Articles | Volume 9, issue 6
https://doi.org/10.5194/cp-9-2741-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-2741-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study
A. Mairesse
Université catholique de Louvain, Earth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Place Louis Pasteur, 3, 1348 Louvain-la-Neuve, Belgium
H. Goosse
Université catholique de Louvain, Earth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Place Louis Pasteur, 3, 1348 Louvain-la-Neuve, Belgium
P. Mathiot
British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
H. Wanner
Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
S. Dubinkina
Université catholique de Louvain, Earth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Place Louis Pasteur, 3, 1348 Louvain-la-Neuve, Belgium
Viewed
Total article views: 8,977 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Jul 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,659 | 6,058 | 260 | 8,977 | 200 | 230 |
- HTML: 2,659
- PDF: 6,058
- XML: 260
- Total: 8,977
- BibTeX: 200
- EndNote: 230
Total article views: 7,791 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Dec 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,040 | 5,513 | 238 | 7,791 | 186 | 223 |
- HTML: 2,040
- PDF: 5,513
- XML: 238
- Total: 7,791
- BibTeX: 186
- EndNote: 223
Total article views: 1,186 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Jul 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
619 | 545 | 22 | 1,186 | 14 | 7 |
- HTML: 619
- PDF: 545
- XML: 22
- Total: 1,186
- BibTeX: 14
- EndNote: 7
Cited
20 citations as recorded by crossref.
- Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia F. Tian et al. 10.1016/j.quascirev.2016.11.027
- Paleoclimate and weathering of the Tokaj (Hungary) loess–paleosol sequence A. Schatz et al. 10.1016/j.palaeo.2015.03.016
- On-line and off-line data assimilation in palaeoclimatology: a case study A. Matsikaris et al. 10.5194/cp-11-81-2015
- Reconstructing East African rainfall and Indian Ocean sea surface temperatures over the last centuries using data assimilation F. Klein & H. Goosse 10.1007/s00382-017-3853-0
- An Efficient Estimation of Time‐Varying Parameters of Dynamic Models by Combining Offline Batch Optimization and Online Data Assimilation Y. Sawada 10.1029/2021MS002882
- Comparison of Climate Model Simulations of the Younger Dryas Cold Event H. Renssen 10.3390/quat3040029
- Assimilating continental mean temperatures to reconstruct the climate of the late pre-industrial period A. Matsikaris et al. 10.1007/s00382-015-2785-9
- An empirical evaluation of bias correction methods for palaeoclimate simulations R. Beyer et al. 10.5194/cp-16-1493-2020
- Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene H. Meyer et al. 10.1038/ngeo2349
- Monopole Mode of Precipitation in East Asia Modulated by the South China Sea Over the Last Four Centuries F. Shi et al. 10.1029/2019GL085320
- DASH: a MATLAB toolbox for paleoclimate data assimilation J. King et al. 10.5194/gmd-16-5653-2023
- LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17) T. Bahadory & L. Tarasov 10.5194/gmd-11-3883-2018
- Multiple causes of the Younger Dryas cold period H. Renssen et al. 10.1038/ngeo2557
- Paleoclimate data assimilation: Its motivation, progress and prospects M. Fang & X. Li 10.1007/s11430-015-5432-6
- 古气候数据同化<bold>: </bold>缘起<bold>、</bold>进展与展望 苗. 方 & 新. 李 10.1360/N072015-00432
- Model–data comparison and data assimilation of mid-Holocene Arctic sea ice concentration F. Klein et al. 10.5194/cp-10-1145-2014
- Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions I. Hessler et al. 10.5194/cp-10-2237-2014
- A Systematic Comparison of Particle Filter and EnKF in Assimilating Time‐Averaged Observations H. Liu et al. 10.1002/2017JD026798
- The global hydroclimate response during the Younger Dryas event H. Renssen et al. 10.1016/j.quascirev.2018.05.033
- Climate‐driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga J. Assis et al. 10.1111/mec.12772
19 citations as recorded by crossref.
- Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia F. Tian et al. 10.1016/j.quascirev.2016.11.027
- Paleoclimate and weathering of the Tokaj (Hungary) loess–paleosol sequence A. Schatz et al. 10.1016/j.palaeo.2015.03.016
- On-line and off-line data assimilation in palaeoclimatology: a case study A. Matsikaris et al. 10.5194/cp-11-81-2015
- Reconstructing East African rainfall and Indian Ocean sea surface temperatures over the last centuries using data assimilation F. Klein & H. Goosse 10.1007/s00382-017-3853-0
- An Efficient Estimation of Time‐Varying Parameters of Dynamic Models by Combining Offline Batch Optimization and Online Data Assimilation Y. Sawada 10.1029/2021MS002882
- Comparison of Climate Model Simulations of the Younger Dryas Cold Event H. Renssen 10.3390/quat3040029
- Assimilating continental mean temperatures to reconstruct the climate of the late pre-industrial period A. Matsikaris et al. 10.1007/s00382-015-2785-9
- An empirical evaluation of bias correction methods for palaeoclimate simulations R. Beyer et al. 10.5194/cp-16-1493-2020
- Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene H. Meyer et al. 10.1038/ngeo2349
- Monopole Mode of Precipitation in East Asia Modulated by the South China Sea Over the Last Four Centuries F. Shi et al. 10.1029/2019GL085320
- DASH: a MATLAB toolbox for paleoclimate data assimilation J. King et al. 10.5194/gmd-16-5653-2023
- LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17) T. Bahadory & L. Tarasov 10.5194/gmd-11-3883-2018
- Multiple causes of the Younger Dryas cold period H. Renssen et al. 10.1038/ngeo2557
- Paleoclimate data assimilation: Its motivation, progress and prospects M. Fang & X. Li 10.1007/s11430-015-5432-6
- 古气候数据同化<bold>: </bold>缘起<bold>、</bold>进展与展望 苗. 方 & 新. 李 10.1360/N072015-00432
- Model–data comparison and data assimilation of mid-Holocene Arctic sea ice concentration F. Klein et al. 10.5194/cp-10-1145-2014
- Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions I. Hessler et al. 10.5194/cp-10-2237-2014
- A Systematic Comparison of Particle Filter and EnKF in Assimilating Time‐Averaged Observations H. Liu et al. 10.1002/2017JD026798
- The global hydroclimate response during the Younger Dryas event H. Renssen et al. 10.1016/j.quascirev.2018.05.033
Saved (final revised paper)
Saved (final revised paper)
Saved (preprint)
Latest update: 23 Nov 2024