Magnetostratigraphy of an early-middle Miocene loess-soil sequence in the western Loess Plateau of China, Geophys. Res. Lett., 34, L18305, https://doi.org/10.1029/2007GL031162, 2007.
Harrison, T. M., Copeland, P., Kidd, W., and Yin, A.: Raising tibet, Science, 255, 1663–1670, 1992.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl, U.: Southward migration of the Intertropical Convergence Zone through the Holocene, Science, 293, 1304–1308, 2001.
Heinrich, H.: Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years, Quat. Res., 29, 142–152, 1988.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, 2006.
Henderson, G. M.: Climate, Caving in to new chronologies, Science, 313, 620–622, 2006.
Hendy, I. L. and Kennett, J. P.: Dansgaard-Oeschger Cycles and the California Current System: Planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program Hole 893A, Paleoceanography, 15, 30–42, 2000.
Herold, N., Huber, M., Greenwood, D., Müller, R., and Seton, M.: Early to middle Miocene monsoon climate in Australia, Geology, 39, 3–6, 2011.
Higgins, R. W., Douglas, A., Hahmann, A., Berbery, E., Gutzler, D., Shuttleworth, J., Stensrud, D., Amador, J., Carbone, R., and Cortez, M.: Progress in Pan American CLIVAR research: the North American monsoon system, Atmósfera, 16, 2003.
Higginson, M., Maxwell, J. R., and Altabet, M. A.: Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial- and orbital-scale variability, Mar. Geol., 201, 223–250, 2003.
Hodell, D. A., Brenner, M., Curtis, J. H., Medina-González, R., Ildefonso-Chan Can, E., Albornaz-Pat, A., and Guilderson, T. P.: Climate change on the Yucatan Peninsula during the little ice age, Quat. Res., 63, 109–121, 2005.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.: Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion, Nature, 438, 483–487, 2005.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J. A., and Andersen, N.: Orbitally-paced climate evolution during the middle Miocene "Monterey" carbon-isotope excursion, Earth Planet. Sci. Lett., 261, 534–550, 2007.
Holmgren, K., Lee-Thorp, J. A., Cooper, G. R., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Siep Talma, A., and Tyson, P. D.: Persistent millennial-scale climatic variability over the past 25 000 years in Southern Africa, Quat. Sci. Rev., 22, 2311–2326, 2003.
Holzhauser, H., Magny, M., and Zumbuühl, H. J.: Glacier and lake-level variations in west-central Europe over the last 3500 years, The Holocene, 15, 789–801, 2005.
Hoskins, B.: On the existence and strength of the summer subtropical anticyclones: Bernhard Haurwitz memorial lecture, Bull. Am. Meteorol. Soc., 77, 1287–1292, 1996.
Huang, Y., Clemens, S. C., Liu, W., Wang, Y., and Prell, W. L.: Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula, Geology, 35, 531–534, 2007.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the global precipitation record: GPCP version 2.1, Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000, 2009.
Hüsing, S., Cascella, A., Hilgen, F., Krijgsman, W., Kuiper, K., Turco, E., and Wilson, D.: Astrochronology of the Mediterranean Langhian between 15.29 and 14.17 Ma, Earth Planet. Sci. Lett., 290, 254–269, 2010.
Jia, G., Peng, P. A., Zhao, Q., and Jian, Z.: Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea, Geology, 31, 1093–1096, 2003.
Jian, Z., Huang, B., Kuhnt, W., and Lin, H.-L.: Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea, Quat. Res., 55, 363–370, 2001.
Jiang, W. and Liu, T.: Timing and spatial distribution of mid-Holocene drying over northern China: Response to a southeastward retreat of the East Asian Monsoon, J. Geophys. Res. Atmos. (1984–2012), 112, D24111, https://doi.org/10.1029/2007JD009050, 2007.
Jolly, D., Prentice, I. C., Bonnefille, R., Ballouche, A., Bengo, M., Brenac, P., Buchet, G., Burney, D., Cazet, J. P., and Cheddadi, R.: Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years, J. Biogeogr., 25, 1007–1027, 1998.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., and Chappellaz, J.: Orbital and millennial Antarctic climate variability over the past 800 000 years, Science, 317, 793–796, 2007.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., and Woollen, J.: The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437–471, 1996.
Kanner, L. C., Burns, S. J., Cheng, H., and Edwards, R. L.: High-latitude forcing of the South American summer monsoon during the last glacial, Science, 335, 570–573, 2012.
Kao, Y.: Some problems on monsoons over East Asia. Collect. Papers, Inst. Geophys. Meteorol, Acad. Sinica, 5, 1961 (in Chinese).
Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., Fennel, K., and Falkowski, P. G.: Biological overprint of the geological carbon cycle, Mar. Geol., 217, 323–338, 2005.
Kelly, M. J., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., and An, Z.: High resolution characterization of the Asian Monsoon between 146 000 and 99 000 years BP from Dongge Cave, China and global correlation of events surrounding Termination II, Palaeogeography, Palaeoclimatology, Palaeoecology, 236, 20–38, 2006.
Khromov, S.: Die geographische verbreitung der monsune, Petermanns Geogr. Mitt., 101, 234–237, 1957.
Kidd, R. B., Cita, M. B., and Ryan, W. B.: Stratigraphy of eastern Mediterranean sapropel sequences recovered during DSDP Leg 42A and their paleoenvironmental significance, Initial Reports of the Deep Sea Drilling Project, 42, 421–443, 1978.
Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., and Kousky, V.: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, Bull. Am. Meteorol. Soc., 82, 247–267, 2001.
Kröpelin, S., Verschuren, D., Lézine, A.-M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J.-P., Fagot, M., Rumes, B., and Russell, J.: Climate-driven ecosystem succession in the Sahara: the past 6000 years, Science, 320, 765–768, 2008.
Kroon, D. and Ganssen, G.: Northern Indian Ocean upwelling cells and the stable isotope composition of living planktonic foraminifers, Deep-Sea Res. Pt. A, 36, 1219–1236, 1989.
Kroon, D.: Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers, Proc. ODP, Sci. Results, 257–263, 1991.
Kumar, K. K., Rajagopalan, B., and Cane, M. A.: On the weakening relationship between the Indian monsoon and ENSO, Science, 284, 2156–2159, 1999.
Kumar, K. K., Kamala, K., Rajagopalan, B., Hoerling, M. P., Eischeid, J. K., Patwardhan, S., Srinivasan, G., Goswami, B., and Nemani, R.: The once and future pulse of Indian monsoonal climate, Clim. Dynam., 36, 2159–2170, 2011.
Kump, L. R.: Interpreting carbon-isotope excursions: Strangelove ocean, Geology, 19, 299–302, 1991
Kutzbach, J. and Gallimore, R.: Pangaean climates: megamonsoons of the megacontinent, J. Geophys. Res. Atmos. (1984–2012), 94, 3341–3357, 1989.
Kutzbach, J. and Otto-Bliesner, B.: The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years BP in a low-resolution general circulation model, J. Atmos. Sci., 39, 1177–1188, 1982.
Kutzbach, J., Bonan, G., Foley, J., and Harrison, S.: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene, Nature, 384, 623–626, 1996.
Kutzbach, J., Chen, G., Cheng, H., Edwards, R., and Liu, Z.: Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality, Clim. Dynam., 42, 1079–1095, 2014.
Kutzbach, J., Guetter, P., Ruddiman, W., and Prell, W.: Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: Numerical experiments, J. Geophys. Res. Atmos. (1984–2012), 94, 18393–18407, 1989.
Kutzbach, J., Liu, X., Liu, Z., and Chen, G.: Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280 000 years, Clim. Dynam., 30, 567–579, 2008.
Kutzbach, J. E.: Estimates of past climate at Paleolake Chad, North Africa, based on a hydrological and energy-balanced model, Quat. Res., 14, 210–223, 1980.
Kutzbach, J. E.: Monsoon climate of the early Holocene: climate experiment with the earth's orbital parameters for 9000 years ago, Science, 214, 59–61, 1981.
Kutzbach, J. E. and Street-Perrott, F. A.: Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP, Nature, 317, 130–134, 1985.
Kutzbach, J. E., Prell, W. L., and Ruddiman, W.: Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau, J. Geol., 101, 177–190, 1993.
Lachniet, M. S., Asmerom, Y., Bernal, J. P., Polyak, V. J., and Vazquez-Selem, L.: Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22 000 years, P. Natl. Acad. Sci. USA, 110, 9255–9260, 2013.
Lamb, H.: Climate: present, past and future. Volume 2. Climatic history and the future, Methuen and Company, 1977.
Landais, A., Dreyfus, G., Capron, E., Masson-Delmotte, V., Sanchez-Goni, M., Desprat, S., Hoffmann, G., Jouzel, J., Leuenberger, M., and Johnsen, S.: What drives the millennial and orbital variations of δ18O?, Quat. Sci. Rev., 29, 235–246, 2010.
Larrasoaña, J., Roberts, A., Rohling, E., Winklhofer, M., and Wehausen, R.: Three million years of monsoon variability over the northern Sahara, Clim. Dynam., 21, 689–698, 2003.
Lee, J.-Y. and Wang, B.: Future change of global monsoon in the CMIP5, Clim. Dynam., 42, 101–119, 2014.
Lewis, S. C., Gagan, M. K., Ayliffe, L. K., Zhao, J.-x., Hantoro, W. S., Treble, P. C., Hellstrom, J. C., LeGrande, A. N., Kelley, M., and Schmidt, G. A.: High-resolution stalagmite reconstructions of Australian–Indonesian monsoon rainfall variability during Heinrich stadial 3 and Greenland interstadial 4, Earth Planet. Sci. Lett., 303, 133–142, 2011.
Li, J. and Zeng, Q..: A new monsoon index and the geographical distribution of the global monsoons, Adv. Atmos. Sci., 20, 299–302, 2003.
Li, F., Wu, N., and Rousseau, D.-D.: Preliminary study of mollusk fossils in the Qinan Miocene loess-soil sequence in western Chinese Loess Plateau, Science in China Series D, 49, 724–730, 2006.
Liang, M., Guo, Z., Kahmann, A. J., and Oldfield, F.: Geochemical characteristics of the Miocene eolian deposits in China: their provenance and climate implications, Geochemistry, Geophysics, Geosystems, 10, Q04004, https://doi.org/10.1029/2008GC002331, 2009.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, https://doi.org/10.1029/2004PA001071, 2005.
Liu, J. F., Guo, Z., Qiao, Y., Hao, Q., and Yuan, B.: Eolian origin of the Miocene loess-soil sequence at Qin'an, China: Evidence of quartz morphology and quartz grain-size, Chinese Sci. Bull., 51, 117–120, 2006.
Liu, J. F., Guo, Z.-T., Hao, Q. Z., Peng, S. Z., Qiao, Y.-S., Sun, B., and Ge, J.-Y.: Magnetostratigraphy of the Miziwan Miocene eolian deposits in Qin'an county (Gansu Province), Quat. Sci, 25, 503–508, 2005.
Liu, J., Wang, B., Ding, Q., Kuang, X., Soon, W., and Zorita, E.: Centennial Variations of the Global Monsoon Precipitation in the Last Millennium: Results from ECHO-G Model, J. Climate, 22, 2356–2371, 2009.
Liu, T.: Loess and the Environment, Beijing, Science Press, 1985 (in Chinese).
Liu, T. and Guo, Z.: Geological environment in China and global change, in: Selected Works of Liu Tungsheng, edited by: An, Z., Beijing, Science Press, 192–202, 1997.
Liu, X. and Yin, Z.-Y.: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau, Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 223–245, 2002.
Liu, Y., Henderson, G., Hu, C., Mason, A., Charnley, N., Johnson, K., and Xie, S.: Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event, Nature Geosci., 6, 117–120, 2013.
Liu, Z., Harrison, S., Kutzbach, J., and Otto-Bliesner, B.: Global monsoons in the mid-Holocene and oceanic feedback, Clim. Dynam., 22, 157–182, 2004.
Liu, Z., Otto-Bliesner, B., Kutzbach, J., Li, L., and Shields, C.: Coupled climate simulation of the evolution of global monsoons in the Holocene, J. Climate, 16, 2472–2490, 2003.
Liu, Z., Wang, Y., Gallimore, R., Gasse, F., Johnson, T., DeMenocal, P., Adkins, J., Notaro, M., Prentice, I., and Kutzbach, J.: Simulating the transient evolution and abrupt change of Northern Africa atmosphere–ocean–terrestrial ecosystem in the Holocene, Quat. Sci. Rev., 26, 1818–1837, 2007.
Liu, X. D., Liu, Z. Y., Kutzbach, J. E.,Clemens, S. C., and Prell, W. L.: Hemispheric insolation forcing of the Indian Ocean and Asian Monsoon:Local versus remote impacts, J. Climate, 19, 6195–6208, 2006a.
Liu, Z., Wang, Y., Gallimore, R., Notaro, M., and Prentice, I. C.: On the cause of abrupt vegetation collapse in North Africa during the Holocene: Climate variability vs. vegetation feedback, Geophys. Res. Lett., 33, 2006b.
Loope, D. B., Rowe, C. M., and Joeckel, R. M.: Annual monsoon rains recorded by Jurassic dunes, Nature, 412, 64–66, 2001.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.: Orbital and millennial-scale features of atmospheric CH4 over the past 800 000 years, Nature, 453, 383–386, 2008.
Lourens, L., Hilgen, F., Shackleton, N. J., Laskar, J., and Wilson, D.: The Neogene period, in: A Geologic Time Scale 2004, Cambridge, 409–440, 2004.
Luz, B. and Barkan, E.: The isotopic composition of atmospheric oxygen, Global Biogeochem. Cy., 25, GB3001, https://doi.org/10.1029/2010GB003883, 2011.
Ma, W., Tian, J., Li, Q., and Wang, P.: Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: Weathering and nutrient response to orbital change, Geophys. Res. Lett., 38, L10701, https://doi.org/10.1029/2011GL047680, 2011.
Magee, J. W., Miller, G. H., Spooner, N. A., and Questiaux, D.: Continuous 150 ky monsoon record from Lake Eyre, Australia: insolation-forcing implications and unexpected Holocene failure, Geology, 32, 885–888, 2004.
Mantua, N. J. and Hare, S. R.: The Pacific Decadal Oscillation. Journal of Oceanography, 58, 35–44, 2002.
Marshall, A. G. and Lynch, A. H.: The sensitivity of the Australian summer monsoon to climate forcing during the late Quaternary, J. Geophys. Res., 113, D11107, https://doi.org/10.1029/2007JD008981, 2008.
Matthews, R. K. and Froelich, C.: Maximum flooding surfaces and sequence boundaries: comparisons between observations and orbital forcing in the Cretaceous and Jurassic (65-190 Ma). GeoArabia, Middle East Petrol. Geosci., 7, 503–538, 2002.
McBride, J. L.: The Australian summer monsoon, in: Monsoon Meteorol., Oxford University Press, 203–232, 1987.
McDermott, F.: Palaeo-climate reconstruction from stable isotope variations in speleothems: a review, Quat. Sci. Rev., 23, 901–918, 2004.
McGee, D., deMenocal, P., Winckler, G., Stuut, J., and Bradtmiller, L.: The magnitude, timing and abruptness of changes in North African dust deposition over the last 20 000 yr, Earth Planet. Sci. Lett., 371, 163–176, 2013.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future, Ann. Rev. Earth Planet. Sci., 39, 489–516, 2011.
McIntyre, A., Ruddiman, W. F., Karlin, K., and Mix, A. C.: Surface water response of the equatorial Atlantic Ocean to orbital forcing, Paleoceanography, 4, 19–55, 1989.
McIntyre, A. and Molfino, B.: Forcing of Atlantic equatorial and subpolar millennial cycles by precession, Science, 274, 1867–1870, 1996.
Meehl, G. A., Covey, C., Taylor, K. E., Delworth, T., Stouffer, R. J., Latif, M., McAvaney, B., and Mitchell, J. F.: The WCRP CMIP3 multimodel dataset: A new era in climate change research, Bull. Am. Meteorol. Soc., 88, 1383–1394, 2007a.
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., and Noda, A.: Global climate projections, Clim. Change, 2007, 3–4, 2007b.
Meigs, P.: World distribution of arid and semi-arid homoclimates, Rev. Res. Arid Zone Hydrol., 1, 203–209, 1953.
Merrifield, M. A., Thompson, P. R., and Lander, M.: Multidecadal sea level anomalies and trends in the western tropical Pacific, Geophys. Res. Lett., 39, L13602, https://doi.org/10.1029/2012GL052032, 2012
Molfino, B. and McIntyre, A.: Precessional forcing of nutricline dynamics in the Equatorial Atlantic, Science(Washington), 249, 766–769, 1990.
Morrill, C., Overpeck, J. T., and Cole, J. E.: A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation, The Holocene, 13, 465–476, 2003.
Mosblech, N. A., Bush, M. B., Gosling, W. D., Hodell, D., Thomas, L., van Calsteren, P., Correa-Metrio, A., Valencia, B. G., Curtis, J., and van Woesik, R.: North Atlantic forcing of Amazonian precipitation during the last ice age, Nat. Geosci., 5, 817–820, 2012.
Mourik, A., Bijkerk, J., Cascella, A., Hüsing, S., Hilgen, F., Lourens, L., and Turco, E.: Astronomical tuning of the La Vedova High Cliff Section (Ancona, Italy) – Implications of the middle Miocene climate transition for Mediterranean sapropel formation, Earth Planet. Sci. Lett., 297, 249–261, 2010.
Mulitza, S., Prange, M., Stuut, J. B., Zabel, M., von Dobeneck, T., Itambi, A. C., Nizou, J., Schulz, M., and Wefer, G.: Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning, Paleoceanography, 23, PA4206, https://doi.org/10.1029/2008PA001637, 2008.
Murakami, H., Sugi, M., and Kitoh, A.: Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs, Clim. Dynam., 40, 1949-1968, 2012.
Muri, H., Berger, A., Yin, Q. Z., Voldoire, A., Salas, D., and Sundaram, S.: SST and ice sheet impacts on the MIS–13 climate, Clim. Dynam., 39, 1739–1761, 2012.
Neelin, J., Chou, C., and Su, H.: Tropical drought regions in global warming and El Niño teleconnections, Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL018625, 2003.
Neelin, J. D., Münnich, M., Su, H., Meyerson, J. E., and Holloway, C. E.: Tropical drying trends in global warming models and observations, P. Natl. Acad. Sci. USA, 103, 6110–6115, 2006.
Newton, A., Thunell, R., and Stott, L.: Climate and hydrographic variability in the Indo-Pacific Warm Pool during the last millennium, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL027234, 2006.
Nicholson, S. E. and Kim, J.: The relationship of the El Nino-Southern oscillation to African rainfall, Internat. J. Climatol., 17, 117–135, 1997.
Novello, V. F., Cruz, F. W., Karmann, I., Burns, S. J., Stríkis, N. M., Vuille, M., Cheng, H., Lawrence Edwards, R., Santos, R. V., and Frigo, E.: Multidecadal climate variability in Brazil's Nordeste during the last 3000 years based on speleothem isotope records, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL053936, 2012.
O'Brien, S. R., Mayewski, P. A., Meeker, L. D., Meese, D. A., Twickler, M. S., and Whitlow, S. I.:. Complexity of Holocene climate as reconstructed from a Greenland ice core, Science, 270, 1962–1964, 1995.
Oldfield, F. and Bloemendal, J.: Rock-magnetic properties confirm the eolian origin of Miocene sequences from the west of the Chinese Loess Plateau, Sediment. Geol., 234, 70–75, 2011.
Olsen, P. E.: A 40-million-year lake record of early Mesozoic orbital climatic forcing, Science, 234, 842–848, 1986.
Olsen, P. E. and Kent, D. V.: Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic, Palaeogeography, Palaeoclimatology, Palaeoecology, 122, 1–26, 1996.
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., and Takahashi, K.: The JRA-25 reanalysis, J. Meteorol. Soc. Jpn., 85, 369–432, 2007.
Oppo, D. W., Schmidt, G. A., and LeGrande, A. N.: Seawater isotope constraints on tropical hydrology during the Holocene, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030017, 2007.
Ortloff, C. R. and Kolata, A. L.: Climate and collapse: agro-ecological perspectives on the decline of the Tiwanaku state, J. Archaeol. Sci., 20, 195–221, 1993.
Pälike, H., Frazier, J., and Zachos, J. C.: Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise, Quat. Sci. Rev., 25, 3138–3149, 2006a.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The heartbeat of the Oligocene climate system, Science, 314, 1894–1898, 2006b.
Parker, D., Folland, C., Scaife, A., Knight, J., Colman, A., Baines, P., and Dong, B.: Decadal to multidecadal variability and the climate change background, J. Geophys. Res. Atmos. (1984–2012), 112, 2007.
Parrish, J. T.: Climate of the supercontinent Pangea, J. Geol., 101, 215–233, 1993.
Partridge, T., Demenocal, P., Lorentz, S., Paiker, M., and Vogel, J.: Orbital forcing of climate over South Africa: a 200 000-year rainfall record from the Pretoria Saltpan, Quat. Sci. Rev., 16, 1125–1133, 1997.
Paul, H. A., Zachos, J. C., Flower, B. P., and Tripati, A.:. Orbitally induced climate and geochemical variability across the Oligocene/Miocene boundary. Paleoceanography, 15, 471–485, 2000.
Pausata, F. S. R., Battisti, D. S., Nisancioglu, K. H., and Bitz, C. M.: Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event, Nat. Geosci., 4, 474–480, 2011.
Pessenda, L. C. R., de Souza Ribeiro, A., Gouveia, S. E. M., Aravena, R., Boulet, R., and Bendassolli, J. A.: Vegetation dynamics during the late Pleistocene in the Barreirinhas region, Maranhão State, northeastern Brazil, based on carbon isotopes in soil organic matter, Quaternary Res., 62, 183–193, 2004.
Peterson, L. C., Haug, G. H., Hughen, K. A., and Röhl, U.: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial, Science, 290, 1947–1951, 2000.
Petit, J. R., Jouzel, J. Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, D., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pèpin, L., Ritz, C., Saltzmank, E.,and Stievenard, M.: Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Philander, S., Gu, D., Lambert, G., Li, T., Halpern, D., Lau, N., and Pacanowski, R.: Why the ITCZ is mostly north of the equator, J. Climate, 9, 2958–2972, 1996.
Pokras, E. M. and Mix, A. C.: Earth's precession cycle and Quaternary climatic change in tropical Africa, Nature, 326, 486–487, 1987.
Poore, R., Dowsett, H., Verardo, S., and Quinn, T. M.: Millennial-to century-scale variability in Gulf of Mexico Holocene climate records, Paleoceanography, 18, 1048, https://doi.org/10.1029/2002PA000868, 2003.
Porter, S. C. and An, Z.: Correlation between climate events in the North Atlantic and China during the last glaciation, Nature, 375, 305–308, 1995.
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Inter-decadal modulation of the impact of ENSO on Australia, Clim. Dynam., 15, 319–324, 1999.
Prell, W. L.: Monsoonal climate of the Arabian Sea during the Late Quaternary: a response to changing solar radiation, in: Milankovitch and Climate, eedited by: Berger, A. L., Imbrie, J., Hays, J., and Riedel, D., Hingham, 349–366, 1984.
Prell, W. L. and Kutzbach, J. E.: The impact of Tibet-Himalayan elevation on the sensitivity of the monsoon climate system to changes in solar radiation, in: Tectonic Uplift and Climate Change, Springer, 171–201, 1997.
Pye, K.: The nature, origin and accumulation of loess, Quat. Sci. Rev., 14, 653–667, 1995.
Qiang, X. K., An, Z. S., Song, Y. G., Chang, H., Sun, Y. B., Liu, W. G., Ao, H., Dong, J. B., Fu, C. F., Wu, F., Lu, F. Y., Cai, Y. L., Zhao, W. J., Cao, J. J., Xu, X. W., and Ai, L.: New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago, Sci. China Earth Sci., 54, 136–44, 2011.
Qiao, Y., Guo, Z., Hao, Q., Yin, Q., Yuan, B., and Liu, T.: Grain-size features of a Miocene loess-soil sequence at Qinan: Implications on its origin, Sci. China Ser. D, 49, 731–738, 2006.
Qiu, Z. and Li, C.: Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau, Sci. China Ser. D, 48, 1246–1258, 2005.
Quade, J., Cerling, T. E., and Bowman, J. R.: Development of Asian monsoon revealed by marked ecological shift during the late 67st Miocene in northern Pakistan, Nature, 342, 163–166, 1989.
Rühlemann, C., Mulitza, S., Müller, P. J., Wefer, G., and Zahn, R.: Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation, Nature, 402, 511–514, 1999.
Rahmstorf, S.: Timing of abrupt climate change: A precise clock, Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017115, 2003.
Ramage, C. S.: Monsoon meteorology (Int. Geophys. Ser. Vol 15), Academic Press, California, 296 pp., 1971.
Rea, D. K.: The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind, Rev. Geophys., 32, 159–195, 1994.
Renssen, H., Goosse, H., and Muscheler, R.: Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing, Clim. Past, 2, 79–90, https://doi.org/10.5194/cp-2-79-2006, 2006.
Reuter, J., Stott, L., Khider, D., Sinha, A., Cheng, H., and Edwards, R. L.: A new perspective on the hydroclimate variability in northern South America during the Little Ice Age, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL041051, 2009.
Revel, M., Ducassou, E., Grousset, F., Bernasconi, S., Migeon, S., Revillon, S., Mascle, J., Murat, A., Zaragosi, S., and Bosch, D.: 100 000 years of African monsoon variability recorded in sediments of the Nile margin, Quat. Sci. Rev., 29, 1342–1362, 2010.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., and Kim, G.-K.: MERRA: NASA"s Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Ritchie, J., Eyles, C., and Haynes, C. V.: Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara, Nature, 314, 352–355, 1985.
Rodwell, M. J. and Hoskins, B. J.: Monsoons and the dynamics of deserts, Quart. J. Roy. Meteorol. Soc., 122, 1385–1404, 1996.
Rodysill, J. R., Russell, J. M., Crausbay, S. D., Bijaksana, S., Vuille, M., Edwards, R. L., and Cheng, H.: A severe drought during the last millennium in East Java, Indonesia, Quat. Sci. Rev., 80, 102–111, 2013.
Rohling, E. J. and Bigg, G. R.: Paleosalinity and δ18O: a critical assessment, Journal of Geophysical Research: Oceans (1978–2012), 103, 1307–1318, 1998.
Rossignol-Strick, M.: African monsoons, an immediate climate response to orbital insolation, Nature, 304, 46–49, 1983.
Rossignol-Strick, M., Nesteroef, W., Olive, P., and Vergnaud-Grazzini, C.: After the deluge: Mediterranean stagnation and sapropel formation, Nature, 295, 105–110, 1982..
Rossignol-Strick, M., Paterne, M., Bassinot, F., Emeis, K.-C., and De Lange, G.: An unusual mid-Pleistocene monsoon period over Africa and Asia, Nature, 392, 269–272, 1998.
Rowe, H. D., Guilderson, T. P., Dunbar, R. B., Southon, J. R., Seltzer, G. O., Mucciarone, D. A., Fritz, S. C., and Baker, P. A.: Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America, Glob. Planet. Change, 38, 273–290, 2003.
Ruddiman, W. and Kutzbach, J.: Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American west, Journal of Geophysical Research: Atmospheres (1984–2012), 94, 18409–18427, 1989.
Ruddiman, W., Prell, W., and Raymo, M.: Late Cenozoic uplift in southern Asia and the American West: Rationale for general circulation modeling experiments, J. Geophys. Res. Atmos. (1984–2012), 94, 18379–18391, 1989.
Ruddiman, W. F.: Earth's Climate: past and future, Macmillan, 2001.
Ruddiman, W. F. and Raymo, M. E.: A methane-based time scale for Vostok ice, Quat. Sci. Rev., 22, 141–155, 2003.
Ruddiman, W. F.: What is the timing of orbital-scale monsoon changes?, Quat. Sci. Rev., 25, 657–658, 2006.
Rühlemann, C., Mulitza, S., Muller, P. J., Wefer, G., and Zahn, R.: Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation, Nature, 402, 511–514, 1999.
Russell, J. M. and Johnson, T. C.: A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene, Quat. Sci. Rev., 24, 1375–1389, 2005.
Russon, T., Paillard, D., and Elliot, M.: Potential origins of 400-500 kyr periodicities in the ocean carbon cycle: A box model approach, Global Biogeochem. Cy., 24, https://doi.org/10.1029/2009GB003586, 2010.
Sachs, J. P., Sachse, D., Smittenberg, R. H., Zhang, Z., Battisti, D. S., and Golubic, S.: Southward movement of the Pacific intertropical convergence zone AD 1400–1850, Nat. Geosci., 2, 519–525, 2009.
Salamy, K. A. and Zachos, J. C.: Latest Eocene-Early Oligocene Climate Change and Southern Ocean Fertility: Inferences from Sediment Accumulation and Stable Isotope Data, Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 61–77, 1999
Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., and Pflaumann, U.: Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa, Nature, 293, 193–196, 1981.
Schuster, M., Duringer, P., Ghienne, J.-F., Vignaud, P., Mackaye, H. T., Likius, A., and Brunet, M.: The age of the Sahara desert, Science, 311, 821–821, 2006.
Seager, R., Naik, N., and Vecchi, G. A.: Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming, J. Climate, 23, 4651–4668, 2010.
Seltzer, G., Rodbell, D., and Burns, S.: Isotopic evidence for late Quaternary climatic change in tropical South America, Geology, 28, 35–38, 2000.
Seth, A., Rauscher, S. A., Rojas, M., Giannini, A., and Camargo, S. J.: Enhanced spring convective barrier for monsoons in a warmer world?, Climatic Change, 104, 403–414, 2011.
Severinghaus, J. P., Beaudette, R., Headly, M. A., Taylor, K., and Brook, E. J.: Oxygen-18 of O2 records the impact of abrupt climate change on the terrestrial biosphere, Science, 324, 1431–1434, 2009.
Shackleton, N. J.: The 100 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity, Science, 289, 1897–1902, 2000.
Shapaev, V. M.: Monsoon characteristics of of the atmospheric circulation in Soviet Arctic (in Russian), Geographicheskoe Obshchestov, ssr, Izv. 92, 176–180, 1960.
Schick, M.: Die Geographiche Verbureitung des Monsunes. Nova Acta Leopoldina, 16, No. 12, 1953.
Short, D. A., Mengel, J. G., Crowley, T. J., Hyde, W. T., and North, G. R.: Filtering of Milankovitch cycles by Earth's geography, Quat. Res., 35, 157–173, 1991.
Sima, A., Rousseau, D.-D., Kageyama, M., Ramstein, G., Schulz, M., Balkanski, Y., Antoine, P., Dulac, F., and Hatté, C.: Imprint of North-Atlantic abrupt climate changes on western European loess deposits as viewed in a dust emission model, Quat. Sci. Rev., 28, 2851–2866, 2009.
Singh, R. K. and Gupta, A. K.: Late Oligocene–Miocene paleoceanographic evolution of the southeastern Indian Ocean: evidence from deep-sea benthic foraminifera (ODP Site 757), Marine Micropaleontology, 51, 153–170, 2004.
Sinha, A., Cannariato, K. G., Stott, L. D., Li, H.-C., You, C.-F., Cheng, H., Edwards, R. L., and Singh, I. B.: Variability of southwest Indian summer monsoon precipitation during the Bølling-Ållerød, Geology, 33, 813–816, 2005.
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas, J.: The leading mode of Indian Summer Monsoon precipitation variability during the last millennium, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL047713, 2011.
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., and Duplessy, J. C.: Century-scale events in monsoonal climate over the past 24 000 years, Nature, 364, 322–324, 1993.
Sletten, H. R., Railsback, L. B., Liang, F., Brook, G. A., Marais, E., Hardt, B. F., Cheng, H., and Edwards, R. L.: A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa's Iron Age, Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 149–162, 2013.
Song, Z., Li, H., Zheng, Yi., and Liu, G.: Miocene floristic region of China, in: Palaeobiogeographic provinces of China, Beijing Science Press, Beijing, 1983.
Soreghan, G. S., Soreghan, M. J., and Hamilton, M. A.: Origin and significance of loess in late Paleozoic western Pangaea: A record of tropical cold?, Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 234–259, 2008.
Stocker, T. F., Wright, D. G., and Broecker, W. S.: The influence of high-latitude surface forcing on the global thermohaline circulation, Paleoceanography, 7, 529–541, 1992.
Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the bipolar seesaw, Paleoceanography, 18, 1087, https://doi.org/10.1029/2003PA000920, 2003.
Stríkis, N. M., Cruz, F. W., Cheng, H., Karmann, I., Edwards, R. L., Vuille, M., Wang, X., de Paula, M. S., Novello, V. F., and Auler, A. S.: Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil, Geology, 39, 1075–1078, 2011.
Sun, D., Liu, D., Chen, M., An, Z., and John, S.: Magnetostratigraphy and palaeoclimate of red clay sequences from Chinese Loess Plateau, Sci. China Ser. D, 40, 337–343, 1997.
Sun, D.: Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of Northern China, Glob. Planet. Change, 41, 63–80, 2004.
Sun, J., Ye, J., Wu, W., Ni, X., Bi, S., Zhang, Z., Liu, W., and Meng, J.: Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior, Geology, 38, 515–518, 2010.
Sun, X. and Wang, P.: How old is the Asian monsoon system?–-Palaeobotanical records from China, Palaeogeography, Palaeoclimatology, Palaeoecology, 222, 181–222, 2005.
Sun, Y., Clemens, S. C., Morrill, C., Lin, X., Wang, X., and An, Z.: Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon, Nat. Geosci., 5, 46–49, 2012.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Tabor, N. J. and Montañez, I. P.: Shifts in late Paleozoic atmospheric circulation over western equatorial Pangea: Insights from pedogenic mineral δ18O compositions, Geology, 30, 1127–1130, 2002.
Talbot, M. and Delibrias, G.: Holocene variations in the level of Lake Bosumtwi, Ghana, Nature, 268, 722–724, 1977.
Tan, L., Cai, Y., An, Z., Edwards, R. L., Cheng, H., Shen, C.-C., and Zhang, H.: Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave, The Holocene, 21, 287–296, 2011.
Tanaka, H., Ishizaki, N., and Nohara, D.: Intercomparison of the intensities and trends of Hadley, Walker and monsoon circulations in the global warming projections, SOLA, 1, 77–80, 2005.
Tao, S. and Chen, L.: A review of recent research on the East Asian summer monsoon in China, in: Monsoon Meteorology, edited by: Chang, C.-P. and Krishnamurti, T. N., Oxford University Press, 60–92, 1987.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, 2012.
Thomas, E. R., Wolff, E. W., Mulvaney, R., Steffensen, J. P., Johnsen, S. J., Arrowsmith, C., White, J. W., Vaughn, B., and Popp, T.: The 8.2 ka event from Greenland ice cores, Quat. Sci. Rev., 26, 70–81, 2007.
Thompson, L. G., Mosley-Thompson, E., Dansgaard, W., and Grootes, P. M.: The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya Ice Cap. Science, 234, 361–364, 1986.
Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T., Henderson, K. A., Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., and Bolzan, J. F.: A 25 000-year tropical climate history from Bolivian ice cores, Science, 282, 1858–1864, 1998.
Tian, J., Shevenell, A., Wang, P., Zhao, Q., Li, Q., and Cheng, X.: Reorganization of Pacific deep waters linked to middle Miocene Antarctic cryosphere expansion: A perspective from the South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 284, 375–382, 2009.
Tian, J., Xie, X., Ma, W., Jin, H., and Wang, P.: X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea, Paleoceanography, 26, https://doi.org/10.1029/2007PA001552, 2011.
Tiedemann, R., Sarnthein, M., and Shackleton, N. J.: Astronomic timescale for thePliocene Atlantic δ18O and dust flux records from Ocean Drilling Program Site 659, Paleoceanography, 9, 619–638, 1994.
Tierney, J. E., Russell, J. M., Huang, Y., Damsté, J. S. S., Hopmans, E. C., and Cohen, A. S.: Northern hemisphere controls on tropical southeast African climate during the past 60 000 years, Science, 322, 252–255, 2008.
Trenberth, K. E., Stepaniak, D. P., and Caron, J. M.: The global monsoon as seen through the divergent atmospheric circulation, J. Climate, 13, 3969–3993, 2000.
Trenberth, K. E.: Changes in precipitation with climate change, Climate Research, 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Tsoar, H. and Pye, K.: Dust transport and the question of desert loess formation, Sedimentology, 34, 139–153, 1987.
Unnikrishnan, A., Kumar, M., and Sindhu, B.: Tropical cyclones in the Bay of Bengal and extreme sea-level projections along the east coast of India in a future climate scenario, Curr. Sci., 101, 327–331, 2011.
Uppala, S. M., Kållberg, P., Simmons, A., Andrae, U., Bechtold, V., Fiorino, M., Gibson, J., Haseler, J., Hernandez, A., and Kelly, G.: The ERA40 re-analysis, Quart. J. Roy. Meteorol. Soc., 131, 2961–3012, 2005.
Van Breukelen, M., Vonhof, H., Hellstrom, J., Wester, W., and Kroon, D.: Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia, Earth Planet. Sci. Lett., 275, 54–60, 2008.
Vecchi, G. A. and Soden, B. J.: Global warming and the weakening of the tropical circulation, J. Climate, 20, 4316–4340, 2007.
Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., and Mechoso, C.: Toward a unified view of the American monsoon systems, J. Climate, 19, 4977–5000, 2006.
Verheyden, S., Nader, F. H., Cheng, H. J., Edwards, L. R., and Swennen, R.: Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon, Quat. Res., 70, 368–381, 2008.
Vermeer, M., and Rahmstorf, S.: Global sea level linked to global temperature, Proceedings of the National Academy of Sciences, 106, 21527–21532, 2009.
Verschuren, D., Laird, K. R., and Cumming, B. F.: Rainfall and drought in equatorial east Africa during the past 1100 years, Nature, 403, 410–414, 2000.
Vollmer, T., Werner, R., Weber, M., Tougiannidis, N., Röhling, H.-G., and Hambach, U.: Orbital control on Upper Triassic Playa cycles of the Steinmergel-Keuper (Norian): a new concept for ancient playa cycles, Palaeogeography, Palaeoclimatology, Palaeoecology, 267, 1–16, 2008.
Vuille, M., Burns, S. J., Taylor, B. L., Cruz, F. W., Bird, B. W., Abbott, M. B., Kanner, L. C., Cheng, H., and Novello, V. F.: A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia, Clim. Past, 8, 1309–1321, https://doi.org/10.5194/cp-8-1309-2012, 2012.
Wade, B. S. and Pälike, H.: Oligocene climate dynamics. Paleoceanography,19, PA4019, https://doi.org/10.1029/2004PA001042, 2004.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quat. Sci. Rev., 21, 295–305, 2002.
Wagner, J. D. M., Cole, J. E., Beck, J. W., Patchett, P. J., Henderson, G. M., and Barnett, H. R.: Moisture variability in the southwestern United States linked to abrupt glacial climate change, Nat. Geosci., 3, 110–113, 2010.
Wang, B.: Climatic regimes of tropical convection and rainfall, J. Climate, 7, 1109–1118, 1994.
Wang, B. and LinHo: Rainy seasons of the Asian-Pacific monsoon, J. Climate, 15, 386–398, 2002.
Wang, B. and Wang, Y.: Dynamics of the ITCZ-equatorial cold tongue complex and causes of the latitudinal climate asymmetry, J. Climate, 12, 1999.
Wang, B., Clemens, S. C., and Liu, P.: Contrasting the Indian and East Asian monsoons: implications on geologic timescales, Mar. Geol., 201, 5–21, 2003.
Wang, B.: The Asian Monsoon, Springer, 2006.
Wang, B. and Ding, Q.: Changes in global monsoon precipitation over the past 56 years, Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL025347, 2006.
Wang, B. and Ding, Q.: Global monsoon: Dominant mode of annual variation in the tropics, Dynam. Atmos. Oc., 44, 165–183, 2008.
Wang, B., Yang, J., and Zhou, T.: Interdecadal Changes in the Major Modes of Asian–Australian Monsoon Variability: Strengthening Relationship with ENSO since the Late 1970s, J. Climate, 21, https://doi.org/10.1175/2007JCLI1981.1, 2008.
Wang, B., Liu, J., Kim, H.-J., Webster, P. J., and Yim, S.-Y.: Recent change of the global monsoon precipitation (1979–2008), Clim. Dynam., 39, 1123–1135, 2012.
Wang, B., Liu, J., Kim, H.-J., Webster, P. J., Yim, S.-Y., and Xiang, B.: Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation, P. Natl. Acad. Sci. USA, 110, 5347–5352, 2013.
Wang, J., Wang, Y. J., Liu, Z. C., Li, J. Q., and Xi, P.: Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia, Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 37–47, 1999.
Wang, L., Sarenthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U.: East Asian monsoon Climate during the late Pleistocene: high- resolution sediment records from the South China Sea, Mar. Geol., 156, 245–284, 1999.
Wang, P.: Neogene stratigraphy and paleoenvironments of China, Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 315–334, 1990.
Wang, P.: Global monsoon in a geological perspective, Chin. Sci. Bull., 54, 1–24, 2009.
Wang P., Prell, W. L., and Blum, P. (Eds): Proceedings of Ocean Drilling Program, Initial. Reports, 184 [CD-ROM]. Ocean Drilling Program, Texas A&M University, College Station TX, USA, 2000.
Wang, P., Tian, J., Cheng, X., Liu, C., and Xu, J.: Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison, Paleoceanography, 19, PA4005, https://doi.org/10.1029/2003PA000991, 2004.
Wang, P., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z., Kershaw, P., and Sarnthein, M.: Evolution and variability of the Asian monsoon system: state of the art and outstanding issues, Quat. Sci. Rev., 24, 595–629, 2005.
Wang, P., Wang, B., and Kiefer, T.: Global monsoon in observations, simulations and geological records, PAGES News, 17, 82–83, 2009.
Wang, P., Wang, B., and Kiefer, T.: Linking monsoon systems across timescales, PAGES News, 19, 86-87, 2012a.
Wang, P., Tian, J., and Lourens, L. J.: Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records, Earth Planet. Sci. Lett., 290, 319–330, 2010.
Wang, P., Wang, B., and Kiefer, T.: Global Monsoon across timescales, Clim. Dynam., 1–2, 2012b.
Wang, P. and Li, Q.: Monsoons: Pre-Quaternary, in: Encyclopedia of Paleoclimatology and Ancient Environments, Springer, 583–589, 2009.
Wang, P., Li, Q., Tian, J., Jian, Z., Liu, C., Li, L., and Ma, W.: Long-term cycles in the carbon reservoir of the Quaternary ocean: a perspective from the South China Sea. National Science Review, Oxford University Press, 1, 119–143, 2014
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart, P. L., Richards, D. A., and Shen, C.-C.: Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies, Nature, 432, 740–743, 2004.
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., and Solheid, M.: Interhemispheric anti-phasing of rainfall during the last glacial period, Quat. Sci. Rev., 25, 3391–3403, 2006.
Wang, X., Auler, A. S., Edwards, R., Cheng, H., Ito, E., Wang, Y., Kong, X., and Solheid, M.: Millennial-scale precipitation changes in southern Brazil over the past 90 000 years, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL031149, 2007a.
Wang, X., Edwards, R. L., Auler, A. S., Cheng, H., and Ito, E.: Millennial-Scale Interhemispheric Asymmetry of Low-Latitude Precipitation: Speleothem Evidence and Possible High-Latitude Forcing, in: A.Schmittner et al., Ocean Circulation: Mechanisms and Impacts-Past and Future Changes of Meridional Overturning, Geophys. Monogr., 137, 279–294, 2007b.
Wang, Y., Cheng, H., Edwards, R. L., An, Z., Wu, J., Shen, C.-C., and Dorale, J. A.: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China, Science, 294, 2345–2348, 2001.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian monsoon: links to solar changes and North Atlantic climate, Science, 308, 854–857, 2005.
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z.: Millennial-and orbital-scale changes in the East Asian monsoon over the past 224 000 years, Nature, 451, 1090–1093, 2008.
Wanner, H. and Bütikofer, J.: Holocene Bond Cycles – real or imaginary?, Geografie, 4, 338–349, 2008.
Wanner, H., Beer,J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to late Holocene climate change: an overview, Quat. Sci. Rev., 27, 1791–1828, 2008.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origin of Holocene cold events, Quat. Sci. Rev., 30, 3109–3123, 2011.
Weber, S. L. and Tuenter, E.: The impact of varying ice sheets and greenhouse gases on the intensity and timing of boreal summer monsoons, Quat. Sci. Rev., 30, 469–479. 2011.
Webster, P. J.: Response of the tropical atmosphere to local, steady forcing, Month. Weather Rev., 100, 518–541, 1972.
Webster, P. J.: Monsoons, Scientific American, 245, 108–118, 1981.
Webster, P. J.: The variable and interactive monsoon, in: Monsoons, Wiley, New York, 269–330, 1987.
Webster, P. J., Magana, V. O., Palmer, T., Shukla, J., Tomas, R., Yanai, M. U., and Yasunari, T.: Monsoons: Processes, predictability, and the prospects for prediction, Journal of Geophysical Research: Oceans (1978–2012), 103, 14451–14510, 1998.
Weissert, H. and Mohr, H.: Late Jurassic climate and its impact on carbon cycling, Palaeogeography, Palaeoclimatology, Palaeoecology, 122, 27–43, 1996.
Weldeab, S., Lea, D. W., Schneider, R. R., and Andersen, N.: 155 000 years of West African monsoon and ocean thermal evolution, Science, 316, 1303–1307, 2007.
Weldeab, S.: Bipolar modulation of millennial-scale West African monsoon variability during the last glacial (75 000–25 000 years ago), Quat. Sci. Rev., 40, 21–29, 2012.
Wilde, P., Berry, W., and Quinby-Hunt, M.: Silurian oceanic and atmospheric circulation and chemistry, Special Papers in Palaeontology, 44, 123–143, 1991.
Winkler, M. G. and Wang, P. K.: The late-Quaternary vegetation and climate of China, Global climates since the last glacial maximum, University of Minnesota Press, Minneapolis, 221–264, 1993.
Wu, W. and Liu, T.: Possible role of the "Holocene Event 3" on the collapse of Neolithic Cultures around the Central Plain of China, Quat. Internat., 117, 153–166, 2004.
Wyrwoll, K.-H., Liu, Z., Chen, G., Kutzbach, J. E., and Liu, X.: Sensitivity of the Australian summer monsoon to tilt and precession forcing, Quat. Sci. Rev., 26, 3043–3057, 2007.
Wyrwoll, K.-H., Hopwood, J. M., and Chen, G.: Orbital time-scale circulation controls of the Australian summer monsoon: a possible role for mid-latitude Southern Hemisphere forcing?, Quat. Sci. Rev., 35, 23–28, 2012.
Yan, Z. and Petit-Maire, N.: The last 140 ka in the Afro-Asian arid/semi-arid transitional zone, Palaeogeography, Palaeoclimatology, Palaeoecology, 110, 217–233, 1994.
Yanai, M. and Wu, G.-X.: Effects of the Tibetan Plateau, in: The Asian Monsoon", edited by: Wang, B., Springer, 513–549, 2006.
Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F., Liu, J., Sigman, D. M., Peterson, L. C., and Haug, G. H.: Influence of the intertropical convergence zone on the East Asian monsoon, Nature, 445, 74–77, 2007.
Yim, S.-Y., Wang, B., Liu, J., and Wu, Z.: A comparison of regional monsoon variability using monsoon indices, Clim. Dynam., 1–15, https://doi.org/10.1007/s00382-013-1956-9, 2013.
Yin, Q. Z. and Guo, Z. T.: Strong summer monsoon during the cool MIS-13, Clim. Past, 4, 29–34, https://doi.org/10.5194/cp-4-29-2008, 2008.
Yin, Q. Z., Singh, U. K., Berger, A., Guo, Z. T., and Crucifix, M.: Relative impact of insolation and the Indo-Pacific warm pool surface temperature on the East Asia summer monsoon during the MIS-13 interglacial, Clim. Past, 10, 1645–1657, https://doi.org/10.5194/cp-10-1645-2014, 2014.
Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang, M., Qing, J., Lin, Y., Wang, Y., and Wu, J.: Timing, duration, and transitions of the last interglacial Asian monsoon, Science, 304, 575–578, 2004.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, 2001.
Zachos, J. C. and Kump, L. R.: Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene, Glob Planet Change, 47, 51–66, 2005.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008.
Zhang, J., Chen, F., Holmes, J. A., Li, H., Guo, X., Wang, J., Li, S., Lü, Y., Zhao, Y., and Qiang, M.: Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis, Quat. Sci. Rev., 30, 1973–1987, 2011.
Zhang, P., Cheng, H., Edwards, R. L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., and Liu, J.: A test of climate, sun, and culture relationships from an 1810-year Chinese cave record, Science, 322, 940–942, 2008.
Zhang, R. and Delworth, T. L.: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes, Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267, 2006.
Zhang, Z., Flatøy, F., Wang, H., Bethke, I., Bentsen, M., and Guo, Z.: Early Eocene Asian climate dominated by desert and steppe with limited monsoons, J. As. Earth Sci., 44, 24–35, 2012.
Zhao, P., Wang, B., and Zhou, X.: Boreal summer continental monsoon rainfall and hydroclimate anomalies associated with the Asian-Pacific Oscillation, Clim. Dynam., 39, 1197–1207, 2012.
Zheng, Z. and Lei, Z.-Q.: A 400 000 year record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, southern China, Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 339–362, 1999.
Zhou, H.: Comment on "Tree-Ring δD as an Indicator of Asian Monsoon Intensity", Quat. Res., 58, 210–211, 2002.
Zhou, J. and Lau, K.-M.: Does a monsoon climate exist over South America?, J. Climate, 11, 1020–1040, 1998.
Zhou, T., Yu, R., Li, H., and Wang, B.: Ocean forcing to changes in global monsoon precipitation over the recent half-century, J. Climate, 21, L16707, https://doi.org/10.1029/2008GL034881, 2008a.
Zhou, T., Zhang, L., and Li, H.: Changes in global land monsoon area and total rainfall accumulation over the last half century, Geophys. Res. Lett., 35,2008b.
Ziegler, C., Murray, R., Hovan, S., and Rea, D.: Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean, Earth Planet. Sci. Lett., 254, 416–432, 2007.
Ziegler, M., Lourens, L. J., Tuenter, E., Hilgen, F., Reichart, G.-J., and Weber, N.: Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation, Paleoceanography, 25, PA3213, https://doi.org/10.1029/2009PA001884, 2010a
Ziegler, M., Tuenter, E., and Lourens, L. J.: The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968), Quat. Sci. Rev., 29, 1481–1490, 2010b.
Ziegler, M., Simon, M. H., Hall, I. R., Barker, S., Stringer, C., and Zahn, R.: Development of Middle Stone Age innovation linked to rapid climate change, Nat. Commun., 4, 1905, https://doi.org/10.1038/ncomms2897, 2013.
Short summary
All regional monsoons belong to a cohesive global monsoon circulation system, albeit thateach regional subsystem has its own indigenous features. A comprehensive review of global monsoon variability reveals that regional monsoons can vary coherently across a range of timescales, from interannual up to orbital and tectonic. Study of monsoon variability from both global and regional perspectives is imperative and advantageous for integrated understanding of the modern and paleo-monsoon dynamics.
All regional monsoons belong to a cohesive global monsoon circulation system, albeit thateach...