Articles | Volume 9, issue 6
https://doi.org/10.5194/cp-9-2525-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-2525-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A brief history of ice core science over the last 50 yr
J. Jouzel
Laboratoire des Sciences de Climat et de l'Environnement/Institut Pierre Simon Laplace, CEA-CNRS-UVSQ – UMR8212, CEA Saclay, L'Orme des Merisiers, Bt. 701, 91191 Gif/Yvette, Cedex, France
Invited contribution by J. Jouzel, recipient of the EGS Milutin Milankovic Medal 1997.
Related authors
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016, https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
F. Guglielmo, C. Risi, C. Ottlé, V. Valdayskikh, T. Radchenko, O. Nekrasova, O. Cattani, O. Stukova, J. Jouzel, V. Zakharov, S. Dantec-Nédélec, and J. Ogée
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9393-2015, https://doi.org/10.5194/hessd-12-9393-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
We show that water stable isotopes help constraining key processes in the land surface model ORCHIDEE. We implemented 18O, 2H, δ18O and δD in soil and leaf water in the model, ran it and evaluated results on measured profiles of soil water isotopes ratios. Relevant features of δ18O profiles are relatively well simulated. We show the importance of infiltration pathway and vegetation/bare-soil cover in ORCHIDEE and to which extent we can determine the evaporation/evapotranspiration ratio.
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
V. Gryazin, C. Risi, J. Jouzel, N. Kurita, J. Worden, C. Frankenberg, V. Bastrikov, K. Gribanov, and O. Stukova
Atmos. Chem. Phys., 14, 9807–9830, https://doi.org/10.5194/acp-14-9807-2014, https://doi.org/10.5194/acp-14-9807-2014, 2014
N. V. Rokotyan, V. I. Zakharov, K. G. Gribanov, M. Schneider, F.-M. Bréon, J. Jouzel, R. Imasu, M. Werner, M. Butzin, C. Petri, T. Warneke, and J. Notholt
Atmos. Meas. Tech., 7, 2567–2580, https://doi.org/10.5194/amt-7-2567-2014, https://doi.org/10.5194/amt-7-2567-2014, 2014
H. C. Steen-Larsen, A. E. Sveinbjörnsdottir, A. J. Peters, V. Masson-Delmotte, M. P. Guishard, G. Hsiao, J. Jouzel, D. Noone, J. K. Warren, and J. W. C. White
Atmos. Chem. Phys., 14, 7741–7756, https://doi.org/10.5194/acp-14-7741-2014, https://doi.org/10.5194/acp-14-7741-2014, 2014
V. Bastrikov, H. C. Steen-Larsen, V. Masson-Delmotte, K. Gribanov, O. Cattani, J. Jouzel, and V. Zakharov
Atmos. Meas. Tech., 7, 1763–1776, https://doi.org/10.5194/amt-7-1763-2014, https://doi.org/10.5194/amt-7-1763-2014, 2014
K. Gribanov, J. Jouzel, V. Bastrikov, J.-L. Bonne, F.-M. Breon, M. Butzin, O. Cattani, V. Masson-Delmotte, N. Rokotyan, M. Werner, and V. Zakharov
Atmos. Chem. Phys., 14, 5943–5957, https://doi.org/10.5194/acp-14-5943-2014, https://doi.org/10.5194/acp-14-5943-2014, 2014
M. Butzin, M. Werner, V. Masson-Delmotte, C. Risi, C. Frankenberg, K. Gribanov, J. Jouzel, and V. I. Zakharov
Atmos. Chem. Phys., 14, 5853–5869, https://doi.org/10.5194/acp-14-5853-2014, https://doi.org/10.5194/acp-14-5853-2014, 2014
M. Pommier, J.-L. Lacour, C. Risi, F. M. Bréon, C. Clerbaux, P.-F. Coheur, K. Gribanov, D. Hurtmans, J. Jouzel, and V. Zakharov
Atmos. Meas. Tech., 7, 1581–1595, https://doi.org/10.5194/amt-7-1581-2014, https://doi.org/10.5194/amt-7-1581-2014, 2014
D. V. Alexandrov, J. Jouzel, I. Nizovtseva, and L. B. Ryashko
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-5659-2013, https://doi.org/10.5194/tcd-7-5659-2013, 2013
Revised manuscript not accepted
S. Hou, J. Chappellaz, D. Raynaud, V. Masson-Delmotte, J. Jouzel, P. Bousquet, and D. Hauglustaine
Clim. Past, 9, 2549–2554, https://doi.org/10.5194/cp-9-2549-2013, https://doi.org/10.5194/cp-9-2549-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, and F. Prié
Clim. Past, 9, 983–999, https://doi.org/10.5194/cp-9-983-2013, https://doi.org/10.5194/cp-9-983-2013, 2013
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016, https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
F. Guglielmo, C. Risi, C. Ottlé, V. Valdayskikh, T. Radchenko, O. Nekrasova, O. Cattani, O. Stukova, J. Jouzel, V. Zakharov, S. Dantec-Nédélec, and J. Ogée
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9393-2015, https://doi.org/10.5194/hessd-12-9393-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
We show that water stable isotopes help constraining key processes in the land surface model ORCHIDEE. We implemented 18O, 2H, δ18O and δD in soil and leaf water in the model, ran it and evaluated results on measured profiles of soil water isotopes ratios. Relevant features of δ18O profiles are relatively well simulated. We show the importance of infiltration pathway and vegetation/bare-soil cover in ORCHIDEE and to which extent we can determine the evaporation/evapotranspiration ratio.
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
V. Gryazin, C. Risi, J. Jouzel, N. Kurita, J. Worden, C. Frankenberg, V. Bastrikov, K. Gribanov, and O. Stukova
Atmos. Chem. Phys., 14, 9807–9830, https://doi.org/10.5194/acp-14-9807-2014, https://doi.org/10.5194/acp-14-9807-2014, 2014
N. V. Rokotyan, V. I. Zakharov, K. G. Gribanov, M. Schneider, F.-M. Bréon, J. Jouzel, R. Imasu, M. Werner, M. Butzin, C. Petri, T. Warneke, and J. Notholt
Atmos. Meas. Tech., 7, 2567–2580, https://doi.org/10.5194/amt-7-2567-2014, https://doi.org/10.5194/amt-7-2567-2014, 2014
H. C. Steen-Larsen, A. E. Sveinbjörnsdottir, A. J. Peters, V. Masson-Delmotte, M. P. Guishard, G. Hsiao, J. Jouzel, D. Noone, J. K. Warren, and J. W. C. White
Atmos. Chem. Phys., 14, 7741–7756, https://doi.org/10.5194/acp-14-7741-2014, https://doi.org/10.5194/acp-14-7741-2014, 2014
V. Bastrikov, H. C. Steen-Larsen, V. Masson-Delmotte, K. Gribanov, O. Cattani, J. Jouzel, and V. Zakharov
Atmos. Meas. Tech., 7, 1763–1776, https://doi.org/10.5194/amt-7-1763-2014, https://doi.org/10.5194/amt-7-1763-2014, 2014
K. Gribanov, J. Jouzel, V. Bastrikov, J.-L. Bonne, F.-M. Breon, M. Butzin, O. Cattani, V. Masson-Delmotte, N. Rokotyan, M. Werner, and V. Zakharov
Atmos. Chem. Phys., 14, 5943–5957, https://doi.org/10.5194/acp-14-5943-2014, https://doi.org/10.5194/acp-14-5943-2014, 2014
M. Butzin, M. Werner, V. Masson-Delmotte, C. Risi, C. Frankenberg, K. Gribanov, J. Jouzel, and V. I. Zakharov
Atmos. Chem. Phys., 14, 5853–5869, https://doi.org/10.5194/acp-14-5853-2014, https://doi.org/10.5194/acp-14-5853-2014, 2014
M. Pommier, J.-L. Lacour, C. Risi, F. M. Bréon, C. Clerbaux, P.-F. Coheur, K. Gribanov, D. Hurtmans, J. Jouzel, and V. Zakharov
Atmos. Meas. Tech., 7, 1581–1595, https://doi.org/10.5194/amt-7-1581-2014, https://doi.org/10.5194/amt-7-1581-2014, 2014
D. V. Alexandrov, J. Jouzel, I. Nizovtseva, and L. B. Ryashko
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-5659-2013, https://doi.org/10.5194/tcd-7-5659-2013, 2013
Revised manuscript not accepted
S. Hou, J. Chappellaz, D. Raynaud, V. Masson-Delmotte, J. Jouzel, P. Bousquet, and D. Hauglustaine
Clim. Past, 9, 2549–2554, https://doi.org/10.5194/cp-9-2549-2013, https://doi.org/10.5194/cp-9-2549-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, and F. Prié
Clim. Past, 9, 983–999, https://doi.org/10.5194/cp-9-983-2013, https://doi.org/10.5194/cp-9-983-2013, 2013
Related subject area
Subject: Greenhouse Gases | Archive: Ice Cores | Timescale: Pleistocene
Carbonyl sulfide measurements from a South Pole ice core and implications for atmospheric variability since the last glacial period
Critical porosity of gas enclosure in polar firn independent of climate
Murat Aydin, Melinda R. Nicewonger, Gregory L. Britten, Dominic Winski, Mary Whelan, John D. Patterson, Erich Osterberg, Christopher F. Lee, Tara Harder, Kyle J. Callahan, David Ferris, and Eric S. Saltzman
Clim. Past, 20, 1885–1917, https://doi.org/10.5194/cp-20-1885-2024, https://doi.org/10.5194/cp-20-1885-2024, 2024
Short summary
Short summary
We present a new ice core carbonyl sulfide (COS) record from the South Pole, Antarctica, yielding a 52 000-year atmospheric record after correction for production in the ice sheet. The results display a large increase in atmospheric COS concurrent with the last deglaciation. The deglacial COS rise results from an overall strengthening of atmospheric COS sources, implying a large increase in ocean sulfur gas emissions. Atmospheric sulfur gases have negative climate feedbacks.
Christoph Florian Schaller, Johannes Freitag, and Olaf Eisen
Clim. Past, 13, 1685–1693, https://doi.org/10.5194/cp-13-1685-2017, https://doi.org/10.5194/cp-13-1685-2017, 2017
Short summary
Short summary
In order to interpret the paleoclimatic record stored in the air enclosed in polar ice cores, it is crucial to understand the fundamental lock-in process. In our study, we present the first extensive data set of direct firn microstructure measurements and use it to show that the critical porosity of gas enclosure is independent of the climatic site conditions (such as temperature and accumulation rate). This leads to significant changes in dating and interpretation of ice-core gas records.
Cited articles
Ahn, J. and Brook, E. J.: Atmospheric CO2 and climate on millennial time scales during the last glacial period, Science, 322, 83–85, https://doi.org/10.1126/science.1160832, 2008.
Alley, R. B.: The Two-Mile Time Machine: Ice Core, Abrupt Climate Change and Our Future, Princeton University Press, Princeton, 2000.
Alley, R. B., Meese, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A., and Zielinski, G. A.: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event, Nature, 362, 527–529, 1993.
Alley, R. B., Shuman, C. A., Meese, D. A., Gow, A. J., Taylor, K. C., Cuffey, K. M., Fitzpatrick, J. J., Grootes, P. M., Zielinski, G. A., Ram, M., Spinelli, G., and Elder, B.: Visualstratigraphic dating of the GISP2 ice core: basic, reproducibility, and application, J. Geophys. Res., 102, 26367–26381, 1997.
Aristarain, A., Jouzel, J., and Pourchet, M.: Past Antarctic Peninsula Climate (1850–1980) deduced from an ice core isotope record, Climatic Change, 8, 69–90, 1986.
Aristarain, A., Jouzel, J., and Lorius, C.: A 400 years isotope record of the Antarctic Peninsula climate, Geophys. Res. Lett., 17, 2369–2372, 1990.
Arnaud, L., Barnola, J.-M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido University Press, Sapporo, 285–305, 2000.
Barnola, J.-M., Raynaud, D., Korotkevich, Y. N., and Lorius, C.: Vostok ice-core provides 160,000 yr record of atmospheric CO2, Nature, 329, 408–414, 1987.
Barnola, J. M., Pimienta, P., Raynaud, D., and Korotkevich, Y. S.: CO2 climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating, Tellus B, 43, 83–91, 1991.
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013.
Bender, M. L.: Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth Planet. Sc. Lett., 204, 275–289, 2002.
Bender, M. L., Labeyrie, L., Raynaud, D., and Lorius, C.: Isotopic composition of atmospheric O2 in ice linked with deglaciation and global primary productivity, Nature, 318, 349–352, 1985.
Bender, M. L., Sowers, T., and Labeyrie, L.: The Dole effect and its variations during the last 130 000 years as measured in the Vostok ice core, Global Biogeochem. Cy., 8, 363–376, 1994a.
Bender, M. L., Sowers, T., Dickson, M. L., Orchado, J., Grootes, P., Mayewski, P. A., and Meese, D. A.: Climate connection between Greenland and Antarctica during the last 100 000 years, Nature, 372, 663–666, 1994b.
Bender, M. L., Malaizé, B., Orchado, J., Sowers, T., and Jouzel, J.: High precision correlations of Greenland and Antarctic ice core records over the last 100 kyr, in: Mechanisms of Global Climate Change at Millenial Timescales, Geophysical Monograph, 112, edited by: Clark, P. U., Webb, R. S., and Keigwin, L. D., AGU, Washington, D.C., 149–164, https://doi.org/10.1029/GM112p0149, 1999.
Blunier, T. and Brook, E. J.: Timing of millenial-scale climate change in Antarctica and Greenland during the Last Glacial Period, Science, 291, 109–112, 2001.
Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T., Raynaud, D., Jouzel, J., Clausen, H. B., Hammer, C. U., and Johnsen, S. J.: Asynchrony of Antarctic andGreenland climate change during the last glacial period, Nature, 394, 739–743, 1998.
Blunier, T., Barnett, B., Bender, M. L., and Hendricks, M. B.: Biological oxygen productivity during the last 60 000 years from triple oxygen isotope measurements, Global Biogeochem. Cy., 16, 1029, https://doi.org/10.1029/2001GB001460, 2002.
Blunier, T., Schwander, J., Chappellaz, J., and Parrenin, F.: What was the surface temperature in central Antarctica during the last glacial maximum ?, Earth Planet. Sc. Lett., 218, 379–388, 2004.
Bock, M., Schmitt, J., Moeller, L., Spahni, R., Blunier, T., and Fischer, H.: Hydrogen isotopes preclude marine hydrate CH4 emissions at the onset of Dansgaard–Oeschger events, Science, 328, 1686–1689, https://doi.org/10.1126/science.1187651, 2010.
Bouttes, N., Paillard, D., Roche, D. M., Brovkin, D. M., and Bopp, L.: Last Glacial Maximum CO2 and δ13C successfully reconciled, Geophys. Res. Lett., 38, L02705, https://doi.org/10.1029/2010GL044499, 2011.
Broecker, W. S.: Paleocean circulation during the last deglaciation: a bipolar seesaw?, Paleoceanography, 13, 119–121, 1998.
Broecker, W. S., Peteet, D. M., and Rind, D.: Does the ocean–atmosphere system have more than one stable mode of operation?, Nature, 315, 21–26, https://doi.org/10.1038/315021a0, 1985.
Brook, E. J., Sowers, T., and Orchardo, J.: Rapid variations in atmospheric methane concentration during the past 110 000 years, Science, 273, 1087–1091, 1996.
Brook, E. J., Wolff, E., Dahl-Jensen, D., Fischer, H., and Steig, E.: The future of ice coring, International Partnership in Ice Core Sciences (IPICS), PAGES News, 14, 6–10, 2006.
Caillon, N., Severinghaus, J. P., Barnola, J. M., Chappellaz, J. C., Jouzel, J., and Parrenin, F.: Estimation of temperature change and of gas age–ice age difference, 108 kyr BP, at Vostok, Antarctica, J. Geophys. Res., 106, 31893–31901, 2001.
Caillon, N., Severinghaus, J. P., Jouzel, J. P., Barnola, J. M., Kang, J., and Lipenkov, V. Y.: Timing of atmospheric CO2 and Antarctic temperature changes across termination III, Science, 299, 1728–1731, 2003.
Capron, E., Landais, A., Chappellaz, J., Schilt, A., Buiron, D., Dahl-Jensen, D., Johnsen, S. J., Jouzel, J., Lemieux-Dudon, B., Loulergue, L., Leuenberger, M., Masson-Delmotte, V., Meyer, H., Oerter, H., and Stenni, B.: Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period, Clim. Past, 6, 345–365, https://doi.org/10.5194/cp-6-345-2010, 2010.
Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: Ice-core record of atmospheric methane over the past 160 000 years, Nature, 345, 127–131, 1990.
Chappellaz, J., Blunier, T., Barnola, J. M., Raynaud, D., Schwander, J., and Stauffer, B.: Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP, Nature, 366, 443–445, 1993.
Chappellaz, J., Brook, E., Blunier, T. and Malaizé B.: CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores, J. Geophys. Res., 102, 26547–26557, 1997.
Chappellaz, J., Alemany, O., Romanini, D., and Kerstel, E.: The IPICS "oldest ice" challenge: a new technology to qualify potential sites, Ice Snow, 4, 57–64, 2012.
Ciais, P. and Jouzel, J.: Deuterium and oxygen 18 in precipitation: an isotopic model including mixed cloud processes, J. Geophys. Res., 99, 16793–16803, 1994.
Ciais, P., Petit, J. R., Jouzel, J., Lorius, C., Barkov, N. I., Lipenkov, V., and Nicolaïev, V.: Evidence for an early Holocene climatic optimum in the Antarctic deep ice core record, Clim. Dynam., 6, 169–177, 1992.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703, 1961.
Cuffey, K. M. and Vimeux, F.: Covariation of carbon dioxyde and temperature from the Vostok ice core after deuterium-excess correction, Nature, 421, 523–527, 2001.
Cuffey, K. M., Clow, G. D., Alley, R. B., Stuiver, M., Waddington, E. D., and Saltus, R. W.: Large Arctic temperature change at the Winconsin-Holocene glacial transition, Science, 270, 455–458, 1995.
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., and Balling, N.: Past temperatures directly from the Greenland ice sheet, Science, 282, 268–271, 1998.
Dällenbach, A., Blunier, T., Flückiger, J., Stauffer, B., Chappellaz, J., and Raynaud, D.: Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene, Geophys. Res. Lett., 27, 1005–1008, 2000.
Dansgaard, W.: The abundance of 18O in atmospheric water and water vapour, Tellus, 5, 461–469, 1953.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dansgaard, W.: Frozen Annals, Niels Bohr Institute, Copenhagen, Denmark, 2004.
Dansgaard, W., Johnsen, S. J., Moller, J., and Langway, C. C. J.: One thousand centuries of climatic record from Camp Century on the Greenland ice sheet, Science, 166, 377–381, 1969.
Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S. J., Krinstindottir, P., and Reeh, N.: A new Greenland deep ice core, Science, 218, 1273–1277, 1982.
Dansgaard, W., Johnsen, S., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N., Hammer, C. U., and Oeschger, H.: North Atlantic climatic oscillations revealed by deep Greenland ice cores, in: Climate Processes and Climate Sensitivity, edited by: Hansen, J. E. and Takahashi, T., Am. Geophys. Union, Washington, D.C., 288–298, https://doi.org/10.1029/GM029p0288, 1984.
Dansgaard, W., White, J. W. C., and Johnsen, S. J.: The abrupt termination of the Younger Dryas, Nature, 339, 532–534, 1989.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gunderstrup, N. S., Hammer, C. U., Steffensen, J. P., Sveinbjörnsdottir, A., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Delmas, R. J., Ascensio, J. M., and Legrand, M.: Polar ice evidence that atmospheric CO2 20 000 yr BP was 50 % of present, Nature, 284, 155–157, 1980.
Delmotte, M., Chappellaz, J., Brook, E., Yiou, P., Barnola, J. M., Goujon, C., Raynaud, D., and Lipenkov, V. I.: Atmospheric methane during the last four glacial–interglacial cycles: rapid changes and their link with Antarctic temperature, J. Geophys. Res., 109, D12104, https://doi.org/10.1029/2003JD004417, 2004.
Dreyfus, G. B., Parrenin, F., Lemieux-Dudon, B., Durand, G., Masson-Delmotte, V., Jouzel, J., Barnola, J.-M., Panno, L., Spahni, R., Tisserand, A., Siegenthaler, U., and Leuenberger, M.: Anomalous flow below 2700 m in the EPICA Dome C ice core detected using δ18O of atmospheric oxygen measurements, Clim. Past, 3, 341–353, https://doi.org/10.5194/cp-3-341-2007, 2007.
Dunbar, N. W., McIntosh, W. C., and Esser, R. P.: Physical setting and tephrochronology of the summit caldera ice record at Mount Moulton, West Antarctica, GSA Bull., 120, 796–812, 2008.
Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M., Leuenberger, M., Joos, F., Fischer, H., and Stocker, T. F.: Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core, Nature, 461, 507–510, https://doi.org/10.1038/nature08393, 2009.
EPICA Community Members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, 2004.
EPICA Community Members: Interhemispheric coupling of millenial scale variability during the last glacial, Nature, 444, 195–198, 2006.
Epstein, S., Sharp, R. P., and Gow, A. J.: Antarctic ice sheet: stable isotope analyses of Byrd station cores and interhemispheric climatic implications, Science, 16, 1570–1572, 1970.
Ferretti, D. F., Miller, J. B., White, J. W. C., Etheridge, D. M., Lassey, K. R., Lowe, D. C., MacFarling Meure, C. M., Dreier, M. F., Trudinger, C. M., van Ommen, T. D., and Langenfelds, R. L.: Unexpected changes to the global methane budget over the past 2000 years, Science, 309, 1714–1717, 2005.
Fischer, H., Wahlen, M., Smith, J., Mastroianni, D., and Deck, B.: Ice core records of atmospheric CO2 around the last three glacial terminations, Science, 283, 1712–1714, 1999.
Fischer, H., Behrens, M., Bock, M., Richter, U., Schmitt, J., Loulergue, L., Chappellaz, J., Spahni, R., Blunier, T., Leuenberger, M., and Stocker, T. F.: Changing boreal methane sources and constant biomass burning during the last termination, Nature, 452, 864–867, https://doi.org/10.1038/nature06825, 2008.
Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., van Ommen, T., and Wilhelms, F.: Where to find 1.5 million yr old ice for the IPICS "Oldest Ice" ice core, Clim. Past Discuss., 9, 2771–2815, https://doi.org/10.5194/cpd-9-2771-2013, 2013.
Fisher, D. A., Koerner, R. M., Paterson, W. S. B., Dansgaard, W., Gundestrup, N., and Reeh, N.: Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles, Nature, 301, 205–209, 1983.
Fisher, D. A., Koerner, R. M., Bourgeois, J. C., Zielinski, G., Wake, C., Hammer, C. U., Clausen, H. B., Gundestrup, N., Johnsen, S., Goto-Azuma, K., Hondoh, T., Blake, E., Gerasimoff, M.: Penny Ice Cap, Baffin Island, Canada and the Wisconsinan Foxe Dome connection: two states of Hudson Bay ice cover, Science, 279, 692–695, 1998.
Fisher, D., Zheng, J., Burgess, D., Zdanowicz, C., Kinnard, C., Sharp, M., and Bourgeois, J.: Recent melt rates of Canadian arctic ice caps are the highest in four millennia, Global Planet. Change, https://doi.org/10.1016/j.gloplacha.2011.06.005, in press, 2011.
Flückiger, J., Dällenbach, A., Blunier, T., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J. M.: Variations in atmospheric N2O concentration during abrupt climatic changes, Science, 285, 227–230, 1999.
Fuchs, A., and Leuenberger, M. C.: δ18O of atmospheric oxygen measured on the GRIP ice core document stratigraphic disturbances in the lowest 10 % of the core, Geophys. Res. Lett., 23, 1049–1052, 1996.
Genthon, C., Barnola, J. M., Raynaud, D., Lorius, C., Jouzel, J., Barkov, N. I., Korotkevitch, Y. S., and Kotlyakov, V. M.: Vostok ice core: the climate response to and orbital forcing changes over the last climatic cycle (160 000 years), Nature, 329, 414–418, 1987.
Gow, A. J. and Engelhart, H.: Preliminary analysis of ice core from Siple Dome, West Antarctica, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido University Press, Sapporo, 64–82, 2000.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J., and Jouzel, J.: Comparison of the oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, 1993.
Grootes, P. M., Steig, E. J., Stuiver, M., Waddington, E. D., and Morse, D. L.: A new ice core record from Taylor Dome, Antarctica, EOS Transactions, 75, 225, 1994.
Haan, D. and Raynaud, D.: Ice core record of CO variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice, Tellus B, 50, 253–262, 1998.
Haan, D., Martinerie, P., and Raynaud, D.: Ice core data of atmospheric carbon monoxide over Antarctica and Greenland during the last 200 years, Geophys. Res. Lett., 23, 2235–2238, 1996.
Hamley, T. C., Morgan, V. I., Thwaites, R. J., and Gao, X. Q.: An ice-core drilling site at Law Dome summit, Wilkes Land, Antarctica, ANARE Research Notes 37, AAS Projects 15, Information Services Section, Antarctic Division, Dept. of Science and Technology, Kingston, Tasmania, Australia, 34 pp., 1986.
Hammer, C. U., Clausen, H. B., and Tauber, H.: Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale, Radiocarbon, 28, 284–291, 1986.
Hansen, L. B. and Langway Jr., C. C.: Deep core drilling in ice and core analysis at Camp Century, Greenland, 1961–1966, Antarct. J. US, 207–208, 1966.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's orbit: pacemaker of the ice ages, Science, 194, 1121–1132, 1976.
Headly, M. A. and Severinghaus, J.: A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature, J. Geophys. Res., 112, D19105, https://doi.org/10.1029/2006JD008317, 2007.
Heuberger, J. C.: Groenland, glaciology, Forages sur I'inlandis, Hermann and Cie, Paris, 1, 63–84, 1954.
Hoffmann, G. and Heimann, M.: Water tracers in the ECHAM general circulation model, in: Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, International Atomic Energy Agency, Vienna, 3–14, 1993.
Hoffmann, G., Werner, M., and Heimann, M.:Water isotope module of the ECHAM Atmospheric General Circulation Model: a study on time scales from days to several years, J. Geophys. Res., 103, 16871–16896, 1998.
Huber, C., Leuenberger, M., Spahni, R., Flückiger, J., Schwander, J., Stocker, T. F., Johnsen, S., Landais, A., and Jouzel, J.: Isotope calibrated Greenland temperature record over marine isotope stage 3 and its relation to CH4, Earth Planet. Sc. Lett., 243, 504–519, 2006.
Indermühle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B.: Holocene carbon cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 398, 121–126, https://doi.org/10.1038/18158, 1999.
IPCC: Summary for Policymakers, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA.
IPICS white paper: The oldest ice core: A 1.5 million year record of climate and greenhouse gases from Antarctica, Science and outline implementation plan, http://www.pages-igbp.org/ipics/ (last access: November 2013), 2008.
Johnsen, S. J.: Stable isotope homogenization of polar firn and ice, Proc. Symp. on Isotopes and Impurities in Snow and Ice, I.U.G.G. XVI, General Assembly, Grenoble August September 1975, Washington, 210–219, 1977.
Johnsen, S. J., Dansgaard, W., Clausen, H. B., and Langway, C. C.: Oxygen isotope profiles through the Antarctic and Greenland ice sheets, Nature, 235, 429–434, 1972.
Johnsen, S. J., Dansgaard, W., and White, J. W. C.: The origin of Arctic precipitation under present and glacial conditions, Tellus, 41, 452–469, 1989.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gunderstrup, N. S., Hammer, C. U., Iverssen, P., Jouzel, J., Stauffer, B., and Steffensen, J. P.: Irregular glacial interstadials recorded in a new Greenland ice core, Nature, 359, 311–313, 1992.
Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles, Tellus B, 47, 624–629, 1995.
Johnsen, S. J., Clausen, H. B., Cuffey, K. M., Hoffmann, G., Schwander, J., and Creyts, T.: Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion, in: Physics of Ice Core Records, 159, edited by: Hondoh, T., Hokkaido University Press, Sapporo, 121–140, 2000.
Joussaume, S., Jouzel, J., and Sadourny, R.: A general circulation model of water isotope cycles in the atmosphere, Nature, 311, 24–29, 1984.
Jouzel, J.: Water stable isotopes: atmospheric composition and applications in polar ice core studies, in: Handbook of Geochemistry, Elsevier Ltd, 2013.
Jouzel, J. and Masson-Delmotte, V.: Paleoclimates: what do we learn from ice cores?, Climatic Change, 1, 654–669, 2010a.
Jouzel, J. and Masson-Delmotte, V.: Deep ice cores: the need for going back in time, Quaternary Sci. Rev., 29, 3683–3689, 2010b.
Jouzel, J. and Merlivat, L.: Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation, J. Geophys. Res., 89, 11749–11757, 1984.
Jouzel, J. and Souchez, R. A.: Melting refreezing at the glacier and the isotopic composition of the ice, J. Glaciol., 28, 34–42, 1982.
Jouzel, J., Merlivat, L., and Lorius, C.: Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum, Nature, 299, 688–691, 1982.
Jouzel, J., Russell, G. L., Suozzo, R. J., Koster, R. D., White, J. W. C., and Broecker, W. S.: Simulationsof the HDO and H218O atmospheric cycles using the NASA/GISS general circulation model: the seasonal cycle for present-day conditions, J. Geophys. Res., 92, 14739–14760, 1987a.
Jouzel, J., Lorius, C., Petit, J. R., Genthon, C., Barkov, N. I., Kotlyakov, V. M., and Petrov, V. M.: Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160 000 years), Nature, 329, 402–408, 1987b.
Jouzel, J., Barkov, N. I., Barnola, J. M., Bender, M., Chappelaz, J., Genthon, C., Kotlyakov, V. M., Lipenkov, V., Lorius, C., Petit, J. R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P.: Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period, Nature, 364, 407–412, 1993.
Jouzel, J., Lorius, C., Johnsen, S. J., and Grootes, P.: Climate instabilities: Greenland and Antarctic records, C. R. Acad. Sci. Paris, 319, 65–77, 1994.
Jouzel, J., Vaikmae, R., Petit, J. R., Martin, M., Duclos, Y., Stievenard, M., Lorius, C., Toots, M., Mélières, M. A., Burckle, L. H., Barkov, N. I., and Kotlyakov, V. M.: The two-step shape and timing of the last deglaciation in Antarctica, Clim. Dynam., 11, 151–161, 1995.
Jouzel, J., Waelbroeck, C., Malaizé, B., Bender, M., Petit, J. R., Barkov, N. I., Barnola, J. M., King, T., Kotlyakov, V. M., Lipenkov, V., Lorius, C., Raynaud, D., Ritz, C., and Sowers, T.: Climatic interpretation of the recently extended Vostok ice records, Clim. Dynam., 12, 513–521, 1996.
Jouzel, J., Petit, J. R., Souchez, R., Barkov, N. I., Lipenkov, V. Y., Raynaud, D., Stievenard, M., Vassiliev, N. I., Verbeke, V., and Vimeux, F.: Evidence of more than 200 m thick of lake ice above the subglacial lake Vostok, Central East Antarctica, Science, 286, 2138–2141, 1999.
Jouzel, J., Hoffmann, G., Parrenin, F., and Waelbroeck, C.: Atmospheric oxygen 18 and sealevel changes, Quaternary Sci. Rev., 21, 1–3, 2002.
Jouzel, J., Vimeux, F., Caillon, N., Delaygue, G., Hoffmann, G., Masson, V., and Parrenin, F.: Magnitude of the isotope/temperature scaling for interpretation of central Antarctic ice cores, J. Geophys. Res., 108, 4361, https://doi.org/10.1029/2002JD002677, 2003.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Nouet, J., Johnsen, S. J., Leuenberger, M., Oerter, H., Parrenin, F., Raisbeck, G., Schwander, J., Souchez, R., Selmo, E., Stenni, B., Stocker, T., and Werner, M.: Orbital and millenial antarctic climate variability over the last 800 000 years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007a.
Jouzel, J., Stiévenard, M., Johnsen, S. J., Fuhrer, K., Landais, A., Masson-Delmotte, V., Sveinbjörnsdottir, A. E., Vimeux, F., and White, J. W. C.: The GRIP deuterium-excess record, Quaternary Sci. Rev., 26, 1–17, 2007b.
Jouzel, J., Lorius, C., and Raynaud, D.: The White Planet, Princeton University Press, 306 pp., 2013.
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., and Watanabe, O.: Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360 000 years, Nature, 912–916, https://doi.org/10.1038/nature06015, 2007.
Kawamura, K., Aoki, S., Nakazawa, T., Suzuki, K., and Parrenin, F.: Accurate age scale of the Dome Fuji ice core, Antarctica from O2/N2 ratio of trapped air, EGU General Assembly Conference Abstracts, Vienna, 14, 8309, 2012.
Koerner, R. M.: Devon Island Ice Cap: core stratigraphy and paleo-climate, Science, 196, 15–18, 1977.
Koerner, R. M. and Fisher, D. A.: A record of Holocene summer climate from a Canadian High Arctic ice core, Nature, 343, 630–631, 1990.
Köhler, P., Fischer, H., and Schmitt, J.: Atmospheric δ13CO2 and its relation to pCO2 and deep ocean δ13C during the late Pleistocene, Paleoceanography, 25, PA1213, https://doi.org/10.1029/2008PA001703, 2010.
Krinner, G., Genthon, C., and Jouzel, J.: GCM analysis of local influences on ice core d signals, Geophys. Res. Lett., 24, 2825–2828, 1997.
Landais, A.: Utility of stable isotopes of N and Ar as tracers to retrieve past air temperature from air trapped in ice cores, in: Handbook of Environmental Isotope Geochemistry, Springer, 865–886, 2011.
Landais, A., Chappellaz, J., Delmotte, M., Jouzel, J., Blunier T., Bourg, C., Caillon, N., Cherrier, S., Malaizé, B., Masson-Delmotte, V., Raynaud, D., and Schwander J.: A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core, J. Geophys. Res., 108, 4563, https://doi.org/10.1029/2002JD003147, 2003.
Landais, A., Caillon, N., Goujon, C., Grachev, A., Barnola, J. M., Chappellaz, J., Jouzel, J., Masson-Delmotte, V., and Leuenberger, M.: Quantification of rapid temperature change during DO event 12 and phasing with methane inferred from air isotopic measurements, Earth Planet. Sc. Lett., 225, 221–232, 2004a.
Landais, A., Barnola, J.-M., Masson-Delmotte, V., Jouzel, J., Chappellaz, J., Caillon, N., Huber, C., Leuenberger, M., and Johnsen, S. J.: A continuous record of temperature evolution over a whole sequence of Dansgaard–Oeschger during Marine Isotopic Stage 4 (76 to 62 kyr BP), Geophys. Res. Lett., 31, L22211, https://doi.org/10.1029/2004GL021193, 2004b.
Landais, A., Steffensen, J. P., Caillon, N., Jouzel, J., Masson-Delmotte, V., and Schwander, J.: Evidence for stratigraphic distortion in Greenland Ice Core Project (GRIP) ice core during Event 5e1 (120 kyr BP) from gas isotopes, J. Geophys. Res., 109, D06103, https://doi.org/10.1029/2003JD004193, 2004c.
Landais, A., Barnola, J. M., Kawamura, K., Caillon, N., Delmotte, M., Dreyfus, G., Jouzel, J., Masson-Delmotte, V., Minster, B., Freitag, J., Leuenberger, M., Huber, C., Schwander, J., Etheridge, D., Morgan, V., and Van Ommen, T.: Air δ15N in modern firns and glacial-interglacial ice: a model-data mismatch during glacial periods in Antarctica?, Quaternary Sci. Rev., 25, 49–62, 2006.
Landais, A., Barkan, E., and Luz, B.: The record of 18O and 17O-excess in ice from Vostok Antarctica during the last 150 000 years, Geophys. Res. Lett., 35, L02709, https://doi.org/10.1029/2007GL032096, 2008.
Landais, A., Dreyfus, G., Capron, E., Masson-Delmotte, V., Sanchez-Goñi, M. F., Desprat, S., Hoffmann, G., Jouzel, J., Leuenberger, M., and Johnsen, S.: What drives the millennial and orbital variations of δ18O$_atm$?, Quaternary Sci. Rev., 29, 235–246, 2010.
Landais, A., Dreyfus, G., Capron, E., Pol, K., Loutre, M. F., Raynaud, D., Lipenkov, V. Y., Arnaud, L., Masson-Delmotte, V., Paillard, D., Jouzel, J., and Leuenberger, M.: Towards orbital dating of the EPICA Dome C ice core using δO2/N2, Clim. Past, 8, 191–203, https://doi.org/10.5194/cp-8-191-2012, 2012.
Lang, C., Leuenberger, M., Schwander, J., and Johnsen, S. J.: 16 °C rapid temperature variation in central Greenland 70 000 years ago, Science, 286, 934–937, 1999.
Langway, C. C.: The history of early polar ice cores, Cold Reg. Sci. Technol., 52, 101–117, 2008.
Langway Jr., C. C.: A 400 meter deep ice core in Greenland, preliminary Report, J. Glaciol., 3, 216–217, 1958.
Lee, J.-E., Fung, I., DePaolo, D. J., and Otto-Bliesner, B.: Water isotopes during the Last Glacial Maximum: new general circulation model calculations, J. Geophys. Res., 113, D19109, https://doi.org/10.1029/2008JD009859, 2008.
Lemieux-Dudon, B., Blayo, E., Petit, J.-R., Waelbroeck, C., Svensson, A., Ritz, C., Barnola, J.-M., Narcisi, B. M., and Parrenin, F.: Consistent dating for Antarctic and Greenland ice cores, Quaternary Sci. Rev., 29, 8–20, https://doi.org/10.1016/j.quascirev.2009.11.010, 2010.
Leuenberger, M. and Siegenthaler, U.: Ice-age atmospheric concentration of nitrous oxide from an antarctic ice core, Nature, 360, 449–451, 1992.
Leuenberger, M., Siegenthaler, U., and Langway, C.: Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core, Nature, 357, 488–490, 1992.
Lipenkov, V. Y., Raynaud, D., Loutre, M. F., and Duval, P.: On the potential of coupling air content and O2/N2 from trapped air for establishing an ice core chronology tuned on local insolation, Quaternary Sci. Rev., 30, 3280–3289, 2011.
Lisiecki, L. and Raymo, M.: A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lorius, C. and Merlivat, L.: Distribution of mean surface stable isotope values in East Antarctica, Observed changes with depth in a coastal area, in: Isotopes and Impurities in Snow and Ice, Proceedings of the Grenoble Symposium, August/September 1975, IAHS, Grenoble, 118, 125–137, 1977.
Lorius, C., Raynaud, D., and Dolle, L.: Ice density and studies of gas taken from a deep levels of an Antarctic Glacier, Tellus, 20, 449–455, 1968.
Lorius, C., Merlivat, L., Jouzel, J., and Pourchet, M.: A 30 000 yr isotope climatic record from Antarctic ice, Nature, 280, 644–648, 1979.
Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. I, Korotkevitch, Y. S. and Kotlyakov, Y. M.: A 150 000 year climatic record from Antarctic ice, Nature, 591–596, 1985.
Lorius, C., Jouzel, J., Raynaud, D., Hansen, J., and Le Treut, H.: The ice-core record: climate sensitivity and future greenhouse warming, Nature, 347, 139–145, 1990.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J. M., Raynaud, D., Stocker, T., and Chappelaz, J.: Orbital and millenial-scale features of atmospheric CH4 over the last 800 000 years, Nature, 453, 383–386, 2008.
Lourantou, A., Chappellaz, J., Barnola, J. M., Masson-Delmotte, V., and Raynaud, D.: Changes in atmospheric CO2 and its carbon isotopic ratio during the penultimate deglaciation, Quaternary Sci. Rev., 29, 1983–1992, 2010.
Lüthi, D., Floch, M. L., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F.: High resolution carbon dioxide concentration record 650 000–800 000 years before present, Nature, 453, 379–382, 2008.
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP, Geophys. Res. Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006.
Malaizé, B., Paillard, D., Jouzel, J., and Raynaud, D.: The Dole effect over the last two glacial–interglacial cycles, J. Geophys. Res., 104, 14199–14208, 1999.
Masson-Delmotte, V., Jouzel, J., Landais, A., Stiévenard, M., Johnsen, S. J., White, J. W. C., Werner, M., Sveinbjörnsdottir, A., and Fuhrer, K.: GRIP deuterium excess reveals rapid and orbital changes of Greenland moisture origin, Science, 309, 118–121, 2005.
Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A., Bernardo, R. T., Bromwich, D., Cattani, O., Delmotte, M., Falourd, S., Frezzotti, M., Gallée, H., Genoni, L., Isaksson, E., Landais, A., Helsen, M. M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D., Oerter, H., Petit, J. R., Royer, A., Uemura, R., Schmidt, G. A., Schlosser, E., Simoes, J. C., Steig, E. J., Stenni, B., Stievenard, M., van den Broeke, M. R., van de Wal, R. S. W., van de Berg, W. J., Vimeux, F., and White, J. W. C.: A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling, J. Climate, 21, 3359–3387, https://doi.org/10.1175/2007JCLI2139.1, 2008.
Masson-Delmotte, V., Buiron, D., Ekaykin, A., Frezzotti, M., Gallée, H., Jouzel, J., Krinner, G., Landais, A., Motoyama, H., Oerter, H., Pol, K., Pollard, D., Ritz, C., Schlosser, E., Sime, L. C., Sodemann, H., Stenni, B., Uemura, R., and Vimeux, F.: A comparison of the present and last interglacial periods in six Antarctic ice cores, Clim. Past, 7, 397–423, https://doi.org/10.5194/cp-7-397-2011, 2011.
Meese, D. A., Gow, A. J., Alley, R. B., Zielinski, G. A., Grootes, P. M., Ram, M., Taylor, K. C., Mayewski, P. A., and Bolzan, J. F.: The Greenland Ice Sheet Project 2 depth-age scale: methods and results, J. Geophys. Res., 102, 26411–26423, 1997.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the deuterium–oxygen 18 relationship for precipitation, J. Geophys. Res., 84, 5029–5033, 1979.
Miller, M. M.: Juneau Icefield Research Project, Alaska, 1950, American Geographical Society, JIRP Report 7, Amer. Geographical Soc., NY, 97 pp., 1954.
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.-M.: Atmospheric CO2 concentrations over the last glacial termination, Science, 291, 112–114, 2001.
Morgan, V. I., Wookey, C. W., Li, J., van Ommen, T. D., Skinner, W., and Fitzpatrick, M. F.: Site information and initial results from deep ice drilling on Law Dome, Antarctica, J. Glaciol., 43, 3–10, 1997.
Morgan, V., Delmotte, M., van Ommen, T., Jouzel, J., Chappellaz, J., Woon, S., Masson-Delmotte, V., and Raynaud, D.: The timing of events in the last deglaciation from a coastal east Antarctic core, Science, 297, 1862–1864, 2002.
Mulvaney, R., Alemany, O., and Possenti, P.: The Berkner Island (Antarctica) ice-core drilling project, Ann. Glaciol., 47, 115–124, 2007.
Mulvaney, R., Abram, N. J., Hindmarsh, R. C. A., Arrowsmith, C., Fleet, L., Triest, J., Sime, L. C., Alemany, O., and Foord, S.: Recent Antarctic peninsula warming relative to Holocene climate and ice shelf history, Nature, 489, 141–144, 2012.
NEEM Community Members: Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493, 489–494, 2013.
Nikolaiev, V. I., Kotlyakov, V. M., and Smirnov, K. E.: Isotope studies of the ice from the Komsolmoskaia station, Antarctica, data of glaciological studies, USSR Acad. Sci., 63, 97–102, 1988.
NorthGRIP community members: High resolution climate record of the Northern Hemisphere back to the last interglacial period, Nature, 431, 147–151, 2004.
Oeschger, H.: The contribution of ice core studies to the understanding of environmental processes, in: Greenland Ice Cores: Geophysics, Geochemistry, and the Environment, Geophysical Monograph 33, AGU, Washington, D.C., 9–17, 1985.
Oeschger, H., Alder, B., and Langway Jr., C. C.: Radiocarbon dating of ice, Earth Planet. Sc. Lett., 1, 49–54, 1966.
Oeschger, H., Alder, B., and Langway Jr., C. C.: An in situ gas extraction system to radiocarbon date glacier ice, USA CRREL Research Report 236, October 1967, J. Glaciol., 6, 939–942, 1967.
Oeschger, H., Beer, J., Siegenthaler, U., Stauffer, B., Dansgaard, W., and Langway, C. C.: Late climate history from ice cores, in: Climate Processes and Climate Sensitivity, edited by: Hansen, J. E. and Takahashi, T., Geophysical Monograph 29, Maurice Ewing vol. 5, AGU, Washington, D.C., 299–306, 1984.
Parrenin, F., Jouzel, J., Waelbroeck, C., Ritz, C., and Barnola, J. M.: Dating the Vostok ice core by an inverse method, J. Geophys. Res., 106, 31837–31851, 2001.
Parrenin, F., Rémy, F., Ritz, C., Siegert, M. J., and Jouzel, J.: New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core, J. Geophys. Res., 109, D20102, https://doi.org/10.1029/2004JD004561, 2004.
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007.
Parrenin, F., Masson-Delmotte, V., Kohler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., and Jouzel, J.: Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming, Science, 339, 1060–1063, https://doi.org/10.1126/science.1226368, 2013.
Paterson, W. S. B., Koerner, R. M., Fisher, D., Johnsen, S. J., Clausen, H. B., Dansgaard, W., Bucher, P., and Oeschger, H.:. An oxygen-isotope climatic record from the Devon Island ice cap, Arctic Canada, Nature, 266, 508–511, 1977.
Petit, J. R., White, J. W. C., Young, N. W., Jouzel, J., and Korotkevich, Y. S.: Deuterium excess in recent Antarctic snow, J. Geophys. Res., 96, 5113–5122, 1991.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Pol, K., Masson-Delmotte, V., Johnsen, S. J., Jouzel, J., Cattani, O., Durand, G., Falourd, S., Minster, B., Parrenin, F., Ritz, C., Steen-Larsen, H. C., and Stenni, B.: New MIS 19 EPICA Dome C high resolution deuterium data: hints for a problematic preservation of climate variability in the "oldest ice", Earth Planet. Sc. Lett., 298, 95–103, 2010.
Raisbeck, G. M., Yiou, F., Fruneau, M., Loiseaux, J. M., Lieuvin, M., Ravel, J. C., and Lorius, C.: Cosmogenic Be-10 concentrations in Antarctic ice during the past 30 000 years, Nature, 292, 825–826, 1981.
Raisbeck, G. M., Yiou, F., Cattani, O., and Jouzel, J.: Be-10 evidence for the Matuyama–Brunhes geomagnetic reversal in the EPICA Dome C ice core, Nature, 444, 82–84, 2006.
Raisbeck, G. M., Yiou, F., Jouzel, J., and Stocker, T. F.: Direct north–south synchronization of abrupt climate change record in ice cores using Beryllium 10, Clim. Past, 3, 541–547, https://doi.org/10.5194/cp-3-541-2007, 2007.
Ramirez, E., Hoffmann, G., Taupin, J. L., Francou, B., Ribstein, P., Caillon, N., Landais, A., Petit, J. R., Pouyaud, B., Schotterer, U., and Stiévenard, M.: A new Andean deep ice core from the Illimani (6350 m), Bolivia, Earth Planet. Sc. Lett., 212, 337–350, 2003.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core chronology for the last glacial termination, J. Geophys. Res., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006.
Raynaud, D. and Lorius, C.: Climatic implications of total gas content in ice at Camp Century, Nature, 243, 283–284, 1973.
Raynaud, D., Chappellaz, J., Barnola, J. M., Korotkevich, Y. S., and Lorius, C.: Climatic and CH4-cycle implications of glacial–interglacial CH4 change in the Vostok ice core, Nature, 333, 655–657, 1988.
Raynaud, D., Jouzel, J., Chappellaz, J., Delmas, R. J., and Lorius, C.: The ice record of greenhouse gases, Science, 259, 926–934, 1993.
Raynaud, D., Barnola, J. M., Souchez, R., Lorrain, R., Petit, J. R., Duval, P., and Lipenkov, V. Y.: Palaeoclimatology – the record for marine isotopic stage 11, Nature, 436, 39–40, 2005.
Raynaud, D., Lipenkov, V., Lemieux-Dudon, B., Duval, P., Loutre, M. F., and Lhomme, N.: The local insolation signature of air content in Antarctic ice, a new step toward an absolute dating of ice records, Earth Planet. Sc. Lett., 261, 337–349, 2007.
Reeh, N., Oerter, H., and Thomsen, H. H.: Comparison between Greenland ice-margin and ice-core oxygen-18 records, Ann. Glaciol., 35, 136–144, 2002.
Reeves, C. E., Sturges, W. T., Sturrock, G. A., Preston, K., Oram, D. E., Schwander, J., Mulvaney, R., Barnola, J.-M., and Chappellaz, J.: Trends of halon gases in polar firn air: implications for their emission distributions, Atmos. Chem. Phys., 5, 2055–2064, https://doi.org/10.5194/acp-5-2055-2005, 2005.
Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water stable isotopes in the LMDZ4 General Circulation Model: model evaluation for present day and past climates and applications to climatic interpretation of tropical isotopic records, J. Geophys. Res., 115, D12118, https://doi.org/10.1029/2009JD013255, 2010.
Ruddiman, W. F. and Raymo, M. E.: A methane-based time scale for Vostok ice, Quaternary Sci. Rev., 22, 141–155, 2003.
Salamatin, A. N., Lipenkov, V. Y., Barkov, N. I., Jouzel, J., Petit, J. R., and Raynaud, D.: Ice core age dating and paleothermometer calibration on the basis of isotopes and temperature profiles from deep boreholes at Vostok station (East Antarctica), J. Geophys. Res., 103,8963–8977, 1998.
Schaefer, H., Whiticar, M. J., Brook, E. J., Petrenko, V. V., Ferretti, D. F., and Severinghaus, J. P.: Ice record of δ13C for atmospheric CH4 across the Younger-Dryas-Preboreal transition, Science, 313, 1109–1112, 2006.
Schilt, A., Baumgartner, M., Blunier, T., Schwander, J., Spahni, R., Fischer, H., and Stocker, T. F.: Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800 000 years, Quaternary Sci. Rev., 29, 182–192, 2009.
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Këhler, P., Joos, F., Stocker, T. F., Leuenberger, M., and Fischer, H.: Carbon isotope constraints on the deglacial CO2 rise from ice cores, Science, 336, 711–714, 2012.
Schwander, J., Sowers, T., Barnola, J. M., Blunier, T., Malaizé, B., and Fuchs, A.: Age scale of the air in the summit ice: implication for glacial–interglacial temperature change, J. Geophys. Res., 102, 19483–19494, 1997.
Schytt, V.: Norwegian-British-Swedish Antarctic Expedition 1949–1952, Scientific Results 4, Glaciology II, Norsk Polarinstitut, Oslo, Norway, 1958.
Severinghaus, J. P. and Battle, M.: Fractionation of gases in polar ice during bubble close-off: new constraints from firn air Ne, Kr, and Xe observations, Earth Planet. Sc. Lett., 244, 474–500, 2006.
Severinghaus, J. P. and Brook, E.: Simultaneous tropical-Arctic abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice, Science, 286, 930–934, 1999.
Severinghaus, J. P., Brook, E. J., Sowers, T., and Alley, R. B.: Gaseous thermal diffusion as a gas-phase stratigraphic marker of abrupt warmings in ice core climate records, 157, EOS Supplement AGU Spring meeting, San Francisco, 1996.
Severinghaus, J. P., Sowers, T., Brook, E., Alley, R. B., and Bender, M. L.: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391, 141–146, 1998.
Severinghaus, J. P., Beaudette, R., Headly, M. A., Taylor, K., and Brook, E. J.: Oxygen-18 of O2 records the impact of abrupt climate change on terrestrial biosphere, Science, 324, 1431–1434, 2009.
Severinghaus, J. P., Wolff, E., and Brook, E. J.: Searching for the oldest ice, EOS T. Am. Geophys. Un., 91, 357–368, 2010.
Shackleton, N. J.: The 100 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity, Science, 289, 1897–1902, 2000.
Siegenthaler, U., Stocker, T. F., Monnin, E., Luthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J.: Stable carbon cycle–climate relationship during the Late Pleistocene, Science, 310, 1313–1317, 2005.
Sime, L. C., Tindall, J. C., Wolff, E. W., Connolley, W. M., and Valdes, P. J.: Antarctic isotopic thermometer during a CO2 forced warming event, J. Geophys. Res., 113, D24119, https://doi.org/10.1029/2008JD010395, 2008.
Sime, L. C., Wolff, E. W., Oliver, K. I. C., and Tindall, J. C.: Evidence for warmer interglacials in East Antarctic ice cores, Nature, 462, 342–346, https://doi.org/10.1038/nature08564, 2009.
Sime, L. C., Risi, C., Tindall, J. C., Sjolte, J., Wolff, E. W., Masson-Delmotte, V., and Capron, E.: Warm climate isotopic simulations: what do we learn aboutinterglacial signals in Greenland ice cores?, Quaternary Sci. Rev., 67, 59–80, 2013.
Simonsen, S. B., Johnsen, S. J., Popp, T. J., Vinther, B. M., Gkinis, V., and Steen-Larsen, H. C.: Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of water isotopes, Clim. Past, 7, 1327–1335, https://doi.org/10.5194/cp-7-1327-2011, 2011.
Sorge, E.: Glaziologische Untersuchungen in Eismitte (Glaciological research at Eismitte), in: Wissenschaftliche Ergebnisse der Deutschen Groenland Expedition Alfred Wegener 1929 und 1930–31, F. A. Brokaus, Leipzig, Germany, 3, 270 pp., 1935.
Souchez, R. and Jouzel, J.: On the isotopic composition of δD and δ18O of water and ice during freezing, J. Glaciol., 30, 369–372, 1984.
Sowers, T.: N2O record spanning the penultimate deglaciation from Vostok ice core, J. Geophys. Res., 106, 31903–31914, 2001.
Sowers, T., Bender, M., Raynaud, D., Korotkevich, Y. S., and Orchardo, J.: The delta 18O of atmospheric O2 from air inclusions in the vostok ice core: timing of CO2 and ice volume changes during the penultimate deglaciation, Paleoceanography, 6, 679–696, 1991.
Sowers, T., Alley, R. B., and Jubenville, J.: Ice core records of atmospheric N2O covering the last 106 000 years, Science, 301, 945–948, 2003.
Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D., Masson-Delmotte, V., and Jouzel, J.: Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores, Science, 310, 1317–1321, 2005.
Stauffer, B., Fischer, G., Neftel, A., and Oeschger, H.: Increase of atmospheric methane recorded in Antarctic ice core, Science, 229, 1386–1388, 1985.
Stauffer, B., Lochbronner, E., Oeschger, H., and Schwander, J.: Methane concentration in the glacial atmosphere was only half that of the preindustrial holocene, Nature, 332, 812–814, 1988.
Stauffer, B., Blunier, T., Dällenbach, A., Indermühle, A., Scwander, J., Stocker, T. F., Tschumi, J., Chappellaz, J., Raynaud, D., Hammer, C. U., and Clausen, H. B.: Atmospheric CO2 concentration and millennial scale climate change during the last glacial period, Nature, 392, 59–62, https://doi.org/10.1038/32133, 1998.
Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S. J., Jouzel, J., Masson-Delmotte, V., Popp, T., Rasmussen, S. O., Rothlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M.-L., Sveinbjörnsdóttir, A. E., Svensson, A., and White, J. W. C.: High resolution ice core data show abrupt climate change happens in few years, Science, 321, 680–689, 2008.
Steig, E., Brook, E. J., White, J. W. C., Sucher, C. M., Bender, M. L., Lehman, S. J., Morse, D. L., Waddigton, E. D., and Clow, G. D.: Synchronous climate changes in Antarctica and the North Atlantic, Science, 282, 92–95, 1998.
Stenni, B., Masson, V., Johnsen, S. J., Jouzel, J., Longinelli, A., Monnin, E., Roethlisberger, R., and Selmo, E.: An oceanic cold reversal during the last deglaciation, Science, 293, 2074–2077, 2001.
Stenni, B., Jouzel, J., Masson-Delmotte, V., Röthlisberger, R., Castellano, E., Cattani, O., Falourd, S., Johnsen, S. J., Longinelli, A., Sachs, J. P., Selmo, E., Souchez, R., Steffensen, J. P., and Udisti, R.: A late-glacial high resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica), Earth Planet. Sc. Lett., 217, 183–195, 2003.
Stenni, B., Masson-Delmotte, V., Selmo, E., Oerter, H., Meyer, H., Rothlisberger, R., Jouzel, J., Cattani, O., Falourd, S., Fischer, H., Hoffmann, G., Iacumin, P., Johnsen, S., and Minster, B.: The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica), Quaternary Sci. Rev., 29, 146–159, 2010.
Stenni, B., Buiron, D., Frezzotti, M., Albani, S., Barbante, C., Bard, E., Barnola, J. M., Baroni, M., Baumgartner, M., Bonazza, M., Capron, E., Castellano, E., Chappellaz, J., Delmonte, B., Falourd, S., Genoni, L., Iacumin, P., Jouzel, J., Kipfstuhl, S., Landais, A., Lemieux-Dudon, B., Maggi, V., Masson-Delmotte, V., Mazzola, C., Minster, B., Montagnat, M., Mulvaney, R., Narcisi, B., Oerter, H., Parrenin, F., Petit, J. R., Ritz, C., Scarchilli, C., Schilt, A., Schüpbach, S., Schwander, J., Selmo, E., Severi, M., Stocker, T. F., and Udisti, R.: Unified Antarctic and Greenland climate seesaw during the last deglaciation, Nat. Geosci., 4, 46–49, 2011.
Stocker, T. F. and Johnsen, S. J.: A minimum thermodynamic model for the bipolar seesaw, Paleoceanography, 18, 1087, https://doi.org/10.1029/2003PA000920, 2003.
Sturges, W. T., Penkett, S. A., Barnola, J. M., Chappellaz, J., Atlas, E., and Stroud, V.: A longterm record of carbonyl sulfide (COS) in two hemispheres from firn air measurements, Geophys. Res. Lett., 28, 4095–4098, 2001a.
Sturges, W. T., McIntyre, H. P., Penkett, S. A., Chappellaz, J., Barnola, J. M., Mulvaney, R., Atlas, E., and Stroud, V.: Methyl bromide, other brominated methanes and methyl iodide in polar firn air, J. Geophys. Res., 106, 1595–1606, 2001b.
Suwa, M. and Bender, M. L.: Chronology of the Vostok ice core constrained by O2/N2 ratios of occluded air, and its implication for the Vostok climate records, Quaternary Sci. Rev., 27, 1093–1106, 2008.
Suwa, M., von Fischer, J. C., Bender, M. L., Landais, A., and Brook, E. J.: Chronology reconstruction for the disturbed bottom section of the GISP2 and the GRIP ice cores: Implications for Termination II in Greenland, J. Geophys. Res., 111, D02101, https://doi.org/10.1029/2005JD006032, 2006.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Svensson, A., Bigler, M., Blunier, T., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Fujita, S., Goto-Azuma, K., Johnsen, S. J., Kawamura, K., Kipfstuhl, S., Kohno, M., Parrenin, F., Popp, T., Rasmussen, S. O., Schwander, J., Seierstad, I., Severi, M., Steffensen, J. P., Udisti, R., Uemura, R., Vallelonga, P., Vinther, B. M., Wegner, A., Wilhelms, F., and Winstrup, M.: Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP), Clim. Past, 9, 749–766, https://doi.org/10.5194/cp-9-749-2013, 2013.
Swithinbank, C.: Norwegian-British-Swedish Antarctic Expedition 1949–1952, Scientific Results 3, Glaciology I, Norsk Polarinstitut, Oslo, Norway, 1957.
Taylor, K. C., Hammer, C. U., Alley, R. B., Clausen, H. B., Dahl-Jensen, D., Gow, A. J., Gundestrup, N. S., Kipfstuhl, J., Moore, J. C., and Waddington, E. D.: Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores, Nature, 366, 549–552, 1993.
Taylor, K. C., White, J. W. C., Severinghaus, J. P., Brook, E. J., Mayewski, P. A., Alley, R. B., Steig, E. J., Spencer, M. K., Meyerson, E., Meese, D. A., Lamorey, G. W., Grachev, A., Gow, A. J., and Barnett, B. A.: Abrupt climate change around 22 ka on the Siple coast of Antarctica, Quaternary Sci. Rev., 23, 7–15, 2004.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Bolzan, J. F., Dai, J., Klein, L., Yao, T., Wu, X., Xie, Z., and Gundestrup, N.: Holocene–Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau, Science, 246, 474–477, 1989.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K.-B.: Late Glacial Stage and Holocene tropical ice core records from Huascaran, Peru, Science, 269, 46–50, 1995.
Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., Mosley-Thompson, E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., and Bolzan, J. F.: Tropical climate instability: the Last Glacial Cycle from a Qinghai-Tibetan ice core, Science, 276, 1821–1825, https://doi.org/10.1126/science.276.5320.1821, 1997.
Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson, K. A., Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., Cole-Dai, J., and Francou, B.: A 25 000-year tropical climate history from bolivian ice cores, Science, 282, 1858–1864, 1998.
Ueda, H. T. and Talalay, P. G.: Fifty Years of Soviet and Russian Drilling Activity in Polar and Non-Polar Ice, Report ERDC/CRREL TR-07–20, US Army Engineer Research and Development Center Cold Regions Research and Engineering Laboratory, Hanover, USA, 130 pp., 2007.
Uemura, R., Yoshida, N., Kurita, N., Nakawo, M., and Watanabe, O.: An observation-based method for reconstructing ocean surface changes using a 340 000-year deuterium excess record from the Dome Fuji ice core, Antarctica, Geophys. Res. Lett., 31, L13216, https://doi.org/10.1029/2004GL019954, 2004.
Uemura, R., Masson-Delmotte, V., Jouzel, J., Landais, A., Motoyama, H., and Stenni, B.: Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles, Clim. Past, 8, 1109–1125, https://doi.org/10.5194/cp-8-1109-2012, 2012.
Vimeux, F., Masson, V., Jouzel, J., Stiévenard, M., and Petit, J. R.: Evidence of a link between deuterium excess in polar snow and ocean conditions over a full glacial–interglacial cycle, Nature, 398, 410–413, 1999.
Vimeux, F., Cuffey, K., and Jouzel, J.: New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction, Earth Planet. Sc. Lett., 203, 829–843, 2002.
Vinther, B. M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Johnsen, S. J., Andersen, K. K., Blunier, T., Rasmussen, S. O., Steffensen, J. P., Svensson, A., Fisher, D. A., Koerner, R. M., Raynaud, D., and Lipenkov, V.: Holocene thinning of the Greenland ice sheet, Nature, 461, 385–388, 2009.
Waelbroeck, C., Jouzel, J., Labeyrie, L., Lorius, C., Labracherie, M., Stiévenard, M., and Barkov, N. I.: Comparing the Vostok ice deuterium record and series from Southern Ocean core MD 88–770 over the last two glacial–interglacial cycles, Clim. Dynam., 12, 113–123, 1995.
Waelbroeck, C., Jouzel, J., Parrenin, F., Masson-Delmotte, V., and Genty, D.: Tranferring radiometric dating of the last interglacial sea level high stand to marine and ice core records, Earth Planet. Sc. Lett., 265, 183–194, 2008.
WAIS Divide Project Members: Onset of deglacial warming in West Antarctica driven by local orbital forcing, Nature, 500, 440–444, https://doi.org/10.1038/nature12376, 2013.
Watanabe, O., Jouzel, J., Johnsen, S., Parrenin, F., Shoji, H., and Yoshida, N.: Homogeneous climate variability accross East Antarctica over the last three glacial cycles, Nature, 422, 509–512, 2003.
Weart, S.: The discovery of global warming, Web hypertext (250 000 words with extensive bibliography and illustrations and more than 2000 hyperlinks), revised annually 2003 http: //www.aip.org/history/climate, 2008.
Werner, M., Mikolajewicz, U., Heimann, M., and Hoffmann, G.: Borehole versus isotope temperatures on Greenland: seasonality does matter, Geophys. Res. Lett., 27, 723–726, 2000.
Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., and Lohmann, G.: Stable water isotopes in the ECHAM5 general circulation model: toward high-resolution isotope modeling on a global scale, J. Geophys. Res., 116, D15109, https://doi.org/10.1029/2011JD015681, 2011.
White, J. W. C., Johnsen, S. J., and Dansgaard, W.: The origin of Arctic precipitation as deduced from its deuterium excess, Ann. Glaciol., 10, 219–220, 1988.
Winkler, R., Landais, A., Sodemann, H., Dümbgen, L., Prié, F., Masson-Delmotte, V., Stenni, B., and Jouzel, J.: Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites, Clim. Past, 8, 1–16, https://doi.org/10.5194/cp-8-1-2012, 2012.
Xiao, C., Li, Y., Allison, I., Hou, S., Dreyfus, G., Barnola, J. M., Ren, J., Bian, L., and Kameda, T.: Surface characteristics at Dome A, Antarctica: first measurements and a guide to future ice coring sites, Ann. Glaciol., 48, 82–87, 2008.
Yao, T., Petit, J. R., Jouzel, J., Lorius, C., and Duval, P.: Climatic record from an ice margin area in East Antarctica, Ann. Glaciogeol., 14, 323–327, 1990.
Yao, T., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B., Yang, X., Joswiak, D. R., Wang, W., Joswiak, M. E., Devkota, L. P., Tayal, S., Jilani, R., and Fayziev, R.: Third Pole Environment (TPE), Environ. Develop., 3, 52–64, 2012.
Zardini, D., Raynaud, D., Scharffe, D., and Seiler, W.: N2O measurements of air extracted from Antarctic ice cores: implication on atmospheric N2O back to the last glacial-interglacial transition, J. Atmos. Chem., 8, 189–201, 1989.
Special issue