Articles | Volume 9, issue 6
https://doi.org/10.5194/cp-9-2777-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-9-2777-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The East Asian winter monsoon variability in response to precession during the past 150 000 yr
M. Yamamoto
Faculty of Environmental Earth Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
H. Sai
Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo 060-0810, Japan
Present address: Hitachi Advanced Systems Corporation. Yokohama 244-0817, Japan
M.-T. Chen
Institute of Applied Geosciences, National Taiwan Ocean University, Keelung 20224, Taiwan
M. Zhao
Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266003, China
Related authors
Hana Ishii, Osamu Seki, Masanobu Yamamoto, and Bella Duncan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4281, https://doi.org/10.5194/egusphere-2025-4281, 2025
Short summary
Short summary
We explore the utility of the archaeal-derived lipid biomarker as paleoenvironmental proxies in the Southern Ocean. Based on a reanalysis of the Southern Ocean dataset, we propose a new indicator for reconstructing zonal water mass movements in the Southern Ocean and temperatures in the Antarctic Zone. Applying this method to late Pleistocene sediment cores validates its reliability, confirming a valuable new tool for reconstructing the paleoenvironment of the Southern Ocean.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Hana Ishii, Osamu Seki, Masanobu Yamamoto, and Bella Duncan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4281, https://doi.org/10.5194/egusphere-2025-4281, 2025
Short summary
Short summary
We explore the utility of the archaeal-derived lipid biomarker as paleoenvironmental proxies in the Southern Ocean. Based on a reanalysis of the Southern Ocean dataset, we propose a new indicator for reconstructing zonal water mass movements in the Southern Ocean and temperatures in the Antarctic Zone. Applying this method to late Pleistocene sediment cores validates its reliability, confirming a valuable new tool for reconstructing the paleoenvironment of the Southern Ocean.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Cited articles
Caley, T., Malaizé, B., Zaragosi, S., Rossignol, L., Bourget, J., Eynaud, F., Martinez, P., Giraudeau, J., Charlier, K., and Ellouz-Zimmermann, N.: New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon, Earth Planet. Sci. Lett., 308, 433–444, 2011.
Chen, M.-T. and Huang, C.-Y.: Ice-volume forcing of winter monsoon climate in the South China Sea, Paleoceanography, 13, 622–633, 1998.
Chen, M.-T., Beaufort, L., and the Shipboard Scientific Party of the IMAGES III/MD106-IPHIS Cruise (Leg II): Exploring Quaternary variability of the East Asian monsoon, Kuroshio Current, and the Western Pacific warm pool systems: high-resolution investigations of paleoceanography from the IMAGES III/MD106-IPHIS cruise, Terrest. Atmos. Ocean. Sci., 9, 129–142, 1998.
Chen, M.-T., Shiau, L.-J., Yu, P.-S., Chiu, T.-C., Chen, Y.-G., and Wei, K.-Y.: 500 000-Year records of carbonate, organic carbon, and foraminiferal sea surface temperature from the southeastern South China Sea (near Palawan Island), Palaeogeogr. Palaeocli. Palaeoecol., 197, 113–131, 2003.
Clemens, S. C. and Prell, W. L.: A 350,000 year summer-monsoon multi-proxy stack from the Own Ridge, Northern Arabian Sea, Mar. Geol., 201, 35–51, 2003.
Clemens, S. C., Prell, W. L., and Sun, Y.: Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ18O, Paleoceanography, 25, 1–19, 2010.
de Garidel-Thoron, T., Beaufort, L., Linsley, B. K., and Dannenmann, S.: Millennial-scale dynamics of the East Asian winter monsoon during the last 200,000 years, Paleoceanography, 16, 491–502, 2001.
de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L.: Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years, Nature, 433, 294–298, 2005.
Ding, Z., Liu, T., Putter, N. W., Yu, Z., Guo, Z., and Zhu, R.: Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years, Quaternary Res., 44, 149–159, 1995.
Feldman, G. C., Kuring, N., Ng, C., Esaias, W., McClain, C., Elrod, J., Maynard, N., and Endres, D.: Ocean color–availability of the global data set. Eos, Transactions, Am. Geophys. Union, 70, 634–641, 1989.
Hopmans, E. C., Schouten, S., Pancost, R., van der Meer, M. T. J., and Sinninghe Damsté, J. S.: Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry, Rapid Commun. Mass Spectrom., 14, 585–589, 2000.
Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic matter in sediments normalized on branched and isoprenoid tetraether lipids, Earth Planet. Sci. Lett., 224, 107–116, 2004.
Hu, J., Kawamura, H., Hong, H., and Qi, Y.: A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio Intrusion, J. Oceanogr., 56, 607–624, 2000.
Huang, C.-Y., Liew, P.-M., Zhao, M., Chang, T.-C., Kuo, C.-M., Chen, M.-T., Wang, C.-H., and Zheng, L.: Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 kyrs, Earth Planet. Sci. Lett., 146, 59–72, 1997a.
Huang, C.-Y., Wu, S.-F., Zhao, M., Chen, M.-T., Wang, C.-H., Tu, X., and Yuan, P. B.: Surface ocean and monsoon climate variability in the South China Sea since last glaciation, Mar. Micropaleontol., 32, 71–94, 1997b.
Huang, C. Y., Wang, C. C., and Zhao, M.: High-resolution carbonate stratigraphy of IMAGES core MD972151 from the South China Sea, Terrest. Atmos. Ocean. Sci., 10, 225–238, 1999.
Huang, C.-C., Chen, M.-T., Lee, M.-Y., Wei, K.-Y., and Huang, C.-Y.: Planktic foraminifer faunal sea surface temperature records of the past two glacial terminations in the South China Sea near Wan-An shallow (IMAGES core MD972151), West. Pacific Earth Sci., 2, 1–14, 2002.
Huang, E., Tian, J., and Steinke, S.: Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon, Quaternary Res., 75, 196–204, 2011.
Igarashi, Y. and Oba, T.: Fluctuations of monsoons and insolation in the northwest Pacific during the last 144 kyr from a high-resolution pollen analysis of the IMAGES core MD01-2421, Quaternary Sci. Rev., 25, 1447–1459, 2006.
Jia, G., Zhang, J., Chen, J., Peng, P., and Zhang, C. L.: Archaeal tetraether lipids record subsurface water temperature in the South China Sea, Organ. Geochem., 50, 68–77, 2012.
Jian, Z., Huang, B., Kuhnt, W., and Lin, H. L.: Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea. Quaternary Research, 55, 363–370, 2001.
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., and Watanabe, O.: Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years, Nature, 448, 912–917, 2007.
Kienast, M., Steinke, S., Stattegger, K., and Calvert, S. E.: Synchronous tropical South China Sea SST changes and Greenland warming during deglaciation, Science, 291, 2132–2134, 2001.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koc, N., Hopmans, E. C., and Sinninghe Damsté, J. S.: New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654, 2010.
Kutzbach, J.: Monsoon climate of the Early Holocene: Climate experiment with the Earth's orbital parameters for 9000 years ago, Science, 214, 59–61, 1981.
Lea, D. W., Pak, D. K., and Spero, H. J.: Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations, Science, 289, 1719–1724, 2000.
Lee, M.-Y., Wei, K.-Y., and Chen Y.-G.: High resolution oxygen isotope stratigraphy for the lat 150,000 years in the southern South China Sea: Core MD972151. Terrestrial, Atmos. Ocean. Sci., 10, 239–254, 1999.
Lee, T.-Q.: Last 160 ka paleomagnetic directional secular variation record from core MD972151, southern South China Sea. Terrestrial, Atmos. Ocean. Sci., 10, 255–264, 1999.
Li, D., Zhao, M., Tian, J., and Li, L.: Comparison and implication of TEX86 and U$^K_37'$ temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea, Palaeogeogr. Palaeocli. Palaeoecol., 376, 213–223, 2013.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Papleoceanography, 20, 1–17, 2005.
Lin, D.-C., Chen, M.-T., Yamamoto, M., and Yokoyama, Y.: Precisely dated AMS 14C marine cores reveal the complexity of millennial-scale Asian monsoon variability in the northern South China Sea (MD972146, MD972148), J. Asian Earth Sc., 69, 93–101, 2013.
Liu, K.-K., Chao, S.-Y., Shaw, P.-T., Gong, C.-C., Chen, C.-C., and Tang, T. Y.: Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study, Deep-Sea Res. I, 46, 1387–1412, 2002.
Liu, Q., Jiang, X., Xie, S. P., and Liu, W. T.: A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability, J. Geophys. Res., 109, C07012, https://doi.org/10.1029/2003JC002179, 2004.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., and Garcia, H. E.: World Ocean Atlas 2009, Volume 1: Temperature. In Levitus, S., Ed. NOAA Atlas NESDIS 68, US Government Printing Office, Washington, D.C., 184 pp., available at: ftp://ftp.nodc.noaa.gov/pub/WOA09/DOC/woa09 (last access: 23 October 2013), 2010.
Mark, D. F., Petraglia, M., Smith, V. C., Morgan, L. E., Barfod, D. N., Ellis, B. S., Pearce, N. J., Pal, J. N., and Korisettar, R.: A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: Forcing of Quaternary climate and implications for hominin occupation of India, Quaternary Chronol., in press, 2013.
Oppo, D. W. and Sun, Y.: Amplitude and timing of sea-surface temperature changes in the northern South China Sea: Dynamic link to the East Asian monsoon, Geology, 33, 785–788, 2005.
Paillard, D., Labeyrie, L., and Yion, P.: Macintosh program performs time-series analysis, EOS Trans. AGU 77, p. 379, 1996.
Pelejero, C. and Grimalt, J. O.: The correlation between U^K37 index and sea surface temperatures in the warm boundary: The South China Sea, Geochim. Cosmochim. Ac., 61, 4789–4797, 1997.
Pelejero, C., Grimalt, J. O., Heilig, S., Kienast, M., and Wang, L.: High-resolution U$^K_37'$ temperature reconstructions in the South China Sea over the past 220 kyr, Paleoceanography, 14, 224–231, 1999.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions, Geochim. Cosmochim. Ac., 52, 2303–2310, 1988.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 51, 1111–1150, 2009.
Sagawa, T., Yokoyama, Y., Ikehara, M., and Kuwae, M.: Shoaling of the western equatorial thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera, Palaeogeogr. Palaeocli. Palaeoecol., 346–347, 120–129, 2012.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S.: Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?, Earth Planet. Sci. Lett., 204, 265–274, 2002.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M., and Sinninghe Damsté, J. S.: Analytical methodology for TEX86 paleothermometry by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, Anal. Chem., 79, 2940–2944, 2007.
Shintani, T., Yamamoto, M., and Chen, M.-T.: Slow warming of the northern South China Sea during the last deglaciation, Terrest. Atmos. Ocean. Sci., 19, 341–346, 2008.
Shintani, T., Yamamoto, M., and Chen, M.-T.: Paleoenvironmental changes in the northern South China Sea over the past 28,000 years: a study of TEX86-derived sea surface temperatures and terrestrial biomarkers, J. Asian Earth Sci., 40, 1221–1229, 2011.
Steinke, S., Kienast,M., Groeneveld, J., Lin, J.-C., Chen, M.-T., and Rendle-Bühring, R.: Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality, Quaternary Sci. Rev., 27, 688–700, 2008.
Steinke, S., Mohtadi, M., Groeneveld, J., Lin, L.-C., Löwemark, L., Chen, M.-T., and Rendle-Bu'hring, R.: Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum: Implications for the East Asian winter monsoon development, Paleoceanography, 25, 1–15, 2010.
Tian, J., Huang, E., and Park, D. K.: East Asian monsoon variability over the last glacial cycle: Insights from a latitudinal sea-surface temperature gradient across the South China Sea, Palaeogeogr. Palaeocli. Palaeoecol., 292, 319–324, 2010.
Wang, B., Clemens, S. C., and Liu, P.: Contrasting the Indian and East Asian monsoons: implications on geologic timescales, Mar. Geol., 201, 5–21, 2003.
Wang, L. and Wang, P.: Late Quaternary paleoceanography of the South China Sea: Glacial–interglacial contrasts in an enclosed basin, Paleoceanography, 5, 77–90, 1990.
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J. O., Grootes, P. M., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U.: East Asia monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea, Mar. Geol., 156, 245–284, 1999.
Wang, L., Li, J., Lu, H., Gu, Z., Rioual, P., Hao, Q., Mackay, A. W., Jiang, W., Cai, B., Xu, B., Han, J., Chu, G.: The East Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon, Quaternary Sci. Rev., 32, 131–142, 2012.
Wang, P., Wang, L., Bian Y., and Jian, Z.: Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles, Mar. Geol., 127, 145–165, 1995.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China, Science, 294, 2345–2348, 2001.
Wang, Y. J., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z.: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, Nature, 451, 1090–1093, 2008.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S.: Occurrence and distribution of tetraether membrane in soils: Implications for the use of the BIT index and the TEX86 SST proxy, Org. Geochem., 37, 1680–1693, 2006.
Wuchter, C., Schouten, S., Coolen, M. J. L., and Sinninghe Damsté, J. S.: Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry, Paleoceanography, 19, PA4028, https://doi.org/10.1029/2004PA001041, 2004.
Wyrtki, K.: Physical oceanography of the southeast Asia waters. In Scientific Results of Maritime Investigations of the South China Sea and the Gulf of Thailand 1959–1961, Naga Rep. 2, Scripps Institute of Oceanography, La Jolla, California, USA, 1961.
Xiao, J., Porter, S. C., An, Z., Kumai, H., and Yoshikawa, S.: Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130,000 yr, Quaternary Res., 43, 22–29, 1995.
Xie, S.-P., Xie, Q., Wang, D., and Liu, W. T.: Summer upwelling in the South China Sea and its role in regional climate variations, J. Geophys. Res., 108, 3261, https://doi.org/10.1029/2003JC001867, 2003.
Yamamoto, C. M. and Polyak, L.: Changes in terrestrial organic matter input to the Mendeleev Ridge, western Arctic Ocean, during the Late Quaternary, Global Planet. Change, 68, 30–37, 2009.
Yamamoto, M.: Response of mid-latitude North Pacific surface temperatures to orbital forcing and linkage to the East Asian summer monsoon and tropical ocean-atmosphere interactions, J. Quaternary Sci., 24, 836–847, 2009.
Zhang, J., Bai, Y., Xu, S., Lei, X., and Jia, G.: Alkenone and tetraether lipids reflect different seasonal seawater temperatures in the coastal northern South China Sea, Org. Geochem., 58, 115–120, 2013.
Zhao, M., Huang, C.-Y., Wang, C.-C., and Wei, G.: A millennial-scale sea surface temperature record from the South China Sea (8° N) over the last 150 kyr: Monsoon and sea-level influence, Palaeogeogr. Palaeocli. Palaeoecol., 236, 39–55, 2006.
Special issue