Articles | Volume 10, issue 5
https://doi.org/10.5194/cp-10-1803-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-10-1803-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Variation in the Asian monsoon intensity and dry–wet conditions since the Little Ice Age in central China revealed by an aragonite stalagmite
J.-J. Yin
Key Laboratory of Karst Dynamics, MLR and Guangxi, Guilin, Guangxi 541004, China
School of Geographical Sciences, Southwest University, Chongqing 400715, China
Institute of Karst Geology, CAGS, Guilin, Guangxi 541004, China
D.-X. Yuan
Key Laboratory of Karst Dynamics, MLR and Guangxi, Guilin, Guangxi 541004, China
School of Geographical Sciences, Southwest University, Chongqing 400715, China
Institute of Karst Geology, CAGS, Guilin, Guangxi 541004, China
Key Laboratory of Karst Dynamics, MLR and Guangxi, Guilin, Guangxi 541004, China
Institute of Karst Geology, CAGS, Guilin, Guangxi 541004, China
Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
H. Cheng
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Department of Earth Sciences, University of Minnesota, Minneapolis 55455, USA
School of Geographical Sciences, Southwest University, Chongqing 400715, China
R. L. Edwards
Department of Earth Sciences, University of Minnesota, Minneapolis 55455, USA
Y.-S. Lin
Key Laboratory of Karst Dynamics, MLR and Guangxi, Guilin, Guangxi 541004, China
Institute of Karst Geology, CAGS, Guilin, Guangxi 541004, China
J.-M. Qin
Key Laboratory of Karst Dynamics, MLR and Guangxi, Guilin, Guangxi 541004, China
Institute of Karst Geology, CAGS, Guilin, Guangxi 541004, China
W. Tang
Institute of Karst Geology, CAGS, Guilin, Guangxi 541004, China
Z.-Y. Zhao
School of Geographical Sciences, Southwest University, Chongqing 400715, China
Department of Environmental and Resource Sciences, LiuPanShui Normal University, Liupanshui 553004, China
H.-S. Mii
Department of Earth Sciences, National Taiwan Normal University, Taipei 11677, Taiwan
Related authors
No articles found.
Tao Wang, Ting-Yong LI, Jian Zhang, Yao Wu, Chao-Jun Chen, Ran Huang, Jun-Yun Li, and Si-Ya Xiao
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-7, https://doi.org/10.5194/esd-2019-7, 2019
Preprint withdrawn
Short summary
Short summary
Permafrost in Eurasian continent is extremely sensitive to global climate change. We used the data of 15 stations from the Global Network of Isotope in Precipitation (GNIP) and proposed that the δ18OP was correlated with local temperature on the monthly and seasonal timescales. However, on the annual timescale, except for
temperature effect, δ18OP also reflects the change of water vapor source dominated by Eurasian Zonal Circulation (EZC) and North Atlantic Oscillation (NAO).
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
J. Ruan, F. Kherbouche, D. Genty, D. Blamart, H. Cheng, F. Dewilde, S. Hachi, R. L. Edwards, E. Régnier, and J.-L. Michelot
Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, https://doi.org/10.5194/cp-12-1-2016, 2016
S. J. Burns, L. C. Kanner, H. Cheng, and R. Lawrence Edwards
Clim. Past, 11, 931–938, https://doi.org/10.5194/cp-11-931-2015, https://doi.org/10.5194/cp-11-931-2015, 2015
M. Van Rampelbergh, S. Verheyden, M. Allan, Y. Quinif, H. Cheng, L. R. Edwards, E. Keppens, and P. Claeys
Clim. Past, 11, 789–802, https://doi.org/10.5194/cp-11-789-2015, https://doi.org/10.5194/cp-11-789-2015, 2015
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, https://doi.org/10.5194/cp-11-153-2015, 2015
L. Lo, C.-C. Shen, K.-Y. Wei, G. S. Burr, H.-S. Mii, M.-T. Chen, S.-Y. Lee, and M.-C. Tsai
Clim. Past, 10, 2253–2261, https://doi.org/10.5194/cp-10-2253-2014, https://doi.org/10.5194/cp-10-2253-2014, 2014
Short summary
Short summary
1. We have reconstructed new meridional thermal and precipitation stacked records in the Indo-Pacific Warm Pool (IPWP) during the last termination.
2. Meridional thermal gradient variations in the IPWP show tight links to the Northern Hemisphere millennial timescales event.
3. Anomalous warming in the south IPWP region could induce the southward shifting of the Intertropical Convergence Zone (ITCZ) in the IPWP during the Heinrich 1 and Younger Dryas events.
P. X. Wang, B. Wang, H. Cheng, J. Fasullo, Z. T. Guo, T. Kiefer, and Z. Y. Liu
Clim. Past, 10, 2007–2052, https://doi.org/10.5194/cp-10-2007-2014, https://doi.org/10.5194/cp-10-2007-2014, 2014
Short summary
Short summary
All regional monsoons belong to a cohesive global monsoon circulation system, albeit thateach regional subsystem has its own indigenous features. A comprehensive review of global monsoon variability reveals that regional monsoons can vary coherently across a range of timescales, from interannual up to orbital and tectonic. Study of monsoon variability from both global and regional perspectives is imperative and advantageous for integrated understanding of the modern and paleo-monsoon dynamics.
J. Apaéstegui, F. W. Cruz, A. Sifeddine, M. Vuille, J. C. Espinoza, J. L. Guyot, M. Khodri, N. Strikis, R. V. Santos, H. Cheng, L. Edwards, E. Carvalho, and W. Santini
Clim. Past, 10, 1967–1981, https://doi.org/10.5194/cp-10-1967-2014, https://doi.org/10.5194/cp-10-1967-2014, 2014
Short summary
Short summary
In this paper we explore a speleothem δ18O record from Palestina cave, northwestern Peru, on the eastern side of the Andes cordillera, in the upper Amazon Basin. The δ18O record is interpreted as a proxy for South American Summer Monsoon (SASM) intensity and allows the reconstruction of its variability during the last 1600 years. Replicating regional climate signals from different sites and using different proxies is essential for a comprehensive understanding of past changes in SASM activity.
L.-C. Wang, H. Behling, T.-Q. Lee, H.-C. Li, C.-A. Huh, L.-J. Shiau, and Y.-P. Chang
Clim. Past, 10, 1857–1869, https://doi.org/10.5194/cp-10-1857-2014, https://doi.org/10.5194/cp-10-1857-2014, 2014
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
T.-Y. Li, C.-C. Shen, L.-J. Huang, X.-Y. Jiang, X.-L. Yang, H.-S. Mii, S.-Y. Lee, and L. Lo
Clim. Past, 10, 1211–1219, https://doi.org/10.5194/cp-10-1211-2014, https://doi.org/10.5194/cp-10-1211-2014, 2014
Y. Peng, C. Shen, H. Cheng, and Y. Xu
Clim. Past, 10, 1079–1091, https://doi.org/10.5194/cp-10-1079-2014, https://doi.org/10.5194/cp-10-1079-2014, 2014
M. Berkelhammer, A. Sinha, M. Mudelsee, H. Cheng, K. Yoshimura, and J. Biswas
Clim. Past, 10, 733–744, https://doi.org/10.5194/cp-10-733-2014, https://doi.org/10.5194/cp-10-733-2014, 2014
M. Luetscher, M. Borreguero, G. E. Moseley, C. Spötl, and R. L. Edwards
The Cryosphere, 7, 1073–1081, https://doi.org/10.5194/tc-7-1073-2013, https://doi.org/10.5194/tc-7-1073-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Decadal-Seasonal
Hydroclimatic anomalies detected by a sub-decadal diatom oxygen isotope record of the last 220 years from Lake Khamra, Siberia
Large-scale climate signals of a European oxygen isotope network from tree rings
The response of annual minimum temperature on the eastern central Tibetan Plateau to large volcanic eruptions over the period 1380–2014 CE
Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling
Introduction to the special issue “Climate of the past 2000 years: regional and trans-regional syntheses”
Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges
French summer droughts since 1326 CE: a reconstruction based on tree ring cellulose δ18O
A 500-year seasonally resolved δ18O and δ13C, layer thickness and calcite aspect record from a speleothem deposited in the Han-sur-Lesse cave, Belgium
Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite
Millennial minimum temperature variations in the Qilian Mountains, China: evidence from tree rings
Tree-ring-inferred glacier mass balance variation in southeastern Tibetan Plateau and its linkage with climate variability
Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width
Modern isotope hydrology and controls on δD of plant leaf waxes at Lake El'gygytgyn, NE Russia
Clustering climate reconstructions
Extracting a common high frequency signal from Northern Quebec black spruce tree-rings with a Bayesian hierarchical model
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
Yajun Wang, Xuemei Shao, Yong Zhang, and Mingqi Li
Clim. Past, 17, 241–252, https://doi.org/10.5194/cp-17-241-2021, https://doi.org/10.5194/cp-17-241-2021, 2021
Short summary
Short summary
It is not clear to what extent or in what manner a strong volcanic eruption will influence temperature in different regions over the long term. Therefore, new 635-year annual mean minimum temperatures (Tmin) across the eastern central Tibetan Plateau were used to explored the response of Tmin to strong volcanic eruptions. Our results show that there is a high probability that the Tmin decreases within 2 years of a large volcanic eruption, especially when such eruptions occur in low latitudes.
Robert Tardif, Gregory J. Hakim, Walter A. Perkins, Kaleb A. Horlick, Michael P. Erb, Julien Emile-Geay, David M. Anderson, Eric J. Steig, and David Noone
Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, https://doi.org/10.5194/cp-15-1251-2019, 2019
Short summary
Short summary
An updated Last Millennium Reanalysis is presented, using an expanded multi-proxy database, and proxy models representing the seasonal characteristics of proxy records, in addition to the dual sensitivity to temperature and moisture of tree-ring-width chronologies. We show enhanced skill in spatial reconstructions of key climate variables in the updated reanalysis, compared to an earlier version, resulting from the combined influences of the enhanced proxy network and improved proxy modeling.
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Hans W. Linderholm, Marie Nicolle, Pierre Francus, Konrad Gajewski, Samuli Helama, Atte Korhola, Olga Solomina, Zicheng Yu, Peng Zhang, William J. D'Andrea, Maxime Debret, Dmitry V. Divine, Björn E. Gunnarson, Neil J. Loader, Nicolas Massei, Kristina Seftigen, Elizabeth K. Thomas, Johannes Werner, Sofia Andersson, Annika Berntsson, Tomi P. Luoto, Liisa Nevalainen, Saija Saarni, and Minna Väliranta
Clim. Past, 14, 473–514, https://doi.org/10.5194/cp-14-473-2018, https://doi.org/10.5194/cp-14-473-2018, 2018
Short summary
Short summary
This paper reviews the current knowledge of Arctic hydroclimate variability during the past 2000 years. We discuss the current state, look into the future, and describe various archives and proxies used to infer past hydroclimate variability. We also provide regional overviews and discuss the potential of furthering our understanding of Arctic hydroclimate in the past. This paper summarises the hydroclimate-related activities of the Arctic 2k group.
Inga Labuhn, Valérie Daux, Olivier Girardclos, Michel Stievenard, Monique Pierre, and Valérie Masson-Delmotte
Clim. Past, 12, 1101–1117, https://doi.org/10.5194/cp-12-1101-2016, https://doi.org/10.5194/cp-12-1101-2016, 2016
Short summary
Short summary
This article presents a reconstruction of summer droughts in France for the last 680 years, based on oxygen isotope ratios in tree ring cellulose from living trees and building timbers at two sites, Fontainebleau and Angoulême. Both sites show coherent drought patterns during the 19th and 20th century, and are characterized by increasing drought in recent decades. A decoupling between sites points to a more heterogeneous climate in France during earlier centuries.
M. Van Rampelbergh, S. Verheyden, M. Allan, Y. Quinif, H. Cheng, L. R. Edwards, E. Keppens, and P. Claeys
Clim. Past, 11, 789–802, https://doi.org/10.5194/cp-11-789-2015, https://doi.org/10.5194/cp-11-789-2015, 2015
M. Van Rampelbergh, S. Verheyden, M Allan, Y. Quinif, E. Keppens, and P. Claeys
Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, https://doi.org/10.5194/cp-10-1871-2014, 2014
Y. Zhang, X. M. Shao, Z.-Y. Yin, and Y. Wang
Clim. Past, 10, 1763–1778, https://doi.org/10.5194/cp-10-1763-2014, https://doi.org/10.5194/cp-10-1763-2014, 2014
J. Duan, L. Wang, L. Li, and Y. Sun
Clim. Past, 9, 2451–2458, https://doi.org/10.5194/cp-9-2451-2013, https://doi.org/10.5194/cp-9-2451-2013, 2013
S. E. Tolwinski-Ward, K. J. Anchukaitis, and M. N. Evans
Clim. Past, 9, 1481–1493, https://doi.org/10.5194/cp-9-1481-2013, https://doi.org/10.5194/cp-9-1481-2013, 2013
K. M. K. Wilkie, B. Chapligin, H. Meyer, S. Burns, S. Petsch, and J. Brigham-Grette
Clim. Past, 9, 335–352, https://doi.org/10.5194/cp-9-335-2013, https://doi.org/10.5194/cp-9-335-2013, 2013
G. Bürger
Clim. Past, 6, 515–523, https://doi.org/10.5194/cp-6-515-2010, https://doi.org/10.5194/cp-6-515-2010, 2010
J.-J. Boreux, P. Naveau, O. Guin, L. Perreault, and J. Bernier
Clim. Past, 5, 607–613, https://doi.org/10.5194/cp-5-607-2009, https://doi.org/10.5194/cp-5-607-2009, 2009
Cited articles
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, 2001.
Broecker, W. S. and Putnam, A. E.: Hydrologic impacts of past shifts of earth's thermal equator offer insight into those to be produced by fossil fuel CO2, P. Natl. Acad. Sci., 110, 16710–16715, 2013.
Burns, S. J., Fleitmann, D., Mudelsee, M., Neff, U., Matter, A., and Mangini, A.: A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman, J. Geophys. Res., 107, 4434, https://doi.org/10.1029/2001JD001281, 2002.
Cai, Y., Tan, L., Cheng, H., An, Z., Edwards, R. L., Kelly, M. J., Kong, X., and Wang, X.: The variation of summer monsoon precipitation in central China since the last deglaciation, Earth Planet. Sc. Lett., 291, 21–31, 2010.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y., Zhang, R., and Wang, X.: Ice age terminations, Science, 326, 248–252, 2009.
Cheng, H., Sinha, A., Wang, X., Cruz, F. W., and Edwards, R. L.: The global paleomonsoon as seen through speleothem records from Asia and the Americas, Clim. Dynam., 39, 1045–1062, 2012.
Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Alexander Jr., E. C.: Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet. Lett., 371–372, 82–91, 2013.
Chinese Academy of Meteorological Sciences (CAM): Yearly Charts of Dryness/Wetness in China for the Last 500-Year Period, Beijing, SinoMap Cartogr. Publ. House, Beijing, 1981 (in Chinese).
Chu, P. C. Li, H.-C., Fan, C.-W., Chen, Y.-H.: Speleothem Evidence for Temporal-Spatial Variation in East Asian Summer Monsoon since Medieval Warm Period, J. Quaternary Sci., 27, 901–910, 2012.
Cook, E. R., D'Arrigo, R. D., and Anchukaitis, K. J.: ENSO reconstructions from long tree-ring chronologies: Unifying the differences, in: Talk presented at a special workshop on Reconciling ENSO Chronologies for the Past 500 Years, held in Moorea, French Polynesia on 2–3 April 2008, 2008.
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian monsoon failure and megadrought during the last millennium, Science, 328, 486–489, 2010.
Cosford, J., Qing, H., Eglington, B., Mattey, D., Yuan, D., Zhang, M., and Cheng, H.: East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China, Earth Planet. Sc. Lett., 275, 296–307, 2008.
Cosford, J., Qing, H., Mattey, D., Eglington, B., and Zhang, M.: Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China. Palaeogeogr. Palaeocl. 280, 235–244, 2009.
Cui, Y. F., Wang, Y. J., Cheng, H., Zhao, K., and Kong, X. G.: Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China, Clim. Past, 8, 1541–1550, https://doi.org/10.5194/cp-8-1541-2012, 2012.
Delaygue, G. and Bard, E.: An Antarctic view of Beryllium-10 and solar activity for the past millennium, Clim. Dynam., 36, 2201–2218, 2011.
Dorale, J. A. and Liu, Z.-H.: Limitations of hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication, J. Cave Karst Stud., 71, 73–80, 2009.
Dykoshi, C. A., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qin, J., An, Z., and Revenaugh, J.: A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China, Earth Planet. Sc. Lett., 233, 71–86, 2005.
Edwards, R. L., Chen, J. H., and Wasserburg, G. J.: 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years, Earth Planet. Sc. Lett., 81, 175–192, 1987.
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spotl, C., Mattey, D., and McDermott, F.: Modification and preservation of environmental signals in speleothems, Earth-Sci. Rev., 75, 105–153, 2006.
Hendy, C. H.: The isotopic geochemistry of speleothems: 1. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators, Geochim. Cosmochim. Ac., 35, 801–824, 1971.
Hu, C., Henderson, G. M., Huang, J., Xie, S., Sun, Y., and Johnson, K. R.: Quantification of Holocene Asian monsoon rainfall from spatially separated cave records, Earth Planet. Sc. Lett., 266, 221–232, 2008.
IPCC: Climate Change 2007 – The Physical Science Basis, Cambridge Univ. Press, New York, p. 299, 2007.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M.: Precision measurement of half-lives and specific activities of 235U and 238U, Phys. Rev. C, 4, 1889–1906, 1971.
Johnson, K. R. and Ingram, B. L.: Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions, Earth Planet. Sc. Lett., 220, 365–377, 2004.
Kelly, M. J., Edwards, R. L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., and An, Z.: High resolution characterization of the Asian monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II, Palaeogeogr. Palaeocl., 236, 20–38, 2006.
Kutzbach, J. E.: Monsoon climate of the early Holocene: climate experiment with the earth's orbital parameters for 9000 years ago, Science, 214, 59–61, 1981.
Lamb, H. H.: Climatic history and the future, Princeton Univ. Press, Princeton, NJ, 835 pp., 1977.
Li, H.-C., Ku, T.-L., Stott, L. D., and Chen, W.-J.: Applications of interannual- resolution stable isotope records of speleothem: Climatic changes in Beijing and Tianjin, China during the past 500 years – the δ18O record, Sci. China Ser. D, 41, 362–368, 1998.
Li, H.-C., Yuan, D.-X., Ku, T.-L., Wan, N.-J., Ma, Z.-B., Zhang, P.-Z., Bar-Matthews, M., Ayalon, A., Liu, Z.-H., Zhang, M.-L., Zhu, Z.-Y., and Wang, R.-M.: Stable Isotopic Compositions of Waters in the Karst Environments of China: Climatic Implications, Appl. Geochem., 22, 1748–1763, 2007.
Li, H.-C., Lee, Z.-H., Wan, N.-J., Shen, C.-C., Li, T.-Y., Yuan, D.-X., and Chen, Y.-H.: Interpretations of δ18O and δ13C in aragonite stalagmites from Furong Cave, Chongqing, China: A 2000-year record of monsoonal climate, J. Asian Earth Sci., 40, 1121–1130, 2011.
Liu, J., Song, X., Yuan, G., Sun, X., Liu, X., and Wang, S.: Characteristics of δ18O in precipitation over Eastern monsoon China and the water vapor sources, Chinese Sci. Bull., 55, 200–211, 2010.
Liu, Z., Wen, X., Brady, E. C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., Wang, Y., Zheng, W., Ding, Y., Edwards, R. L., Cheng, J., Liu, W., and Yang, H.: Chinese cave records and the East Asia Summer Monsoon, Quaternary Sci. Rev., 83, 115–128, 2014.
Matthes, F. E.: Report of the committee on glaciers, Transactions of the American Geophysical Union, 1939, 518–523, 1939.
McDermott, F.: Palaeo-climate reconstruction from stable isotope variations in speleothems: a review, Quaternary Sci. Rev., 23, 901–918, 2004.
PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, 2013.
Pausata, F. S. R., Battisti, D. S., Nisancioglu, K. H., and Bitz, C. M.: Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event, Nat. Geosci. 4, 474–480, 2011.
Qian, W.-H., Lin, X., Zhu, Y.-F., Xu, Y., and Fu, J.-L.: Climatic regime shift and decadal anomalous events in China, Clim. Change, 84, 167–189, 2007.
Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci., 28, 421–426, 2002.
Shi, F., Yang, B., and Von Gunten, L.: Preliminary multiproxy surface air temperature field reconstruction for China over the past millennium, Sci. in China Ser. D, 55, 2058–2067, 2012.
Tan, L., Cai, Y., Cheng, H., An, Z., and Edwards, R. L.: Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite, Palaeogeogr. Palaeocl., 280, 432–439, 2009.
Tan, M.: Climatic differences and similarities between Indian and East Asian Monsoon regions of China over the last millennium: a perspective based mainly on stalagmite records, Int. J. Speleol., 36, 75–81, 2007.
Tan, M.: Trade-wind driven inverse coupling between stalagmite δ18O from monsoon region of China and large scale temperature – circulation effect on decadal to precessional timescales, Quaternary Sci. 31, 1086–1097, https://doi.org/10.3969/j.issn.1001-7410.2011.06.16, 2011 (in Chinese).
Tao, S. Y., Fu, C. B., Zeng, Z. M., and Zhang Q. Y.: Two Long-Term Instrumental Climatic Data Bases of the People's Republic of China. Environmental Sciences Division, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, Publication No. 4699, 1997.
Thorrold, S. R., Campana, S. E., Johns, C. M., and Swart, P. K.: Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish, Geochim. Cosmochim. Ac., 61, 2909–2919, 1997.
Wan, N.-J., Li, H.-C., Liu, Z.-Q., and Yuan, D.-X.: Spatial variations of monsoonal rain in eastern China: Instrumental, historic and speleothem records, J. Asian Earth Sci., 40, 1139–1150, 2011.
Wang, B.: The Asian Monsoon, Springer Praxis Publishing, Chichester, UK, 787 pp. ISBN: 3-540-40610-7, 2006.
Wang, S., Wen, X., Luo, Y., Dong, W., Zhao, Z., and Yang, B.: Reconstruction of temperature series of China for the last 1000 years, Chinese Sci. Bull., 52, 3272–3280, 2007.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China, Science, 294, 2345–2348, 2001.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian monsoon: links to solar changes and North Atlantic climate, Science, 308, 854–857, 2005.
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z.: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, Nature, 451, 1090–1093, 2008.
Zhang, D. E., Li, X. Q., and Liang, Y. Y.: Continuation (1992–2000) of the yearly charts of dryness/wetness in China for the last 500 years period, J. Appl. Meteorol. Sci., 14, 379–388, 2003 (in Chinese).
Zhang, D. E.: Severe drought events as revealed in the climate records of China and their temperature situations over the last 1000 years, Acta Meteorol. Sin., 19, 485–491, 2005.
Zhang, D. E., Li, H.-C., Ku, T.-L., and Lu, L.-H.: On Linking Climate to Chinese Dynastic Change: Spatial and Temporal Variations of Monsoonal Rain, Chinese Sci. Bull., 55, 77–83, 2010.
Zhang, H.-L., Yu, K.-F., Zhao, J.-X., Feng, Y.-X., Lin, Y.-S., Zhou, W., and Liu, G.-H..: East Asian summer monsoon variations in the past 12.5 ka: high-resolution δ18O record from a precisely dated aragonite stalagmite in central China, J. Asian Earth Sci., 73, 162–175, 2013.
Zhang, P., Cheng, H., Edwards, R. L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, J., An, C., Dai, Z., Zhou, J., Zhang, D., Jia, J., Jin, L., and Johnson, K. R.: A test of climate, sun, and culture relationships from an 1810-year Chinese cave record, Science, 322, 940–942, 2008.
Zhou, T.-J. and Yu, R.-C.: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China, J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413, 2005.
Special issue