Articles | Volume 10, issue 3
https://doi.org/10.5194/cp-10-1041-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-1041-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Volcanic ash layers in Lake El'gygytgyn: eight new regionally significant chronostratigraphic markers for western Beringia
C. van den Bogaard
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
B. J. L. Jensen
Department of Earth and Atmospheric Sciences, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada
current address: School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, UK
N. J. G. Pearce
Department of Geography & Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth, SY23 3DB, Wales, UK
D. G. Froese
Department of Earth and Atmospheric Sciences, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, T6G 2E3, Canada
M. V. Portnyagin
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
V. V. Ponomareva
Institute of Volcanology and Seismology, Petropavlovsk-Kamchatsky, Russia
V. Wennrich
University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
Related authors
No articles found.
Mahya Roustaei, Joel Pumple, Jordan Harvey, and Duane Froese
EGUsphere, https://doi.org/10.5194/egusphere-2024-1353, https://doi.org/10.5194/egusphere-2024-1353, 2024
Short summary
Short summary
This study investigated the application of CT scanning to tackle the limitations of traditional destructive methods in characterization of permafrost cores. Five different permafrost cores were scanned at resolutions of 65 and 25 μm with new calibration method. The identification of different materials from CT images showed air(gas), ice(excess and pore), and sediments using an Otsu segmentation method. The results were validated by a destructive method(cuboid) and also a non-destructive method.
Sophie L. Norris, Martin Margold, David J. A. Evans, Nigel Atkinson, and Duane G. Froese
The Cryosphere, 18, 1533–1559, https://doi.org/10.5194/tc-18-1533-2024, https://doi.org/10.5194/tc-18-1533-2024, 2024
Short summary
Short summary
Associated with climate change between the Last Glacial Maximum and the current interglacial period, we reconstruct the behaviour of the southwestern Laurentide Ice Sheet, which covered the Canadian Prairies, using detailed landform mapping. Our reconstruction depicts three shifts in the ice sheet’s dynamics. We suggest these changes resulted from ice sheet thinning triggered by abrupt climatic change. However, we show that regional lithology and topography also play an important role.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Joel Pumple, Alistair Monteath, Jordan Harvey, Mahya Roustaei, Alejandro Alvarez, Casey Buchanan, and Duane Froese
The Cryosphere, 18, 489–503, https://doi.org/10.5194/tc-18-489-2024, https://doi.org/10.5194/tc-18-489-2024, 2024
Short summary
Short summary
Ice content is a critical variable in the context of thawing permafrost, and permafrost cores provide a means to measure the characteristics of frozen ground; however, these measurements are typically destructive and time intensive. Multi-sensor core logging (MSCL) provides a fast, non-destructive method to image permafrost cores, measure bulk density, and estimate ice content. The use of MSCL will improve existing digital permafrost archives by adding high-quality and reproducible data.
Benjamin J. Stoker, Helen E. Dulfer, Chris R. Stokes, Victoria H. Brown, Christopher D. Clark, Colm Ó Cofaigh, David J. A. Evans, Duane Froese, Sophie L. Norris, and Martin Margold
EGUsphere, https://doi.org/10.5194/egusphere-2024-137, https://doi.org/10.5194/egusphere-2024-137, 2024
Short summary
Short summary
The retreat of the northwestern Laurentide Ice Sheet allows us to investigate how the ice drainage network evolves over millennial timescales and understand the influence of climate forcing, glacial lakes, and the underlying geology on the rate of deglaciation. We reconstruct the changes in ice flow at 500-year intervals and identify rapid reorganisations of the drainage network, including variations in ice streaming that we link to climatically-driven changes in the ice sheet surface slope.
Alistair J. Monteath, Matthew S. M. Bolton, Jordan Harvey, Marit-Solveig Seidenkrantz, Christof Pearce, and Britta Jensen
Geochronology, 5, 229–240, https://doi.org/10.5194/gchron-5-229-2023, https://doi.org/10.5194/gchron-5-229-2023, 2023
Short summary
Short summary
Accurately dating ocean cores is challenging because the radiocarbon age of water masses varies substantially. We identify ash fragments from eruptions more than 4000 km from their source and use these time markers to develop a new age–depth model for an ocean core in Placentia Bay, North Atlantic. Our results show that the radiocarbon age of waters masses in the bay varied considerably during the last 10 000 years and highlight the potential of using ultra-distal ash deposits in this region.
Benjamin J. Stoker, Martin Margold, John C. Gosse, Alan J. Hidy, Alistair J. Monteath, Joseph M. Young, Niall Gandy, Lauren J. Gregoire, Sophie L. Norris, and Duane Froese
The Cryosphere, 16, 4865–4886, https://doi.org/10.5194/tc-16-4865-2022, https://doi.org/10.5194/tc-16-4865-2022, 2022
Short summary
Short summary
The Laurentide Ice Sheet was the largest ice sheet to grow and disappear in the Northern Hemisphere during the last glaciation. In northwestern Canada, it covered the Mackenzie Valley, blocking the migration of fauna and early humans between North America and Beringia and altering the drainage systems. We reconstruct the timing of ice sheet retreat in this region and the implications for the migration of early humans into North America, the drainage of glacial lakes, and past sea level rise.
David J. Lowe, Peter M. Abbott, Takehiko Suzuki, and Britta J. L. Jensen
Hist. Geo Space. Sci., 13, 93–132, https://doi.org/10.5194/hgss-13-93-2022, https://doi.org/10.5194/hgss-13-93-2022, 2022
Short summary
Short summary
The Commission on Tephrochronology (COT), formed in 1961, comprises geoscientists who characterize, map, and date tephra (volcanic ash) layers and use them as stratigraphic linking and dating tools in geological, palaeoenvironmental, and archaeological research. We review COT's origins and growth and show how its leadership and activities – hosting meetings, supporting ECRs, developing new analytical and dating methods, and publishing volumes – have strongly influenced tephrochronology globally.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Lauren J. Davies, Britta J. L. Jensen, and Darrell S. Kaufman
Geochronology, 4, 121–141, https://doi.org/10.5194/gchron-4-121-2022, https://doi.org/10.5194/gchron-4-121-2022, 2022
Short summary
Short summary
Subarctic and Arctic lake sediments provide key data to understand natural climate variability and future climate change. However, they can be difficult to date accurately and of limited use without a robust chronology. We use volcanic ash deposits from the last ~4000 BP to identify anomalously old radiocarbon ages at Cascade Lake, Alaska. A provisional ~15 000-year Bayesian age model is produced for the lake, and a new location for ash from five Late Holocene eruptions is reported.
Maxim V. Portnyagin, Vera V. Ponomareva, Egor A. Zelenin, Lilia I. Bazanova, Maria M. Pevzner, Anastasia A. Plechova, Aleksei N. Rogozin, and Dieter Garbe-Schönberg
Earth Syst. Sci. Data, 12, 469–486, https://doi.org/10.5194/essd-12-469-2020, https://doi.org/10.5194/essd-12-469-2020, 2020
Short summary
Short summary
Tephra is fragmented material produced by explosive volcanic eruptions. Geochemically characterized tephra layers are excellent time marker horizons and samples of magma composition. TephraKam is database of the ages and chemical composition of volcanic glass in tephra from the Kamchatka volcanic arc (northwestern Pacific). TephraKam enables the identification of tephra sources, correlation and dating of natural archives, and reconstruction of spatiotemporal evolution of volcanism in Kamchatka.
D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos
Clim. Past, 10, 1239–1251, https://doi.org/10.5194/cp-10-1239-2014, https://doi.org/10.5194/cp-10-1239-2014, 2014
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
P. S. Minyuk, V. Y. Borkhodoev, and V. Wennrich
Clim. Past, 10, 467–485, https://doi.org/10.5194/cp-10-467-2014, https://doi.org/10.5194/cp-10-467-2014, 2014
P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles
Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013, https://doi.org/10.5194/cp-9-2759-2013, 2013
A. C. Gebhardt, A. Francke, J. Kück, M. Sauerbrey, F. Niessen, V. Wennrich, and M. Melles
Clim. Past, 9, 1933–1947, https://doi.org/10.5194/cp-9-1933-2013, https://doi.org/10.5194/cp-9-1933-2013, 2013
M. A. Sauerbrey, O. Juschus, A. C. Gebhardt, V. Wennrich, N. R. Nowaczyk, and M. Melles
Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, https://doi.org/10.5194/cp-9-1949-2013, 2013
L. Cunningham, H. Vogel, V. Wennrich, O. Juschus, N. Nowaczyk, and P. Rosén
Clim. Past, 9, 679–686, https://doi.org/10.5194/cp-9-679-2013, https://doi.org/10.5194/cp-9-679-2013, 2013
Related subject area
Subject: Teleconnections | Archive: Terrestrial Archives | Timescale: Pleistocene
A stalagmite test of North Atlantic SST and Iberian hydroclimate linkages over the last two glacial cycles
Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial–interglacial period
Distinct lake level lowstand in Lake Prespa (SE Europe) at the time of the 74 (75) ka Toba eruption
Rhawn F. Denniston, Amanda N. Houts, Yemane Asmerom, Alan D. Wanamaker Jr., Jonathan A. Haws, Victor J. Polyak, Diana L. Thatcher, Setsen Altan-Ochir, Alyssa C. Borowske, Sebastian F. M. Breitenbach, Caroline C. Ummenhofer, Frederico T. Regala, Michael M. Benedetti, and Nuno F. Bicho
Clim. Past, 14, 1893–1913, https://doi.org/10.5194/cp-14-1893-2018, https://doi.org/10.5194/cp-14-1893-2018, 2018
Short summary
Short summary
The sediment deposited off the coast of Portugal includes the remains of marine organisms and pollen washed to sea from Iberia. Analysis of both the pollen and the ocean sediments has revealed that the type and density of vegetation on land changed in concert with shifts in ocean temperature over centuries to tens of millennia. Proxies for climate in Portuguese stalagmites from the last two glacial periods show precipitation was reduced when sea surface temperatures fell.
T.-Y. Li, C.-C. Shen, L.-J. Huang, X.-Y. Jiang, X.-L. Yang, H.-S. Mii, S.-Y. Lee, and L. Lo
Clim. Past, 10, 1211–1219, https://doi.org/10.5194/cp-10-1211-2014, https://doi.org/10.5194/cp-10-1211-2014, 2014
B. Wagner, M. J. Leng, T. Wilke, A. Böhm, K. Panagiotopoulos, H. Vogel, J. H. Lacey, G. Zanchetta, and R. Sulpizio
Clim. Past, 10, 261–267, https://doi.org/10.5194/cp-10-261-2014, https://doi.org/10.5194/cp-10-261-2014, 2014
Cited articles
Akinin, V. V. and Miller, E. L.: Evolution of Calc-Alkaline Magmas of the Okhotsk-Chukotka Volcanic Belt, Petrology, 19, 237–277, 2012.
Anderson, P. M., Lozhkin, A. V., and Belaya, B. V.: Younger Dryas in western Beringia (northeastern Siberia), in: Environmental Changes in Beringia During the Quaternary, edited by: Simakov, K. V., North East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, 28–44, 1998 (in Russian).
Armstrong, J. T.: CITZAF – a package of corrections for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films and particulates, Microbeam Anal., 4, 177–200, 1995.
Bazanova, L. I. and Pevzner, M. M.: Khangar: One more active volcano in Kamchatka, Trans-actions (Doklady) of the Russian Academy of Sciences, Earth Sci., 377A, 307–310, 2001.
Belousov, A. B., Belousova, M. G., Grushin, S. Y., and Krestov, P. B.: Historic eruptions of the Chikurachki volcano (Paramushir, Kurile Islands), Volcanol. Seismol., 3, 15–34, 2003 (in Russian with English abstract).
Bindeman, I. N., Leonov, V. L., Izbekov, P. E., Ponomareva, V. V., Watts, K. E., Shipley, N. K., Perepelov, A. B., Bazanova, L. I., Jicha, B. R., Singer, B. S., Schmitt, A. K., Portnyagin, M. V., and Chen, C. H.: Large-volume silicic volcanism in Kamchatka: Ar-Ar, U-Pb ages and geochemical characteristics of major pre-Holocene caldera-forming eruptions, J. Volcanol. Geotherm. Res., 189, 57–80, 2010.
Borchardt, G. A., Aruscavage, P. J., and Millard Jr., H. T.: Correlation of the Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation analysis, J. Sediment. Res., 42, 301–306, 1972.
Braitseva, O. A., Litasova, S. N., and Ponomarenko, A. K.: Application of tephrochronological method for dating of the key archaeological site in Eastern Kamchatka, Volcanol. Seismol., 5, 507–514, 1987.
Braitseva, O. A., Melekestsev, I. V., Ponomareva, V. V., and Sulerzhitsky, L. D.: The ages of calderas, large explosive craters and active volcanoes in the Kuril–Kamchatka region Russia, Bull. Volcanol., 57, 383–402, 1995.
Braitseva, O. A., Ponomareva, V. V., Sulerzhitsky, L. D., Melekestsev, I. V., and Bailey, J. C.: Holocene key-marker tephra layers in Kamchatka, Russia, Quaternary Res., 47, 125–139, 1997.
Braitseva, O. A., Bazanova, L. I., Melekestsev, I. V., and Sulerzhitsky, L. D.: Largest Holocene eruptions of Avachinsky volcano, Kamchatka, Volcanol. Seismol., 20, 1–27, 1998.
Brigham-Grette, J., Melles, M., Minyuk, P., and Scientific Party: Overview and significance of a 250 ka paleoclimate record from El'gygytgyn Crater Lake, NE Russia, J. Paleolimnol., 37, 1–16, 2007.
Cao, L. Q., Arculus, R. J., and McKelvey, B. C.: Geochemistry and petrology of volcanic ashes recovered from sites 881 through 884: a temporal record of Kamchatka and Kurile volcanism, edited by: Rea, D. K., Scholl, D. W., and Allan, J. F., Proceedings of the Ocean Drilling Program, Scientific Results, 145, 345–381, 1995.
Davies, S. M., Wastegård, S., and Wohlfarth, B.: Extending the limits of the Borrobol Tephra to Scandinavia and detection of new early Holocene tephras, Quaternary Res., 59, 345–352, 2003.
Davies, S. M., Abbott, P. M., Pearce, N. J. G., Wastegård, S., and Blockley S. P. E.: Integrating the INTIMATE records using tephrochronology: rising to the challenge, Quaternary Sci. Rev., 36, 11–27, https://doi.org/10.1016/j.quascirev.2011.04.005, 2012.
Demuro, M., Roberts, R. G., Froese, D. G., Arnold, L. J., Brock, F., and Bronk Ramsey, C.: Optically stimulated luminescence dating of single and multiple grains of quartz from perennially frozen loess in western Yukon Territory, Canada: comparison with radiocarbon chronologies for the late Pleistocene Dawson tephra, Quat. Geochronol., 3, 346–364, 2008.
Derkachev, A. N., Nikolaeva, N. A., and Gorbarenko, S. A.: The peculiarities of supply and distribution of clastogenic material in the Sea of Okhotsk during late Quaternary, Russ. J. Pac. Geology, 23, 37–52, 2004.
Derkachev, A. N., Portnyagin, M. V., Ponomareva, V. V., Gorbarenko, S., Malakhov, M., Nürnberg, D., Riethdorf, E. J. R., Tiedemann, R., and van den Bogaard, C.: Marker tephra layers in the Holocene-Pleistocene deposits of the Bering Sea and the north-western Pacific Ocean, in: KALMAR – Second Bilateral Workshop on Russian-German Cooperation on Kurile-Kamchatka and Aleutean Marginal Sea-Island Arc Systems, 16 May 2005–20 May 2011, Trier, 2011.
Derkachev, A. N., Nikolaeva, N. A., Gorbarenko, S. A, Harada, N., Sakamoto, T., Iijima, K. Sakhno, V. G., Hua Hua, L. V., and Wang, K.: Characteristics and ages of tephra layers in the central Okhotsk Sea over the last 350 kyr, Deep-Sea Res., Part II, 61–64, 179–192, 2012.
Dörfler, W., Feeser, I., van den Bogaard, C., Dreibrodt, S., Erlenkeuser, H., Kleinmann, A., and Merkt, J.: A high-quality annually laminated sequence from Lake Belau, Northern Germany: Revised chronology and its implications for palynological and tephrochronological studies, The Holocene, 22, 1413–1426, https://doi.org/10.1177/0959683612449756, 2012.
Dugmore, A.: Icelandic volcanic ash in Scotland, Scottish Geographical Magazine, 105, 168–172, 1989.
Dullo, C., Baranov, B., and van den Bogaard, C.: RV Sonne Fahrtbericht, Cruise Report SO201-2: KALMAR (Kurile-Kamchatka and Aleutian Marginal Sea-Island Systems): Geodynamic and Climate Interaction in Space and Time, IFM-GEOMAR Report, 35, 1–233, 2009.
Froese, D. G., Westgate, J. A., Sanborn, P. T., Reyes, A. V., and Pearce, N. J. G.: The Klondike goldfields and Pleistocene environments of Beringia, GSA Today, 19, 4–10, https://doi.org/10.1130/GSATG54A.1, 2009.
George, R. M. M., Turner, S. P., Hawkesworth, C. J., Bacon, C. R., Nye, C., Stelling, P., and Dreher, S.: Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc, J. Petrology, 45, 203–219, 2004.
Giaccio, B., Nomade, S., Wulf, S., Isaia, R., Sottili, G., Cavuoto, G., Galli, P., Sposato, A., Sulpizio, R., and Zanchetta, G.: The late MIS 5 Mediterranean tephra markers: a reappraisal from peninsular Italy terrestrial records, Quaternary Sci. Rev., 56, 31–45, https://doi.org/10.1016/j.quascirev.2012.09.009, 2012.
Gill, J. B.: Orogenic andesites and plate tectonics, Springer-Verlag, Berlin-Heidelberg, 1981.
Gorbarenko, S. A., Chekhovskaya, M. P., and Southon, J. R.: Detailed environmental changes of the Sea of Okhotsk Central part during the last glaciation-Holocene, Oceanology, 38, 277–280, 1998.
Gorbarenko, S. A., Derkachev, A. N, Astakhov, A. S., Southon, J. R., Nuernberg, D., and Shapovalov-Chuprynin, V. V.: Lithostratigraphy and tephrochronology of the upper Quaternary sediments of the Sea of Okhotsk, Tikhookeanskaya Geologiya, 19, 58–72, 2000 (in Russian).
Gorbarenko, S. A., Khusid, T. A., Basov, I. A., Oba, T., Southon, J. R., and Koizumi, I.: Glacial Holocene environment of the southeastern Okhotsk Sea: evidence from geochemical and palaeontological data, Palaeo, 3, 177, 237–263, 2002a.
Gorbarenko, S. A., Nuernberg, D., Derkachev, A. N., Astachov, A. S., Southon, J. R., and Kaiser, A,: Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply, Mar. Geol., 183, 107–129, 2002b.
Gorshkov, G. S.: Structure of the Kurile Arc, in Volcanism and the Upper Mantle, Springer US, 1–6, 1970.
Grönvold, K., Oskarsson, N., Johnsen, S. J., Clausen, H. B., Hammer, C. U., Bond, G., and Bard, E.: Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments, Earth Planet. Sci. Lett., 135, 149–155, 1995.
Gurov, E. P., Valter, A. A., Gurova, E. P., and Serebrennikov, A. I.: Explosion meteorite crater El'gygytgyn in Chukotka. Akademiia Nauk SSSR, Doklady, 240, 1407–1410, 1978.
Gurov, E. P., Koeberl, C., and Yamnichenko, A.: El'gygytgyn impact crater, Russia: Structure, tectonics, and morphology, Meteorit. Planet. Sci., 42, 307–319, 2007.
Gusev, A. A., Ponomareva, V. V., Braitseva, O. A., Melekestsev, I. V., and Sulerzhitsky, L. D.: Great explosive eruptions on Kamchatka during the last 10,000 years: self-similar irregularity of the output of volcanic products, J. Geophys. Res., 108/B2, 2126, https://doi.org/10.1029/2001JB000312, 2003.
Hall, C. M. and Farrell, J. W.: Laser 40Ar/39Ar ages of tephra from Indian Ocean deep-sea sediments: Tie points for the astronomical and geomagnetic polarity time scales, Earth Planet. Sc. Lett., 133, 327–338, 1995.
Haltia, E. M. and Nowaczyk, N. R.: Magnetostratigraphy of sediments from Lake El'gygytgyn ICDP Site 5011-1: paleomagnetic age constraints for the longest paleoclimate record from the continental Arctic, Clim. Past Discuss., 9, 5077–5122, https://doi.org/10.5194/cpd-9-5077-2013, 2013.
Hasegawa, T., Nakagawa, M., Yoshimoto, M., Ishizuka, Y., Hirose, W., Seki, S., Ponomareva, V., and Alexander, R.: Tephrostratigraphy and petrological study of Chikurachki and Fuss volcanoes, western Paramushir Island, northern Kurile Islands: Evaluation of Holocene eruptive activity and temporal change of magma system, Quaternary Int., 1–20, 278–297, https://doi.org/10.1016/j.quaint.2011.06.047, 2012.
Hopkins, D. M.: The Bering Land Bridge, Stanford University Press, Stanford, CA, 1967.
Hughes, G. R. and Mahood, G. A.: Tectonic controls on the nature of large silicic calderas in volcanic arcs, Geology, 36, 627–630, https://doi.org/10.1130/G24796A.1, 2008.
Hultén, E.: Outline of the History of Arctic and Boreal Biota During the Quarternary Period, Lehre J Cramer, New York, 1937.
Jarosewich, E. J., Nelen, J. A., and Norberg, J. A.: Reference samples for electron microprobe analysis, Geostandards Newsletter, 4, 43–47, 1980.
Jensen, B., Froese, D., Preece, S., Westgate, J., and Stachel, T.: An extensive middle to late Pleistocene tephrochronologic record from east-central Alaska, Quaternary Sci. Rev., 27, 411–427, 2008.
Jensen, B. J. L., Preece, S. J., Lamothe, M., Pearce, N. J. G., Froese, D. G., Westgate, J. A., Schaefer, J., and Begét, J.: The variegated (VT) tephra: A new regional marker for middle to late marine isotope stage 5 across Yukon and Alaska, Quaternary Int., 246, 312–323, https://doi.org/10.1016/j.quaint.2011.06.028, 2011.
Jensen, B. J. L., Pyne-O'Donnell, S., Plunkett, G., Froese, D. G., Hughes, P., Pilcher, J. R., and Hall, V. A.: Intercontinental distribution of an Alaskan volcanic ash, Abstract V43B-2832 of the AGU Fall Meeting, San Francisco, 3–7 December, 2012.
Jensen, B. J. L., Reyes, A. V., Froese, D. G., and Stone, D. B.: The Palisades is a key reference site for the middle Pleistocene of eastern Beringia: new evidence from paleomagnetics and regional tephrostratigraphy, Quaternary Sci. Rev., 63, 91–108, https://doi.org/10.1016/j.quascirev.2012.11.035, 2013.
Jicha, B. R., Singer, B. S., Brophy, J. G., Fournelle, J. H., Johnson, C. M., Beard, B. L., Lapen, T. J., and Mahlen, N. J.: Variable impact of the subducted slab on Aleutian island arc magma sources: Evidence from Sr, Nd, Pb, and Hf Isotopes and trace element abundances, J. Petrol., 45, 1845–1875, 2004.
Jicha, B. R., Scholl, D. W., Singer, B. S., Yogodzinski, G. M., and Kay, S. M.: Revised age of Aleutian Island Arc formation implies high rate of magma production, Geology, 34, 661–664, https://doi.org/10.1130/G22433.1, 2006.
Jochum, K.-P. and Stoll, B.: Reference materials for elemental and isotopic analysis by LA-(MC)-ICP-MS: Successes and outstanding needs, in: Laser Ablation-ICP-MS in the Earth Sciences, edited by: Sylvester, P., Current practices and outstanding issues., Mineralogical Association of Canada (MAC) Short Course Series, Vancouver, 147–168, 2008.
Jochum, K.-P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A. W.: GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards, Geostand. Geoanal. Res., 29, 333–338, 2005.
Jochum, K.-P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A. W., Amini, M., Aarburg, S. E., Abouchami, W., Hellebrand, E., Mocek, B., Raczek, I., Stracke, A., Alard, O., Bouman, C., Becker, S., Ducking, M., Bratz, H., Klemd, R., de Bruin, D., Canil, D., Cornell, D., de Hoog, C. J., Dalpe, C., Danyushevsky, L., Eisenhauer, A., Gao, Y. J., Snow, J. E., Goschopf, N., Gunther, D., Latkoczy, C., Guillong, M., Hauri, E. H., Hofer, H. E., Lahaye, Y., Horz, K., Jacob, D. E., Kassemann, S. A., Kent, A. J. R., Ludwig, T., Zack, T., Mason, P. R. D., Meixner, A., Rosner, M., Misawa, K. J., Nash, B. P., Pfander, J., Premo, W. R., Sun, W. D. D., Tiepolo, M., Vannucci, R., Vennemann, T., Wayne, D., and Woodhead, J. D.: MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios, Geochem., Geophys., Geosy., 7, Q02008, https://doi.org/10.01029/02005GC001060, 2006.
Juschus, O., Preusser, F., Melles, M., and Radtke, U.: Applying SAR-IRSL methodology for dating fine-grain sediments from Lake El'gygytgyn, northeastern Siberia, Quat. Geochronol., 2, 187–194, 2007.
Juschus, O., Melles, M., Gebhardt, A. C., and Niessen, F.: Late Quaternary mass move- ment events in Lake El'gygytgyn, north-eastern Siberia, Sedimentology, 56, 2155–2174, https://doi.org/10.1111/j.1365-3091.2009.01074.x, 2009.
Gill, J. B.: Orogenic andesites and plate tectonics, Springer-Verlag, Berlin-Heidelberg, 1981.
Kaufman, D. S., Jensen, B. J. L., Reyes, A. V., Schiff, C. J., Froese, D. G., and Pearce N. J. G.: Late Quaternary tephrostratigraphy, Ahklun Mountains, SW Alaska, J. Quaternay Sci., 27, 344–359, https://doi.org/10.1002/jqs.1552, 2012.
Kepezhinskas, P., McDermott, F., Defant, M. J., Hochstaedter, A., Drummond, M. S., Hawkesworth, C. J., Koloskov, A., Maury, R. C., and Bellon, H.: Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis, Geochim. Cosmochim. Ac., 61, 577–600, 1997.
Kir'yanov, V. Yu., Egorova, I. A., and Litasova, S. N.: Volcanic ash on Bering Island (Commander Islands) and Kamchatkan Holocene eruptions, Volcanol. Seismol., 8, 850–868, 1990.
Kuehn, S. C., Froese, D. G., Shane, P. A. R., and Participants, I. I.: The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: Results and recommendations, Quaternary Int., 246, 19–47, https://doi.org/10.1016/j.quaint.2011.08.022, 2011.
Kyle, P. R., Ponomareva, V. V., and Rourke-Schluep, R.: Geochemical characterization of marker tephra layers from major Holocene eruptions in Kamchatka, Russia, Int. Geol. Rev., 53, 1059–1097, 2011.
Lane, C. S., Chorn, B. T., and Johnson, T. C.: Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka, Proc. Natl. Acad. Sci., 110, 8025–8029, https://doi.org/10.1073/pnas.1301474110 (Supplement), 2013.
Laverov, N. P., Kovalenko, V. I., Yarmolyuk, V. V., Bogatikov, O. A., Akinin, V. V., Gurbanov, A. G., Evdokimov, A. N., Kudryashova, E. A., Pevzner, M. M., Ponomareva, V. V., and Sakhno, V. V.: Recent volcanism of northern Eurasia: Regionalization and formation settings, Doklady Earth Sci., 410, 1048–1052, 2006.
Layer, P.: Argon40/argon39 age of the Elgygytgyn impact event, Chukotka, Russia, Meteor. Planet. Sci., 35, 591–599, 2000.
Le Bas, M., Le Maitre, R., Streckeisen, A., and Zanettin, B.: A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 27, 745–750, 1986.
Melekestsev, I. V., Volynets, O. N., and Antonov, A. Y.: Nemo III Caldera (Onekotan I., the Northern Kuriles): Structure, 14C age, dynamics of the caldera-forming eruption, evolution of juvenile products, Volcan. Seism., 19, 41–64, 1997.
Melles, M., Brigham-Grette, J., Minyuk, P., Koeberl, C., Andreev, A., Cook, T., Fedorov, G., Gebhardt, C., Haltia-Hovi, E., Kukkonen, M., Nowaczyk, N., Schwamborn G., Wennrich, V., and the El'gygytgyn Scientific Party: The El'gygytgyn Scientific Drilling Project – conquering Arctic challenges through continental drilling, Sci. Drilling, 11, 29–40, 2011.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A. V., Rosén, P., Tarasov, P., Vogel, H., and Wagner, B.: 2.8 Million Years of Arctic Climate Change from Lake El'gygytgyn, NE Russia, Science, 337, 315–320, https://doi.org/10.1126/science.1222135, 2012.
Minyuk, P. S. and Ivanov, Y. Y.: The Brunhes-Matuyama boundary in Western Beringia: a review, Quaternary Sci. Rev., 30, 2054–2068, https://doi.org/10.1016/j.quascirev.2010.06.008, 2011.
Myers, J. D. and Marsh, B. D.: Aleutian lead isotopic data: additional evidence for the evolution of lithospheric plumbing systems, Geochem. Cosmochim. Acta, 51, 1833–1842, 1987.
Nakagawa, M., Ishizuka, Y., Kudo, T., Yoshimoto, M., Hirose, W., Ishizaki, Y., Gouchi, N., Katsui, Y., Solovyow, A. W., Steinberg, G. S., and Abdurakhmanov, A. I.: Tyatya volcano, southwestern Kuril arc: recent eruptive activity inferred from widespread tephra, Island Arc., 11, 236–254, 2002.
Nürnberg, D. and Tiedemann, R.: Environmental change in the Sea of Okhotsk during the last 1.1 million years, Paleoceanography, 19, A4011, https://doi.org/10.1029/2004PA001023, 2004.
Nowaczyk, N. R., Haltia, E. M., Ulbricht, D., Wennrich, V., Sauerbrey, M. A., Rosén, P., Vogel, H., Francke, A., Meyer-Jacob, C., Andreev, A. A., and Lozhkin, A. V.: Chronology of Lake El'gygytgyn sediments – a combined magnetostratigraphic, palaeoclimatic and orbital tuning study based on multi-parameter analyses, Clim. Past, 9, 2413–2432, https://doi.org/10.5194/cp-9-2413-2013, 2013.
Nye, C. J., Queen, K., and McCarthy, A. M.: Volcanoes of Alaska: Alaska Division of Geological and Geophysical Surveys Information Circular IC 0038, 1998.
Ostapenko, V. F., Fedorchenko, V. I., and Shilov, V. N.: Pumices, ignimbrites and rhyolites from the Great Kurile Arc, Bull. Volcanol., 30, 81–92, 1967.
Pearce, J. A. and Parkinson, I. J.: Trace element models for mantle melting: application to volcanic arc petrogenesis, in: Magmatic Processes and Plate Tectonics, edited by: Prichard, H. M., Alabaster, T., Harris, N. B., and Neary, C. R., Geol. Soc. Spec. Publ., 76, 373–403, 1993.
Pearce, N. J. G., Westgate, J. A., and Perkins, W. T.: Developments in the analysis of volcanic glass shards by Laser Ablation ICP-MS: quantitative and single internal standard-multi-element methods, Quaternary Int., 34–36, 213–227, 1996.
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S.E., Neal, C. R., and Chenery, S. P.: A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials, Geostand. Newslett., 115-144, 1997.
Pearce, N. J. G., Westgate, J. A., Perkins, W. T., Eastwood, W. J., and Shane, P. A. R.: The application of laser ablation ICP-MS to the analysis of volcanic glass shards from tephra deposits: bulk glass and single shard analysis, Global Planet. Change, 21, 151–171, 1999.
Pearce, N. J. G., Eastwood, W. J., Westgate, J. A., and Perkins, W. T.: The composition of juvenile volcanic glass from the c. 3,600 B.P. Minoan eruption of Santorini (Thera), J. Geol. Soc., 159, 545–556, 2002.
Pearce, N. J. G., Westgate, J. A., Perkins, W. T., and Preece, S. J.: The application of ICP-MS methods to tephrochronological problems, Appl. Geochem., 19, 289–322, 2004a.
Pearce, N. J. G., Westgate, J. A., Preece, S. J., Eastwood, W. J., and Perkins, W. T.: Identification of Aniakchak (Alaska) tephra in Greenland ice core challenges the 1645 BC date for Minoan eruption of Santorini, Geochem. Geophys. Geosyst., 5, Q03005, https://doi.org/10.1029/2003GC000672, 2004b.
Pearce, N. J. G., Denton, J. S., Perkins, W. T., Westgate, J. A., and Alloway, B. V.: Correlation and characterisation of individual glass shards from tephra deposits using trace element laser ablation ICP-MS analyses: current status and future potential, J. Quaternary Sci., 22, 721–236, 2007.
Pearce, N. J. G., Perkins W. T. Westgate J. A., and Wade S. C.: Trace element analysis by laser ablation ICP-MS: the quest for comprehensive chemical characterisation of single sub-10 μm volcanic glass shards, Quaternary Int., 246, 57–81, 2011.
Pevzner, M. M., Gertsev, D. O., Romanenko, F. A., and Kushcheva, Y. V.: The first data on isotopic age of Anyui volcano (Chukotka), in: Doklady Earth Sciences, 438, 736–738, 2011.
Pilcher, J. R., Hall, V. A., and McCormac, F. G.: An outline tephrochronology for the Holocene of the north of Ireland, J. Quaternary Sci., 11, 485–494, 1996.
Ponomareva, V. V., Kyle, P. R., Melekestev, I. V., Rinkleff, P. G., Dirksen, O. V., Sulerzhitsky, L. D., Zaretskaia, N. E., and Rourke R.: The 7600 (^14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships, J. Volcanol. Geotherm. Res., 136, 199–222, 2004.
Ponomareva, V. V., Churikova, T. G., Melekestsev, I. V., Braitseva, O. A., Pevzner, M. M., and Sulerzhitsky, L. D.: Late Pleistocene-Holocene Volcanism on the Kamchatka Peninsula, Northwest Pacific region, in: Volcanism and subduction: the Kamchatka Region, edited by: Eichelberger, J., Izbekov, P., Ruppert, N., Lees, J., and Gordeev, E., AGU Geophysical Monograph Series, 172, 165–198, 2007.
Ponomareva, V. V., Portnyagin, M. V., Derkachev, A. N., Pendea, I. F., Bourgeois, J., Reimer, P. J., Garbe-Schönberg, D., and Krasheninnikov, S.: Early Holocene M 6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records, Int. J. Earth Sci., 102/6, 1673–1699, https://doi.org/10.1007/s00531-013-0898-0, 2013a.
Ponomareva, V. V., Portnyagin, M. V., Derkachev, A. N., Juschus, O., Garbe-Schönberg, D., and Nürnberg, D.: Identification of a widespread Kamchatkan tephra: A middle Pleistocene tie-point between Arctic and Pacific paleoclimatic records, Geophys. Res. Lett., 40/14, 3538–3543, https://doi.org/10.1002/grl.50645, 2013b.
Preece, S., Westgate, J., Stemper, B., and Péwé, T.: Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska, Geol. Soc. Am. Bull., 111, 71–90, 1999.
Preece, S. J., Westgate, J. A., Alloway, B. V., and Milner, M. W.: Characterization, identity, distribution, and source of late Cenozoic tephra beds in the Klondike district of the Yukon, Canada, Can. J. Earth Sci., 37, 983–996, 2000.
Preece, S. J., Westgate, J. A., Froese, D. G., Pearce, N. J. G., Perkins, W. T., and Fisher, T.: A catalogue of late Cenozoic tephra beds in the Klondike goldfields and adjacent areas, Yukon Territory, Can. J. Earth Sci., 48, 1386–1418, https://doi.org/10.1139/e10-110, 2011a.
Preece, S. J., Pearce, N. J. G., Westgate, J. A., Froese, D. G., Jensen, B. J. L., and Perkins, W. T.: Old Crow tephra across eastern Beringia: a single cataclysmic eruption at the close of Marine Isotope Stage 6, Quaternary Sci. Rev., 30, 2069–2090, https://doi.org/10.1016/j.quascirev.2010.04.020, 2011b.
Prueher, L. M. and Rea, D. K.: Tephrochronology of the Kamchatka-Kurile and Aleutian arcs: evidence for volcanic episodicity, J. Volcanol. Geotherm. Res., 106, 67–84, 2001.
Pyne-O'Donnell, S. D. F., Hughes, P. D. M., Froese, D. G., Jensen, B. J. L., Kuehn, S. C., Mallon, G., Amesbury, M.J., Charman, D. J., Daley, T. J., Loader, N. J., Mauquoy, D., Alayne Street-Perrott, A., and Woodman-Ralph, J.: High-precision ultra-distal Holocene tephrochronology in North America, Quaternary Sci. Rev., 52, 6–11, https://doi.org/10.1016/j.quascirev.2012.07.024, 2012.
Reyes, A. V., Froese, D. G., and Jensen, B. J. L.: Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska, Quaternary Sci. Rev., 29, 3256–3274, https://doi.org/10.1016/j.quascirev.2010.07.013, 2010.
Richter, D. H., Smith, J. G., Lanphere, M. A., Dalrymple, G. B., Reed, B. L., and Shew, N.: Age and progression of volcanism, Wrangell volcanic field, Alaska, Bull. Volcanol., 53, 29–44, 1990.
Rosman, K. J. R. and Taylor, P. D. P.: Isotopic compositions of the elements 1997, J. Phys. Chem. Ref. Data, 27, 1275–1287, 1998.
Sauerbrey, M. A., Juschus, O., Gebhardt, A. C., Wennrich, V., Nowaczyk, N. R., and Melles, M.: Mass movement deposits in the 3.6 Ma sediment record of Lake El'gygytgyn, Far East Russian Arctic, Clim. Past, 9, 1949–1967, https://doi.org/10.5194/cp-9-1949-2013, 2013.
Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G., and Wetterich, S.: Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia, Encyclopedia Quaternary Sci., 3, 542–552, 2013.
Shane, P. A. R., Black, T. M., Alloway, B. V., and Westgate, J. A.: Early to middle Pleistocene tephrochronology of North Island, New Zealand: Implications for volcanism, tectonism, and paleoenvironments, Geol. Soc. Am. Bull., 108, 915–925. https://doi.org/10.1130/0016-7606(1996)108<0915:ETMPTO>2.3.CO;2, 1996.
Sher, A. V.: Problems of the last interglacial in Arctic Siberia, Quaternary Int., 10–12, 215–222, 1991.
Sher, A. V.: Yedoma as a store of paleoenvironmental records in Beringida, in: Beringia Paleoenvironmental Workshop, edited by: Elias, S. and Brigham-Grette, J., September 1997, Abstracts and Program, 92–94, 1997.
Siebert, L. and Simkin, T.: Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism Program, Digital Information Series, GVP-3, available at: http://www.volcano.si.edu (last access: July 2013), 2002.
Sun, S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes, in: Magmatism in the Ocean Basins, edited by: Sanders, A. D. and Norry, M. J., Geological Society Special Publication, 313–345, 1989.
van den Bogaard, C. and Schmincke, H. U.: Linking the North Atlantic to central Europe: a high-resolution Holocene tephrochronological record from northern Germany, J. Quaternary Sci., 17, 3–20, https://doi.org/10.1002/jqs.636, 2002.
Wastegård, S.: Late Quaternary tephrochronology of Sweden: a review, Quaternary Int., 130, 49–62, https://doi.org/10.1016/j.quaint.2004.04.030, 2002.
Westgate, J., Stemper, B., and Péwé, T.: A 3 My record of Pliocene-Pleistocene loess in interior Alaska, Geology, 18, 858–861, 1990.
Westgate, J., Preece, S., Froese, D., Walter, R., Sandhu, A., and Schweger, C.: Dating early and middle (Reid) Pleistocene glaciations in central Yukon by tephrochronology, Quaternary Res., 56, 335–348, 2001.
Westgate, J. A., Preece, S. J., Froese, D. G., Telka, A. M., Storer, J. E., Pearce, N. J. G., Enkin, R. J., Jackson, L. E., LeBarge, W., and Perkins, W. T.: Gold Run tephra: a Middle Pleistocene stratigraphic and paleoenviromental marker across west-central Yukon Territory, Canada, Can. J. Earth Sci., 46, 465–478, 2009.
Westgate, J. A., Pearce, N. J. G., Perkins, W. T., Shane, P., and Preece, S. J.: Lead isotope ratios of volcanic glass by laser ablation inductively-coupled plasma mass spectrometry: Application to Miocene tephra beds in Montana, USA and adjacent areas, Quaternary Int., 246, 82–96, 2011a.
Westgate, J. A., Preece, S. J., and Jackson, L. E.: Revision of the tephrostratigraphy of the lower Sixtymile River area, Yukon Territory, Canada, Can. J. Earth Sci., 48, 695–701, 2011b.