Articles | Volume 9, issue 2
https://doi.org/10.5194/cp-9-525-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-9-525-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt
D. V. Kent
Invited contribution by D. V. Kent, one of the EGU Petrus Peregrinus Medal winners 2006.
Lamont–Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA
G. Muttoni
ALP – Alpine Laboratory of Paleomagnetism, via Madonna dei Boschi 76, 12016 Peveragno (CN), Italy
Department of Earth Sciences, University of Milan, via Mangiagalli 34, 20133 Milan, Italy
Related authors
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
Matteo Maron, Tetsuji Onoue, Sara Satolli, Katsuhito Soda, Honami Sato, Giovanni Muttoni, and Manuel Rigo
Clim. Past, 20, 637–658, https://doi.org/10.5194/cp-20-637-2024, https://doi.org/10.5194/cp-20-637-2024, 2024
Short summary
Short summary
For better knowledge of the climate perturbation that occurred in the lattermost part of the Triassic (Norian–Rhaetian), we investigated the geochemical and rock magnetic properties of the limestones of the Pignola–Abriola section (Lagonegro Basin, Italy). Our investigation revealed at least a major episode of enhanced weathering occurring in the late Norian (~217–211 Ma), possibly related to the Cimmerian orogen and/or the northward motion of Pangea across the equatorial humid belt.
Fabrizio Marra, Alison Pereira, Brian Jicha, Sebastien Nomade, Italo Biddittu, Fabio Florindo, Giovanni Muttoni, Elizabeth Niespolo, Paul Renne, and Vincent Scao
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-161, https://doi.org/10.5194/cp-2021-161, 2021
Publication in CP not foreseen
Short summary
Short summary
We demonstrate that coarse gravel deposition in the catchment basins of the major rivers of central Italy is a direct proxy of global deglaciation events associated with meltwater pulses. By precise 40Ar/39Ar dating of the sedimentary deposits we show that emplacement of these gravel beds is closely coincident with discrete events of sea-level rise, with peaks of the Ice-rafted debris (IRD) curve, and with particularly mild (warmer) minima of mean summer insolation at 65° N.
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
Paul E. Olsen, John W. Geissman, Dennis V. Kent, George E. Gehrels, Roland Mundil, Randall B. Irmis, Christopher Lepre, Cornelia Rasmussen, Dominique Giesler, William G. Parker, Natalia Zakharova, Wolfram M. Kürschner, Charlotte Miller, Viktoria Baranyi, Morgan F. Schaller, Jessica H. Whiteside, Douglas Schnurrenberger, Anders Noren, Kristina Brady Shannon, Ryan O'Grady, Matthew W. Colbert, Jessie Maisano, David Edey, Sean T. Kinney, Roberto Molina-Garza, Gerhard H. Bachman, Jingeng Sha, and the CPCD team
Sci. Dril., 24, 15–40, https://doi.org/10.5194/sd-24-15-2018, https://doi.org/10.5194/sd-24-15-2018, 2018
Short summary
Short summary
The Colorado Plateau Coring Project-1 recovered ~ 850 m of core in three holes at two sites in the Triassic fluvial strata of Petrified Forest National Park, AZ, USA. The cores have abundant zircon, U-Pb dateable layers (210–241 Ma) that along with magnetic polarity stratigraphy, validate the eastern US-based Newark-Hartford astrochronology and timescale, while also providing temporal and environmental context for the vast geological archives of the Triassic of western North America.
Related subject area
Subject: Carbon Cycle | Archive: Terrestrial Archives | Timescale: Cenozoic
Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up
Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain
Paleoenvironmental response of midlatitudinal wetlands to Paleocene–early Eocene climate change (Schöningen lignite deposits, Germany)
Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores
Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming
Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, https://doi.org/10.5194/cp-16-227-2020, 2020
Short summary
Short summary
A geochemical study of a continental section reveals a rapid global warming event (hyperthermal U), occurring ca. 50 Myr ago, only described until now in marine sediment cores. Documenting how the Earth system responded to rapid climatic shifts provides fundamental information to constrain climatic models. Our results suggest that continental deposits can be high-resolution recorders of these warmings. They also give an insight on the climatic conditions occurring during at the time.
Katharina Methner, Olaf Lenz, Walter Riegel, Volker Wilde, and Andreas Mulch
Clim. Past, 15, 1741–1755, https://doi.org/10.5194/cp-15-1741-2019, https://doi.org/10.5194/cp-15-1741-2019, 2019
Short summary
Short summary
We describe the presence of a carbon isotope excursion (CIE) in Paleogene lignites (Schöningen, DE) and assess paleoenvironmental changes in midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast (Schöningen, Cobham, Vasterival). These records share major characteristics of a reduced CIE (~ -1.3 ‰) in terms of bulk organic matter, increased fire activity (pre-CIE), minor plant species changes, and drowning of near-coastal mires during the CIE.
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319, https://doi.org/10.5194/cp-14-303-2018, https://doi.org/10.5194/cp-14-303-2018, 2018
Short summary
Short summary
Here we present a high-resolution timescale synchronization of continental and marine deposits for one of the most pronounced global warming events, the Paleocene–Eocene Thermal Maximum, which occurred 56 million years ago. New high-resolution age models for the Bighorn Basin Coring Project (BBCP) drill cores help to improve age models for climate records from deep-sea drill cores and for the first time point to a concurrent major change in marine and terrestrial biota 54.25 million years ago.
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, https://doi.org/10.5194/cp-12-1151-2016, 2016
Short summary
Short summary
Ancient greenhouse warming episodes are studied in river floodplain sediments in the western interior of the USA. Paleohydrological changes of four smaller warming episodes are revealed to be the opposite of those of the largest, most-studied event. Carbon cycle tracers are used to ascertain whether the largest event was a similar event but proportional to the smaller ones or whether this event was distinct in size as well as in carbon sourcing, a question the current work cannot answer.
Margret Steinthorsdottir, Amanda S. Porter, Aidan Holohan, Lutz Kunzmann, Margaret Collinson, and Jennifer C. McElwain
Clim. Past, 12, 439–454, https://doi.org/10.5194/cp-12-439-2016, https://doi.org/10.5194/cp-12-439-2016, 2016
Short summary
Short summary
Our manuscript "Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary" reports that ~ 40 % decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene–Oliogocene climate transition. The results endorse the theory that pCO2 drawdown was the main forcer of the Eocene–Oligocene climate change, and a "tipping point" was reached in the latest Eocene, triggering the plunge of the Earth System into icehouse conditions.
Cited articles
Achache, J., Courtillot, V., and Zhou, Y. X.: Paleogeographic and tectonic evolution of southern Tibet since middle Cretaceous time: New paleomagnetic data and synthesis, J. Geophys. Res.,89, 10311–10339, 1984.
Agard, P., Omrani, J., Jolivet, L., and Mouthereau, G.: Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation, Int. J. Earth Sci., 94, 401–419, 2005.
Aitchison, J. C., Ali, J. R., and Davis, A. M.: When and where did India and Asia collide?, J. Geophys. Res., 112, B05423, https://doi.org/10.1029/2006JB004706, 2007.
Aitchison, J. C., Ali, J. R., and Davis, A. M.: Reply to comment by Eduardo Garzanti on "When and where did India and Asia collide?", J. Geophys. Res., 113, B04412, https://doi.org/10.1029/2007JB005431, 2008.
Ali, J. R. and Aitchison, J. C.: Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma), Earth-Sci. Rev., 88, 145–166, 2008.
Allègre, C. J., Courtillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J. J., Achache, J., Scharer, U., Marcoux, J., Burg, J. P., Girardeau, J., Armijo, R., Gariepy, C., Gopel, C., Tindong, L., Xuchang, X., Chenfa, C., Guangqin, L., Baoyu, L., Jiwen, T., Naiwen, W., Guoming, C., Tonglin, H., Xibin, W., Wanming, D., Huaibin, S., Yougong, C., Ji, Z., Hongrong, Q., Peisheng, B., Songchan, W., Bixiang, W., Yaoxiu, Z., and Xu, R.: Structure and evolution of the Himalaya-Tibet orogenic belt, Nature, 307, 17–22, 1984.
Allen, M. B. and Armstrong, H. A.: Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeogr. Palaeocl., 265, 52–58, 2008.
Beck, R. A., Burbank, D. W., Sercombe, W. J., Olson, T. L., and Khan, A. M.: Organic carbon exhumation and global warming during the early Himalayan collision, Geology, 23, 387–390, 1995.
Beerling, D. J. and Royer, D. L.: Convergent Cenozoic CO2 history, Nat. Geosci., 4, 418–420, 2011.
Berger, W. H. and Winterer, E. L.: Plate stratigraphy and the fluctuating carbonate line, in: Pelagic Sediments: On Land and Under the Sea, Special Publications of the International Association of Sedimentologists, No. 1, edited by: Hsu, K. J. and Jenkins, H. C., Blackwell Scientific Publications, Oxford, 11–48, 1974.
Berner, R. A.: Global CO2 degassing and the carbon cycle: Comment on "Cretaceous ocean crust at DSDP sites 417 and 418: Carbon uptake from weathering vs. loss by magmatic outgassing", Geochim. Cosmochim. Acta, 54, 2889–2890, 1990a.
Berner, R. A.: Response to criticism of the BLAG model, Geochim. Cosmochim. Acta, 54, 2892–2893, 1990b.
Berner, R. A.: A model for atmospheric CO2 over Phanerozoic time, Am. J. Sci., 291, 339–376, 1991.
Berner, R. A.: GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 294, 56–91, 1994.
Berner, R. A.: The Phanerozoic Carbon Cycle, Oxford University Press, Oxford, p. 150, 2004.
Berner, R. A.: GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2, Geochim. Cosmochim. Acta, 70, 5653–5664, 2006.
Berner, R. A. and Caldeira, K.: The need for mass balance and feedback in the geochemical carbon cycle, Geology, 25, 955–956, 1997.
Berner, R. A. and Kothalava, Z.: GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182–204, 2001.
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, 1983.
Besse, J. and Courtillot, V.: Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr, J. Geophys. Res., 107, 2300, https://doi.org/10.1029/2000JB000050, 2002.
Besse, J. and Courtillot, V.:, Correction to "Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr": J. Geophys. Res., 108, 2469, https://doi.org/10.1029/2003JB002684, 2003.
Brady, P. V. and Gislason, S. R.: Seafloor weathering controls on atmospheric CO2 and global climate, Geochim. Cosmochim. Acta, 61, 965–973, 1997.
Briais, A., Patriat, P., and Tapponnier, P.: Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of southeast Asia, J. Geophys. Res., 98, 6299–6328, 1993.
Broecker, W. S. and Sanyal, A.: Does atmospheric CO2 police the rate of chemical weathering?, Global Biogeochem. Cy., 12, 403–408, 1998.
Broecker, W. S. and Woodruff, F.: Discrepancies in the oceanic carbon isotope record for the last fifteen million years?, Geochim. Cosmochim. Acta, 56, 3259–3264, 1992.
Caldeira, K.: Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate, Nature, 357, 578–581, 1992.
Caldeira, K. and Rampino, M. R.: Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect, Geophys. Res. Lett., 17, 1299–1302, 1990.
Cande, S. C. and Kent, D. V.: Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093–6095, 1995.
Cande, S. C. and Stegman, D. R.: Indian and African plate motions driven by the push force of the Reunion plume head, Nature, 475, 47–52, 2011.
Chang, C.-F. and Cheng, H.-L.: Some tectonic features of the Mt. Jolmo Lungma area, southern Tibet, China, Scientia Sin., 16, 257–265, 1973.
Chen, W., Yang, T., Zhang, S., Yang, Z., Li, H., Wu, H., Zhang, J., Ma, Y., and Cai, F.: Paleomagnetic results from the Early Cretaceous Zenong Group volcanic rocks, Cuoqin, Tibet, and their paleogeographic implications, Gondwana Res., 22, 461–469, 2012.
Chen, Y., Courtillot, V., Cogne, J.-P., Besse, J., Yang, Z., and Enkin, R. J.: The configuration of Asia prior to the collision of India: Cretaceous paleomagnetic constraints, J. Geophys. Res., 98, 21927–21941, 1993.
Cogné, J.-P. and Humler, E.: Temporal variation of oceanic spreading and crustal production rates during the last 180 My, Earth Planet. Sc. Lett., 227, 427–439, 2004.
Cogné, J. P.: PaleoMac: A Macintosh™ application for treating paleomagnetic data and making plate reconstructions: Geochemistry, Geophysics, Geosystems, 4, 1007, https://doi.org/10.1029/2001GC000227, 2003.
Cogné, J. P. and Humler, E.: Trends and rhythms in global seafloor generation rate, Geochem. Geophy. Geosy., 7, Q03011, https://doi.org/10.1029/2005GC001148, 2006.
Copley, A., Avouac, J.-P., and Royer, J.-Y.: India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions, J. Geophys. Res., 15, B03410, https://doi.org/10.1029/2009JB006634, 2010.
Courtillot, V. E. and Renne, P. R.: On the ages of flood basalt events, Comptes Rendus Geoscience, 335, 113–140, 2003.
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G.: Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216, https://doi.org/10.1029/2008PA001683, 2009.
Cramer, B. S., Miller, K. G., Toggweiler, J. R., Barrett, P. J., and Wright, J. D.: Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history, J. Geophys. Res.-Oceans, 116, C12023, 2011.
D'Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D., and Lindinger, M.: Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction, Science, 282, 276–279, 1998.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421, 245–249, 2003.
DeConto, R. M., Pollard, D., Wilson, P. A., Palike, H., Lear, C. H., and Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652–656, 2008.
Dessert, C., Dupré, B., Francois, L. M., Schott, J. J., Gaillardet, J., Chakrapani, G., and Bajpai, S.: Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater, Earth Planet. Sc. Lett., 188, 459–474, 2001.
Dessert, C., Dupré, B., Gaillardet, J., Francois, L., and Allègre, C.: Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chem. Geol., 202, 257–273, 2003.
Donnadieu, Y., Goddéris, Y., Pierrehumbert, R., Dromart, G., Fluteau, F., and Jacob, R.: A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup, Geochem. Geophy. Geosy., 7, Q11019, https://doi.org/10.1029/2006GC001278, 2006.
Dupont-Nivet, G., Lippert, P. C., Van Hinsbergen, D. J. J., Meijers, M. J. M., and Kapp, P.: Palaeolatitude and age of the Indo–Asia collision: palaeomagnetic constraints, Geophys. J. Int., 182, 1189–1198, 2010.
Dupré, B., Dessert, C., Oliva, P., Godde\`{i}ris, Y., Viers, J., François, L., Millot, R., and Gaillardet, J.: Rivers, chemical weathering and Earth's climate, Comptes Rendus Geoscience, 335, 1141–1160, 2003.
Edmond, J. M.: Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones, Science, 258, 1594–1597, 1992.
Edmond, J. M. and Huh, Y.: Non-steady state carbonate recycling and implications for the evolution of atmospheric pCO2, Earth Planet. Sc. Lett., 216, 125–139, 2003.
Emeleus, C. H., Allwright, E. A., Kerr, A. C., and Williamson, I. T.: Red tuffs in the Palaeocene lava successions of the Inner Hebrides, Scottish J. Geol., 32, 83–89, 1996.
Engebretson, D. C., Kelley, K. P., Cashman, H. J., and Richards, M. A.: 180 million years of subduction, GSA Today, 2, 93–95, 1992.
Erba, E.: Calcareous nannofossils and Mesozoic Oceanic Anoxic Events, Mar. Micropaleontol., 52, 85–106, 2004.
Fedorov, A. V., Dekens, P. S., McCarthy, M., Ravelo, A. C., deMenocal, P. B., Barreiro, M., Pacanowski, R. C., and Philander, S. G.: The Pliocene paradox (Mechanisms for a permanent El Nino), Science, 312, 1485–1499, 2006.
Flower, B. P. and Kennett, J. P.: The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr. Palaeocl., 108, 537–555, 1994.
France-Lanord, C. and Derry, L. A.: Organic carbon burial forcing of the carbon cycle from Himalayan erosion, Nature, 390, 65–67, 1997.
Fuller, M., Ali, J. R., Moss, S. J., Frost, G. M., Richter, B., and Mahfi, A.: Paleomagnetism of Borneo, J. Asian Earth Sci., 17, 3–24, 1999.
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 3–30, 1999.
Ganerød, M., Smethurst, M. A., Torsvik, T. H., Prestvik, T., Rousse, S., McKenna, C., v. Hinsbergen, J. J., and Hendriks, B. W. H.: The North Atlantic Igneous Province reconstructed and its relation to the Plume Generation Zone: the Antrim Lava Group revisited, Geophys. J. Int., 182, 183–202, 2010.
Garzanti, E.: Comment on "When and where did India and Asia collide?" by Jonathan C. Aitchison, Jason R. Ali, and Aileen M. Davis, J. Geophys. Res., 113, B004411, https://doi.org/10.1029/2007JB005276, 2008.
Garzanti, E., Baud, A., and Mascle, G.: Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India), Geodinam. Acta, 1, 297–312, 1987.
Gerlach, T.: Volcanic versus anthropogenic carbon dioxide, EOS Trans. Am. Geophys. Union, 92, 201–202, 2011.
Goddéris, Y. and Joachimski, M. M.: Global change in the late Devonian: modeling the Frasnian-Famennian short-term carbon isotope isotope excursions, Paleogeogr. Paleocl., 202, 309–329, 2004.
Godderis, Y., Donnadieu, Y., Nedelec, A., Dupré, B., Dessert, C., Grard, A., Ramstein, G., and Francois, L. M.: The Sturtian "snowball" glaciation: fire and ice, Earth Planet. Sc. Lett., 211, 1–12, 2003.
Godderis, Y., Donnadieu, Y., de Vargas, C., Pierrehumbert, R. T., Dromart, G., and van de Schootbrugge, B.: Causal or casual link between the rise of nannoplankton calcification and a tectonically-driven massive decrease in Late Triassic atmospheric CO2?, Earth Planet. Sc. Lett., 267, 247–255, 2008.
Hall, R., vanHattum, M. W. A., and Spakman, W.: Impact of India–Asia collision on SE Asia: The record in Borneo, Tectonophysics, 451, 366–389, 2008.
Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., and Zachos, J. C.: Target atmospheric CO2: Where should humanity aim?, Open Atmos. Sci. J., 2, 217–231, 2008.
Harris, N.: Significance of weathering Himalayan metasedimentary rocks and leucogranites for the Sr isotope evolution of seawater during the early Miocene, Geology, 23, 795–798, 1995.
Hatzfeld, D. and Molnar, P.: Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications, Rev. Geophys., 48, RG2005, https://doi.org/10.1029/2009RG000304, 2010.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, 2006.
Hess, J., Bender, M. L., and Schilling, J.-G.: Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to Present, Science, 231, 979–984, 1986.
Hill, I. G., Worden, R. H., and Meighan, I. G.: Geochemical evolution of a palaeolaterite: the Interbasaltic Formation, Northern Ireland, Chem. Geol., 166, 65–84, 2000.
Hilting, A. K., Kump, L. R., and Bralower, T. J.: Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene–Eocene biological pump, Paleoceaeanography, 23, PA3222, https://doi.org/10.1029/2007PA001458, 2008.
Hoffman, P. F. and Schrag, D. P.: The snowball Earth hypothesis: testing the limits of global change, Terra Nova, 14, 129–155, 2002.
Jenkyns, H. C.: Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world, Philos. T. Roy. Soc. Lond. A, 361, 1885–1916, 2003.
Johnston, F. K. B., Turchyn, A. V., and Edmonds, M.: Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates, Earth Planet. Sc. Lett., 303, 143–152, 2011.
Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., Fennel, K., and Falkowski, P. G.: Biological overprint of the geological carbon cycle, Mar. Geol., 217, 323–338, 2005.
Kennett, J. P.: Cenozoic evolution of Antarctic glaciation, the circum-antarctic ocean and their impact on global paleoceanography, J. Geophys. Res., 82, 3843–3860, 1977.
Kent, D. V. and Irving, E.: Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent polar wander path for North America and implications for Cordilleran tectonics, J. Geophys. Res., 115, B10103, https://doi.org/10.1029/2009JB007205, 2010.
Kent, D. V. and Muttoni, G.: Equatorial convergence of India and early Cenozoic climate trends, P. Natl. Acad. Sci., 105, 16065–16070, 2008.
Kump, L. R.: Interpreting carbon-isotope excursions: Strangelove oceans, Geology, 19, 299–302, 1991.
Kump, L. R. and Arthur, M. A.: Global chemical erosion during the Cenozoic: Weatherability balances the budgets, in: Tectonic Uplift and Climate Change, edited by: Ruddiman, W. F., Plenum Press, New York, 399–426, 1997.
Kump, L. R. and Arthur, M. A.: Interpreting carbon-isotope excursions: carbonates and organic matter, Chem. Geol., 161, 181–198, 1999.
Kump, L. R., Brantley, S. L., and Arthur, M. A.: Chemical weathering, atmospheric CO2, and climate, Annu. Rev. Earth Planet. Sc., 28, 611–667, 2000.
Lippert, P. C., Zhao, X., Coe, R. S., and Lo, C.-H.: Palaeomagnetism and 40Ar/39Ar geochronology of upper Palaeogene volcanic rocks from Central Tibet: implications for the Central Asia inclination anomaly, the palaeolatitude of Tibet and post-50 Ma shortening within Asia, Geophys. J. Int., 184, 131–161, 2011.
Livermore, R., Hillenbrand, C. D., Meredith, M., and Eagles, G.: Drake Passage and Cenozoic climate: An open and shut case?, Geochem. Geophy. Geosy., 8, Q01005, https://doi.org/10.1029/2005GC001224, 2007.
Lunt, D. J., Foster, G. L., Haywood, A. M., and Stone, E. J.: Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels, Nature, 454, 1102–1105, 2008.
Manabe, S. and Bryan, K.: CO2-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications, J. Geophys. Res., 90, 11689–11707, 1985.
Marty, B. and Tolstikhin, I. N.: CO2 fluxes from mid-ocean ridges, arcs and plumes, Chem. Geol., 145, 233–248, 1998.
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Gellieni, G., and De Min, A.: Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province, Science, 284, 616–618, 1999.
McHone, J. G.: Volatile emissions from Central Atlantic Magmatic Province basalts: Mass assumptions and environmental consequences, in: The Central Atlantic Magnatic Province: Insights from Fragments of Pangea, Geophysical Monograph 136, edited by: Hames, W. E., McHone, J. G., Renne, P. R., and Ruppel, C., American Geophysical Union, Washington, DC, 241–254, 2003.
Miller, K. G., Fairbanks, R. G., and Mountain, G. S.: Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 2, 1–19, 1987.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F.: The Phanerozoic record of global sea-level change, Science, 310, 1293–1298, 2005a.
Miller, K. G., Wright, J. D., and Browning, J. V.: Visions of ice sheets in a greenhouse world, Mar. Geol., 217, 215–231, 2005b.
Milliman, J. D.: Fluvial sediment in coastal seas: flux and fate, Nat. Resour., 26, 12–22, 1990.
Misumi, K., Yamanaka, Y., and Tajika, E.: Numerical simulation of atmospheric and oceanic biogeochemical cycles to an episodic CO2 release event: Implications for the cause of mid-Cretaceous Ocean Anoxic Event-1a, Earth Planet. Sc. Lett., 286, 316–323, 2009.
Mitchell, N. C. and Lyle, M. W.: Patchy deposits of Cenozoic pelagic sediments in the central Pacific, Geology, 33, 49–52, 2005.
Mitchell, N. C., Lyle, M. W., Knappenberger, M. B., and Liberty, L. M.: Lower Miocene to Present stratigraphy of the equatorial Pacific sediment bulge and carbonate dissolution anomalies, Paleoceanography, 18, 1038, https://doi.org/10.1029/2002PA000828, 2003.
Moghadam, H. S., Whitechurch, H., Rahgoshay, M., and Monsef, I.: Significance of Nain-Baft ophiolitic belt (Iran): Short-lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone, C. R. Geoscience, 341, 1016–1028, 2009.
Molnar, P. and Stock, J. M.: Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics, Tectonics, 28, TC3001, https://doi.org/10.1029/2008TC002271, 2009.
Molnar, P. and Tapponnier, P.: Cenozoic tectonics of Asia: effects of a continental collision, Science, 189, 419–426, 1975.
Muller, R. D. and Roest, W. R.: Fracture zones in the North Atlantic from combined Geosat and Seasat data, J. Geophys. Res., 97, 3337–3350, 1992.
Muller, R. D., Royer, J. Y., and Lawver, L. A.: Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks, Geology, 21, 275–278, 1993.
Muller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., and Heine, C.: Long-term sea-level fluctuations driven by ocean basin dynamics, Science, 319, 1357–1362, 2008.
Muttoni, G. and Kent, D. V.: Widespread formation of cherts during the early Eocene climate optimum, Palaeogeogr. Palaeocl., 253, 348–362, 2007.
Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, M., and Berra, F.: The drift history of Iran from the Ordovician to the Triassic, Special Publications, Geol. Soc. London, 312, 7–29, 2009.
Ogg, J. G., Karl, S. M., and Behl, R. J.: Jurassic through Early Cretaceous sedimentation history of the Central Equatorial Pacific and of Sites 800 and 801, Proc. Ocean Drill. Prog., 129, 571–613, 1992.
Okay, A. I., Zattin, M., and Cavazza, W.: Apatite fission-track data for the Miocene Arabia–Eurasia collision, Geology, 38, 35–38, 2010.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene, Science, 309, 600–603, 2005.
Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W., Krishnan, S., and DeConto, R. M.: The role of carbon dioxide during the onset of Antarctic glaciation, Science, 334, 1261–1264, 2011.
Patriat, P. and Achache, J.: India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature, 311, 615–621, 1984.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 413, 481–488, 2001.
Pearson, P. N., vanDongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and Wade, B. S.: Stable warm tropical climate through the Eocene Epoch, Geology, 35, 211–214, 2007.
Quade, J., Roe, L., DeCelles, P. G., and Ojha, T. P.: The Late Neogene 87Sr/86Sr record of lowland Himalayan rivers, Science, 276, 1828–1831, 1997.
Rabinowitz, P. D., Coffin, M. F., and Falvey, D.: The separation of Madagascar and Africa, Science, 220, 67–69, 1983.
Ravelo, A. C.: Walker circulation and global warming: Lessons from the geologic past, Oceanography, 19, 114–122, 2006.
Raymo, M. E.: The Himalayas, organic carbon burial, and climate in the Miocene, Paleoceanography, 9, 399–404, 1994.
Raymo, M. E. and Ruddiman, W. F.: Tectonic forcing of late Cenozoic climate, Nature, 359, 117–122, 1992.
Raymo, M. E., Ruddiman, W. F., and Froelich, P. N.: Influence of late Cenozoic mountain building on ocean geochemical cycles, Geology, 16, 649–653, 1988.
Rea, D. K., Zachos, J. C., Owen, R. M., and Gingerich, P. D.: Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events, Palaeogeogr. Palaeocl., 79, 117–128, 1990.
Replumaz, A. and Tapponnier, P.: Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks, J. Geophys. Res., 108, 2285, https://doi.org/10.1029/2001JB000661, 2003.
Retallack, G. J.: Lateritization and bauxitization events, Econom. Geol., 105, 655–667, 2010.
Richter, B., Schmidtke, E., Fuller, M., Harbury, N., and Samsudin, P. D.: Paleomagnetism of Peninsular Malaysia, J. Asian Earth Sci., 17, 477–519, 1999.
Richter, F. M., Rowley, D. B., and DePaolo, D. J.: Sr isotope evolution of seawater: the role of tectonics, Earth Planet. Sc. Lett., 109, 11–23, 1992.
Rochette, P., Tamrat, E., Feraud, G., Pik, R., Courtillot, V., Ketefo, E., Coulon, C., Hoffmann, C., Vandamme, D., and Yirgu, G.: Magnetostratigraphy and timing of the Oligocene Ethiopian traps, Earth Planet. Res. Lett., 164, 497–510, 1998.
Rowley, D. B.: Rate of plate creation and destruction: 180 Ma to present, Geol. Soc. Am. Bull., 114, 927–933, 2002.
Rowley, D. B.: Extrapolating Oceanic Age Distributions: Lessons from the Pacific Region, J. Geol., 116, 587–598, 2008.
Royden, L. H., Burchfiel, B. C., and van der Hilst, R. D.: The geological evolution of the Tibetan Plateau, Science, 321, 1054–1058, 2008.
Royer, D. L.:, Fossil soils constrain ancient climate sensitivity, P. Natl. Acad. Sci., 107, 517–518, 2010.
Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J., and Kent, R. W.: The North Atlantic Igneous Province, in: Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Geophysical Monograph 100, edited by: Mahoney, J. J. and Coffin, M. F., American Geophysical Union, Washington, D.C., 45–93, 1997.
Schaller, M. F., Wright, J. D., and Kent, D. V.: Atmospheric pCO2 perturbations associated with the Central Atlantic Magmatic Province, Science, 331, 1404–1409, 2011.
Schaller, M. F., Wright, J. D., Kent, D. V., and Olsen, P. E.: Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2, Earth Planet. Sc. Lett., 323–324, 27–39, 2012.
Schmidtke, E., Fuller, M., and Haston, R.: Paleomagnetic data from Sarawak, Malaysian Borneo and the Late Mesozoic and Cenozoic tectonics of Sundaland, Tectonics, 9, 123–140, 1990.
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J.: Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100,000-year level, Geology, 38, 387–390, 2010.
Schrag, D. P.: Control of atmospheric CO2 and climate through Earth history, Geochim. Cosmochim. Acta, 66, p. A688, 2002.
Schrag, D. P., Berner, R. A., Hoffman, P. F., and Halverson, G. P.: On the initiation of a snowball Earth, Geochem. Geophy. Geosy., 3, https://doi.org/10.1029/2001GC000219, 2002.
Self, S., Thordarson, T., and Widdowson, M.: Gas fluxes from flood basalt eruptions, Elements, 1, 283–287, 2005.
Selverstone, J. and Gutzler, D. S.: Post-125 Ma carbon storage associated with continent-continent collision, Geology, 21, 885–888, 1993.
Seton, M., Gaina, C., Muller, R. D., and Heine, C.: Mid-Cretaceous seafloor spreading pulse: Fact or fiction?, Geology, 37, 687–690, 2009.
Shackleton, N. J.: The carbon isotope record of the Cenozoic: history of organic carbon burial and of oxygen in the ocean and atmosphere, Special Publications, Geol. Soc. London, 26, 423–434, 1987.
Smith, A. G. and Hallam, A.: The fit of the southern continents, Nature, 225, 139–144, 1970.
Smith, M. E., Carroll, A. R., and Mueller, E. R.: Elevated weathering rates in the Rocky Mountains during the Early Eocene Climatic Optimum, Nat. Geosci., 1, 370–374, 2008.
Srivastava, S. P. and Tapscott, C. R.: Plate kinematics of the North Atlantic, in: The Geology of North America, The Western North Atlantic Region, edited by: Tucholke, B. E. and Vogt, P. R., Geological Society of America, Boulder, 379–404, 1986.
Staudigel, H., Hart, S. R., Schmincke, H.-U., and Smith, B. M.: Cretaceous ocean crust at DSDP Sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing, Geochim. Cosmochim. Acta, 53, 3091–3094, 1989.
Staudigel, H., Hart, S. R., Schmincke, H.-U., and Smith, B. M.: Reply to "Global CO2 degassing and the carbon cycle": A Comment by R. A. Berner, Geochim. Cosmochim. Acta, 54, 2891, 1990a.
Staudigel, H., Hart, S. R., Schmincke, H.-U., and Smith, B. M.: Reply to R. A. Berner's response, Geochim. Cosmochim. Acta, 54, 2893, 1990b.
Stickley, C. E., Brinkhuis, H., Shellenberg, S. A., Sluijs, A., Rohl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G. L.: Timing and nature of the deepening of the Tasmanian Gateway, Paleoceanography, 19, PA4027, https://doi.org/4010.1029/2004PA001022, 2004.
Tejada, M. L. G., Suzuki, K., Kuroda, J., Coccioni, R., Mahoney, J. J., Ohkouchi, N., Sakamoto, T., and Tatsumi, Y.: Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event, Geology, 37, 855–858, 2009.
Tera, F., Brown, L., Morris, J., Sacks, I. S., Klein, J., and Middleton, R.: Sediment incorporation in island-arc magmas: Inferences from 10Be, Geochim. Cosmochim. Acta, 50, 535–550, 1986.
Thomas, D. J. and Bralower, T. J.: Sedimentary trace element constraints on the role of North Atlantic Igneous Province volcanism in late Paleocene-early Eocene environmental change, Mar. Geol., 217, 233–254, 2005.
Volk, T.: Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial, Nature, 337, 637–640, 1989.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric C02 changes, Am. Geophys. Union Monogr., 32, 99–110, 1985.
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback mechanism for the long-term stabilization of Earth's surface-temperature, J. Geophys. Res.-Atmos., 86, 9776–9782, 1981.
West, A. J., Bickle, M. J., Collins, R., and Brasington, J.: Small-catchment perspective on Himalayan weathering fluxes, Geology, 30, 355–358, 2002.
West, A. J., Galy, A., and Bickle, M.: Tectonic and climatic controls on silicate weathering, Earth Planet. Sc. Lett., 235, 211–228, 2005.
Wilkinson, B. H. and Walker, J. C. G.: Phanerozoic cycling of sedimentary carbonate, Am. J. Sci., 289, 525–548, 1989.
Wilson, P. A., Norris, R. D., and Cooper, M. J.: Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise, Geology, 30, 607–610, 2002.
Wright, J. D., Miller, K. G., and Fairbanks, R. G.: Early and Middle Miocene stable isotopes: Implications for deepwater circulation and climate, Paleoceanography, 7, 357–389, 1992.
Yang, Z. and Besse, J.: Paleomagnetic study of Permian and Mesozoic sedimentary rocks from Northern Thailand supports the extrusion model for Indochina, Earth Planet. Sc. Lett., 117, 525–552, 1993.
Yang, Z., Yin, J., Sun, Z., Otofuji, Y.-I., and Sato, K.: Discrepant Cretaceous paleomagnetic poles between Eastern China and Indochina: a consequence of the extrusion of Indochina, Tectonophysics, 334, 101–113, 2001.
Yin, A. and Harrison, T. M.: Geologic evolution of the Himalayan–Tibetan Orogen, Annu. Rev. Earth Planet. Sci., 28, 211–280, 2000.
You, Y., Huber, M., Muller, R. D., Poulsen, C. J., and Ribbe, J.: Simulation of the Middle Miocene Climate Optimum, Geophys. Res. Lett., 36, L04702, https://doi.org/10.1029/2008GL036571, 2009.
Zachos, J., Pagani, M. N., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to Present, Science, 292, 686–693, 2001.
Zanchi, A., Zanchetta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M., and Muttoni, G.: The Cimmerian evolution of the Nakhlak–Anarak area, Central Iran, and its bearing for the reconstruction of the history of the Eurasian margin, Special Publications, Geol. Soc. London, 312, 261–286, 2009.
Zhu, B., Kidd, W. S. F., Rowley, D. B., Currie, B. S., and Shafique, N.: Age of initiation of the India–Asia collision in the east-central Himalaya, J. Geol., 113, 265–285, 2005.
Special issue