Articles | Volume 10, issue 4
https://doi.org/10.5194/cp-10-1441-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-1441-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A major change in North Atlantic deep water circulation 1.6 million years ago
N. Khélifi
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1–3, 24148 Kiel, Germany
present address: Springer, Earth Sciences and Geography Editorial, Tiergartenstraße 17, 69121 Heidelberg, Germany
M. Frank
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1–3, 24148 Kiel, Germany
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Nonlinear increase in seawater 87Sr ∕ 86Sr in the Oligocene to early Miocene and implications for climate-sensitive weathering
Limited exchange between the deep Pacific and Atlantic oceans during the warm mid-Pliocene and Marine Isotope Stage M2 “glaciation”
Late Cenozoic sea-surface-temperature evolution of the South Atlantic Ocean
Buoyancy forcing: a key driver of northern North Atlantic sea surface temperature variability across multiple timescales
Lipid-biomarker-based sea surface temperature record offshore Tasmania over the last 23 million years
Late Neogene nannofossil assemblages as tracers of ocean circulation and paleoproductivity over the NW Australian shelf
Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope paleothermometry
Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica
A revised mid-Pliocene composite section centered on the M2 glacial event for ODP Site 846
Lessons from a high-CO2 world: an ocean view from ∼ 3 million years ago
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages
Variations in Mediterranean–Atlantic exchange across the late Pliocene climate transition
Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma
Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes
Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific
Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)
Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to Late Pliocene/Early Pleistocene climate cooling
Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)
Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited
Pliocene three-dimensional global ocean temperature reconstruction
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Boris-Theofanis Karatsolis and Jorijntje Henderiks
Clim. Past, 19, 765–786, https://doi.org/10.5194/cp-19-765-2023, https://doi.org/10.5194/cp-19-765-2023, 2023
Short summary
Short summary
Ocean circulation around NW Australia plays a key role in regulating the climate in the area and is characterised by seasonal variations in the activity of a major boundary current named the Leeuwin Current. By investigating nannofossils found in sediment cores recovered from the NW Australian shelf, we reconstructed ocean circulation in the warmer-than-present world from 6 to 3.5 Ma, as mirrored by long-term changes in stratification and nutrient availability.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021, https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Short summary
The Pliocene represents a geologically warm period with polar ice restricted to the Antarctic. Nevertheless, variability and ice volume persisted in the Pliocene. This work revisits a classic site on which much of our understanding of Pliocene paleoclimate variability is based and corrects errors in data sets related to ice volume and ocean surface temperature. In particular, it generates an improved representation of an enigmatic glacial episode in Pliocene times (circa 3.3 Ma).
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019, https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary
Short summary
Fossil microorganisms from the last glacial found in marine sediments collected off southern Brazil suggest that more productive austral summer upwelling and more frequent austral winter incursions of nutrient-rich waters from the Plata River boosted regional productivity year-round. While upwelling was more productive due to the higher silicon content from the Southern Ocean, more frequent riverine incursions were modulated by stronger alongshore southwesterly winds.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ángela García-Gallardo, Patrick Grunert, and Werner E. Piller
Clim. Past, 14, 339–350, https://doi.org/10.5194/cp-14-339-2018, https://doi.org/10.5194/cp-14-339-2018, 2018
Short summary
Short summary
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic inflow across the mid-Pliocene warm period and the onset of the Northern Hemisphere glaciation, still unresolved by previous works. Oxygen isotope gradients between both sides of the Strait of Gibraltar reveal weak inflow during warm periods that turns stronger during severe glacials and the start of a negative feedback between exchange at the Strait and the Atlantic Meridional Overturning Circulation.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
April N. Abbott, Brian A. Haley, Aradhna K. Tripati, and Martin Frank
Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, https://doi.org/10.5194/cp-12-837-2016, 2016
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) was a brief period when the Earth was in an extreme greenhouse state. We use neodymium isotopes to suggest that during this time deep-ocean circulation was distinct in each basin (North and South Atlanic, Southern, Pacific) with little exchange between. Moreover, the Pacific data show the most variability, suggesting this was a critical region possibly involved in both PETM triggering and remediation.
K. M. Pascher, C. J. Hollis, S. M. Bohaty, G. Cortese, R. M. McKay, H. Seebeck, N. Suzuki, and K. Chiba
Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, https://doi.org/10.5194/cp-11-1599-2015, 2015
Short summary
Short summary
Radiolarian taxa with high-latitude affinities are present from at least the middle Eocene in the SW Pacific and become very abundant in the late Eocene at all investigated sites. A short incursion of low-latitude taxa is observed during the MECO and late Eocene warming event at Site 277. Radiolarian abundance, diversity and taxa with high-latitude affinities increase at Site 277 in two steps in the latest Eocene due to climatic cooling and expansion of cold water masses.
M. Bordiga, J. Henderiks, F. Tori, S. Monechi, R. Fenero, A. Legarda-Lisarri, and E. Thomas
Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, https://doi.org/10.5194/cp-11-1249-2015, 2015
Short summary
Short summary
Deep-sea sediments at ODP Site 1263 (Walvis Ridge, South Atlantic) show that marine calcifying algae decreased in abundance and size at the Eocene-Oligocene boundary, when the Earth transitioned from a greenhouse to a more glaciated and cooler climate. This decreased the food supply for benthic foraminifer communities. The plankton rapidly responded to fast-changing conditions, such as seasonal nutrient availability, or to threshold-levels in pCO2, cooling and ocean circulation.
J. Etourneau, C. Ehlert, M. Frank, P. Martinez, and R. Schneider
Clim. Past, 8, 1435–1445, https://doi.org/10.5194/cp-8-1435-2012, https://doi.org/10.5194/cp-8-1435-2012, 2012
M. Dedert, H. M. Stoll, D. Kroon, N. Shimizu, K. Kanamaru, and P. Ziveri
Clim. Past, 8, 977–993, https://doi.org/10.5194/cp-8-977-2012, https://doi.org/10.5194/cp-8-977-2012, 2012
N. Khélifi, M. Sarnthein, and B. D. A. Naafs
Clim. Past, 8, 79–87, https://doi.org/10.5194/cp-8-79-2012, https://doi.org/10.5194/cp-8-79-2012, 2012
H. J. Dowsett, M. M. Robinson, and K. M. Foley
Clim. Past, 5, 769–783, https://doi.org/10.5194/cp-5-769-2009, https://doi.org/10.5194/cp-5-769-2009, 2009
Cited articles
Berger, W. H. and Jansen, E.: Mid-Pleistocene climate shift: the Nansen connection, in: The Polar Oceans and Their Role in Shaping the Global Environment, edited by: Johannessen, O., Muench, R., and Overland, J., AGU Geophys. Monogr., 85, 295--311, 1994.
Burton, K. W., Lee, D.-C., Christensen, J. N., Halliday, A. N., and Hein, J. R.: Actual timing of neodymium isotopic variations recorded by Fe–Mn crusts in the western North Atlantic, Earth Planet. Sc. Lett., 171, 149–156, 1999.
Cohen, A. S., O'Nions, R. K., Siegenthaler, R., and Griffin, W. L.: Chronology of the pressure-temperature history recorded by a granulite terrain, Contributions to Miner. Petrol., 98, 303–311, 1988.
Crocket, K. C., Vance, D., Gutjahr, M., Foster, G. L., and Richards, D. A.: Persistent Nordic deep-water overflow to the glacial North Atlantic, Geology, 39, 515–518, 2011.
De Schepper, S. and Head, M. J.: Age calibration of dinoflagellate cyst and acritarch events in the Pliocene--Pleistocene of the eastern North Atlantic (DSDP Hole 610A), Stratigraphy, 8, 137–161, 2008.
De Schepper, S., Groeneveld, J., Naafs, B. D. A., Van Renterghem, C., Hennissen, J., Van Renterghem, C., Hennissen, J., Head, M. J., Louwye, S., and Fabian, K.: Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene, PLoS ONE 8, e81508, https://doi.org/10.1371/journal.pone.0081508, 2013.
Etourneau, J., Schneider, R., Blanz, T., and Martinez, P.: Intensification of the Walker and Hadley atmospheric circulations during the Pliocene-Pleistocene climate transition, Earth Planet. Sci. Lett., 297, 103–110, 2010.
Frank, M.: Radiogenic isotopes: tracers of past ocean circulation and erosional input, Rev. Geophys., 40, 1001, https://doi.org/10.1029/2000RG000094, 2002.
Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153–158, 2001.
Godfrey, L. V., Zimmermann, B., Lee, D.-C., King, R. L., Vervoort, J. D., Sherrell, R. M., and Halliday, A. N.: Hafnium and neodymium isotope variations in NE Atlantic seawater, Geochem. Geophy. Geosy., 10, Q08015, https://doi.org/10.1029/2009GC002508, 2009.
Goldstein, S. L. and O'Nions, R. K.: Nd and Sr isotopic relationships in pelagic clays and ferromanganese deposits, Nature, 292, 324–327, 1981.
Gutjahr, M., Frank, M., Stirling, C. H., Klemm, V., van de Flierdt, T., and Halliday, A. N.: Reliable extraction of adeepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments, Chem. Geol., 242, 351–370, 2007.
Haug, G. H. and Tiedemann, R.: Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation, Nature, 393, 673–676, 1998.
Hodell, D. A. and Venz-Curtis, K. A.: Late Neogene history of deepwater ventilation in the Southern Ocean, Geochem. Geophys. Geosyst., 7, Q09001, https://doi.org/10.1029/2005GC001211, 2006.
Imbrie, J., Berger, A., Boyle, E., Clemens, S., Duffy, A., Howard, W., Kukla, G., Kutzbach, J., Martinson, D., McIntyre, A., Mix, A., Molfino, B., Morley, J., Peterson, L., Pisias, N., Prell, W., Raymo, M., Shackleton, N., and Toggweiler, J.: On the structure and origin of major glaciation cycles 2. The 100,000-year cycle, Paleoceanography, 8, 698–735, 1993.
Jacobsen,S.B. and Wasserburg,G.J.: Sm-Nd isotopic evolution of chondrites, Earth Planet. Sc. Lett., 50, 139–155, 1980.
Jeandel, C.: Concentration and isotopic composition of Nd in the South Atlantic Ocean, Earth Planet. Sc. Lett., 117, 581&ndash591, 1993.
Johnson,C., Sherwin,T., Smythe-Wright,D., Turrell,W., and Shimmield,T.: Wyville Thomson Ridge Overflow Water: spatial and temporal distribution in the Rockall Trough, Deep-Sea Res. Pt.I, 57, 1153–1162, 2010.
Kleiven, H. F., Jansen, E., Fronval, T., and Smith, T. M: Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5--2.4 Ma), ice-rafted detritus evidence, Palaeogeogr. Palaeoclim. Palaeoecol., 184, 213–223, 2002.
Koc, N., Hodell, D. A., Kleiven, H., and Labeyrie, L.: High-resolution Pleistocene diatom biostratigraphy of Site 983 and correlations to isotope stratigraphy, Proceedings of the Ocean Drilling Program Scientific Results, 162, 51–62, 1999.
Koc, N. and Flower, B.: High-resolution Pleistocene diatom biostratigraphy and paleoceanography of Site 919 from the Irminger Basin, Proceedings of the Ocean Drilling Program Scientific Results, 152, 209–219, 1998.
Koc, N. and Scherer, R.: Neogene diatom biostratigraphy of the Iceland Sea Site 907, Proceedings of the Ocean Drilling Program Scientific Results, 151, 61–74, 1996.
Lacan, F. and Jeandel, C.: Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions, Deep-Sea Res. Pt.I, 51, 71–82, 2004a.
Lacan, F. and Jeandel, C.: Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: constraints on the Iceland Scotland Overflow Water signature, Geochem. Geophy. Geosy., 5, Q11006, https://doi.org/10.1029/2004GC000742, 2004b.
Lacan, F. and Jeandel, C.: Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water, Geochemistry Geophysics Geosystems, 6, Q12008, https://doi.org/10.1029/2005GC000956, 2005.
Laskar,J., Joutel,F., and Boudin,F.: Orbital, precessional, and insolation quantities for the Earth from &minus20 Myr to +10 Myr, Astron. Astrophys., 270, 522–533, ISSN 0004-6361, 1993.
Lawrence,K.T., Herbert,T.D., Brown,C.M., Raymo,M.E., and Haywood,A.M.: High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period, Paleoceanography, 24, PA2218, https://doi.org/10.1029/2008PA001669, 2009.
Lawrence, K. T., Sosdian, S., White, H. E., and Rosenthal, Y.: North Atlantic climate evolution through the Plio-Pleistocene climate transitions, Earth Planet. Sc. Lett., 300, 329–342, 2010.
Lawrence, K. T., Sigman, D. M., Herbert, T. D., Riihimaki, C. A., Bolton, C. T., Martinez-Garcia, A., Rosell-Mele, A., and Haug, G. H.: Time-transgressive North Atlantic productivity changes upon Northern Hemisphere glaciation, Paleoceanography, 28, https://doi.org/10.1002/2013PA002546, 2013.
Lisiecki, L. E. and Raymo, M. E.: APliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lisiecki, L. E. and Raymo, M. E.: Plio-Pleistocene climate evolution: trends and transition in glacial cycle dynamics, Quaternary Sci. Rev., 26, 56–69, 2007.
Lisiecki, L. E.: Atlantic overturning responses to obliquity and precession over the last 3 Myr, Paleoceanography, 29, https://doi.org/10.1002/2013PA002505, 2014.
Manighetti, B. and McCave, I. N.: Late Glacial and Holocene palaeocurrents around Rockall Bank, NE Atlantic Ocean, Paleoceanography, 10, 611–626, 1995.
Marchitto, T. M., Jr., Oppo, D. W., and Curry, W. B.: Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic, Paleoceanography, 17, 1038, https://doi.org/10.1029/2000PA000598, 2002.
Martinez-Garcia,A., Rosell-Mele,A., McClymont,E.L., Gersonde,R., and Haug,G.H.: Subpolar link to the emergence of the Modern Equatorial Pacific cold tongue, Science, 328, 1550–1553, 2010.
McCartney, M. S.: Recirculating components to the deep boundary current of the Northern North Atlantic, Prog. Oceanogr., 29, 283–383, 1992.
McClymont,E.L., Rosell-Mele,A., Haug,G., and Lloyd,J.M.: Expansion of subarctic water masses in the North Atlantic and Pacific oceans and implications for mid-Pleistocene ice sheet growth, Paleoceanography, 23, PA4214, https://doi.org/10.1029/2008PA001622, 2008.
McIntyre, K., Ravelo, A. C., and Delaney, M. L.: North Atlantic Intermediate Waters in the Late Pliocene to Early Pleistocene, Paleoceanography, 14, 324–335, 1999.
Naafs, B. D. A., Stein,R., Hefter,J., Kh\'{e}lifi,N., De Schepper,S., and Haug,G.: Late Pliocene changes in the North Atlantic Current, Earth Planet. Sc. Lett., 298, 434–442, 2010.
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P., Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N., Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood, D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., L\"aufer, A., Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin, R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman, C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M., Vogel, S., Wilch, T., and Williams, T.: Obliquity-paced Pliocene West Antarctic ice sheet oscillations: Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322–329, 2009.
O'Nions,R.K., Frank,M., von Blanckenburg,F., and Ling,H.-F.: Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans, Earth Planet. Sc. Lett., 155, 15–28, 1998.
Piotrowski,A.M., Galy,A., Nicholl,J.A.L., Roberts,N., Wilson,D.J., Clegg,J.A., and Yu,J.: Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes, Earth Planet. Sc. Lett., 357/358, 289–297, 2012.
Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A., and Wara, M. W.: Regional climate shifts caused by gradual global cooling in the Pliocene epoch, Nature, 429, 263–267, 2004.
Raymo, M. E., Ganley, K., Carter, S., Oppo, D. W., and McManus, J.: Millennial-scale climate instability during the early Pleistocene epoch, Nature, 392, 699–702, 1998.
Raymo, M. E., Hodell, D., and Jansen, E.: Response of Deep Ocean Circulation to the initiation of Northern Hemisphere Glaciation (3–2 Ma), Paleoceanography, 7, 645–672, 1992.
Rempfer, J., Stocker, T. F., Joos, F., Dutay, J.-C., and Siddall, M.: Modelling Nd-isotopes with acoarse resolution ocean circulation model: Sensitivities to model parameters and source/sink distributions, Geochim. Cosmochim. Acta, 75, 5927–5950, 2011.
Rickli,J., Frank,M., and Halliday,A.N.: The hafnium--neodymium isotopic composition of Atlantic seawater, Earth Planet. Sc. Lett., 280, 118–127, 2009.
Roberts,N.L., Piotrowski,A.M., McManus,J.F., and Keigwin,L.D.: Synchronous deglacial overturning and water mass source changes, Science, 327, 75–78, 2010.
Sarnthein, M., Bartoli, G., Prange, M., Schmittner, A., Schneider, B., Weinelt, M., Andersen, N., and D. Garbe-Sch\"{o}nberg, D.: Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates, Climates of the Past, 5, 269–283, 2009.
Sarnthein, M., Winn, K., Jung, S., Duplessy, J.-C., Labeyrie, L., Erlenkeuser, H., and Ganssen, G.: Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions, Paleoceanography, 9, 209–267, 1994.
Schlitzer, R.: Ocean Data View, available at: http://odv.awi.de}(last access: 5November2011), 2013.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth Planet. Sc. Lett., 292, 201–211, 2010.
Sherwin,T.J., Griffiths,C.R., Inall,M.E., and Turrell,W.R.: Quantifying the overflow across the Wyville Thomson Ridge into the Rockall trough, Deep-Sea Res. Pt.I, 55, 396&ndahs;404, 2008.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature, 466, 47–55, 2010.
Sosdian,S. and Rosenthal,Y.: Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions, Science, 325, 306–309, 2009.
Stabell, B. and Ko\c{c}, N.: Recent to mid-Miocene diatom productivity at ODP Site 907, Iceland Plateau, Proceedings of the Ocean Drilling Program Scientific Results, 151, 483–492, 1996.
Stichel,T.,Frank,M., Rickli,J., and Haley,B.A.: The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean, Earth Planet. Sc. Lett., 317/318, 282–294, 2012.
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., and Dragusanu, C.: JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium, Chem. Geol., 168, 279–281, 2000.
Venz,K.A. and Hodell,D.A.: New evidence for changes in Plio-Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090, Palaeogeogr. Palaeocl., 182, 197–220, 2002.
Wang, P., Tian, J., and Lourens, L. J.: Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records, Earth Planet. Sc. Lett., 290, 319–30, 2010.
Zhang, Z.-S., Nisancioglu, K. H., Chandler, M. A., Haywood, A. M., Otto-Bliesner, B. L., Ramstein, G., Stepanek, C., Abe-Ouchi, A., Chan, W.-L., Bragg, F. J., Contoux, C., Dolan, A. M., Hill, D. J., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Rosenbloom, N. A., Sohl, L. E., and Ueda, H.: Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern, Clim. Past, 9, 1495–1504, 2013.
Zhao, X., Ladner, B. C., Roessig, K., Wise, Jr, S. W., and Urquhart, E.: Magnetostratigraphy and biostratigraphy of Cenozoic sediments recovered from the Iberia Abyssal Plain, in: Proceedings of the Ocean Drilling Program Scientific Results, 173, edited by: Beslier, M.-O., Whitmarsh, R. B., Wallace, P. J., and Girardeau, J., College Station, Texas, Ocean Drilling Program CD-ROM, 1–73, 2001.
Peltier, W.: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 111–149, 2004.
Peltier, W. and Fairbanks, R G.: Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record, Quat. Sci. Rev., 25, 3322–3337, 2006.
Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V M., Legrand, M., Lipenkov, V Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Porter, S C.: Some geological implications of average Quaternary glacial conditions, Quat. Res., 32, 245–261, 1989.
Rind, D.: Components of the ice age circulation, J. Geophys. Res., 92, 4241–4281, 1987.
Ringler, T D. and Cook, K H.: Factors controlling nonlinearity in mechanically forced stationary waves over orography, J. Atmos. Sci., 54, 2612–2629, 1997.
Ringler, T D. and Cook, K H.: Understanding the seasonality of orographically forced stationary waves: Interaction between mechanical and thermal forcing, J. Atmos. Sci., 56, 1154–1174, 1999. \hack
Roe, G H. and Lindzen, R S.: The Mutual Interaction between Continental-Scale Ice Sheets and Atmospheric Stationary Waves., J. Climate, 14, 1450–1465, 2001.
Rossby, C.-G.: Planetary flow patterns in the atmosphere, Quart. J. Roy. Meteor. Soc, 66, 68–87, 1940.
Sanberg, J. and Oerlemans, J.: Modelling of Pleistocene European ice sheets: the effect of upslope precipitation, Geologie en Mijnbouw, 62, 267–273, 1983.
Seager, R., Battisti, D S., Yin, J., Gordon, N., Naik, N., Clement, A C., and Cane, M A.: Is the Gulf Stream responsible for Europe's mild winters?, Quart. J. Roy. Meteor. Soc., 128, 2563–2586, 2002.
Singarayer, J S. and Valdes, P J.: High-latitude climate sensitivity to ice-sheet forcing over the last 120kyr, Quat. Sci. Rev., 29, 43–55, 2010.
Spahni, R., Chappellaz, J., Stocker, T F., Loulergue, L., Hausammann, G., Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D., Masson-Delmotte, V., and Jouzel, J.: Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores, Science, 310, 1317–1321, 2005.
Stokes, C R., Tarasov, L., and Dyke, A S.: Dynamics of the North American Ice Sheet Complex during its inception and build-up to the Last Glacial Maximum, Q. Sci. Rev., 50, 86–104, 2012.
Svendsen, J I., Alexanderson, H., Astakhov, V I., Demidov, I., Dowdeswell, J A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H., Ingolfsson, O., Jakobsson, M., Kjaer, K., Larsen, E., Lokrantz, H., Lunkka, J P., Lys\aa, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, A., Siegert, C., Siegert, M J., Spielhagen, R F., and Stein, R.: Late Quaternary ice sheet history of northern Eurasia, Quat. Sci. Rev., 23, 1229–1271, 2004.
Ting, M.: Maintenance of northern summer stationary waves in a GCM, J. Atmos. Sci., 51, 3286–3308, 1994.
Ullman, D. J., LeGrande, A. N., Carlson, A. E., Anslow, F. S., and Licciardi, J. M.: Assessing the impact of Laurentide Ice Sheet topography on glacial climate, Clim. Past, 10, 487–507, \doi10.5194/cp-10-487-2014, 2014.
Valdes, P J. and Hoskins, B J.: Nonlinear orographically forced planetary waves, J. Atmos. Sci., 48, 2089–2106, 1991.
Vallis, G K. and Gerber, E P.: Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index, Dynam. Atmos. Oc., 44, 184–212, 2008.
White, G H.: An observational study of the Northern Hemisphere extratropical summertime general circulation, J. Atmos. Sci., 39, 24–40, 1982.