Articles | Volume 9, issue 5
https://doi.org/10.5194/cp-9-2269-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-2269-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Inferred changes in El Niño–Southern Oscillation variance over the past six centuries
S. McGregor
Climate Change Research Centre, University of New South Wales, Sydney, Australia
ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia
A. Timmermann
International Pacific Research Center, University of Hawaii, Honolulu, Hawaii, USA
M. H. England
Climate Change Research Centre, University of New South Wales, Sydney, Australia
ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia
O. Elison Timm
International Pacific Research Center, University of Hawaii, Honolulu, Hawaii, USA
Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY, USA
A. T. Wittenberg
Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, New Jersey, USA
Related authors
Willem Huiskamp and Shayne McGregor
Clim. Past, 17, 1819–1839, https://doi.org/10.5194/cp-17-1819-2021, https://doi.org/10.5194/cp-17-1819-2021, 2021
Short summary
Short summary
This study investigates the reliability of paleo-reconstructions of the Southern Annular Mode (SAM) using climate model data. We find that reconstructions are able to capture ~ 60 % of the SAM variability at best, with poorer reconstructions managing only 35 %. Reconstructions perform best when they use more proxies sourced from the entire Southern Hemisphere land mass. Future reconstructions should endeavour to address both sampling and proxy–SAM correlation stability uncertainties.
R. Batehup, S. McGregor, and A. J. E. Gallant
Clim. Past, 11, 1733–1749, https://doi.org/10.5194/cp-11-1733-2015, https://doi.org/10.5194/cp-11-1733-2015, 2015
Short summary
Short summary
Climate indices of the past are often reconstructed using proxy information from various locations and it is assumed that the relationship between the two does not change over time. As this assumption has been recently questioned, we use a climate model to examine the effect of these changing relationships on the skill of El Nino-Southern Oscillation variance reconstructions. Our study finds that these changes reduce reconstruction skill, while also showing how this impact can be mitigated.
Andrew C. Ross, Charles A. Stock, Vimal Koul, Thomas L. Delworth, Feiyu Lu, Andrew Wittenberg, and Michael A. Alexander
Ocean Sci., 20, 1631–1656, https://doi.org/10.5194/os-20-1631-2024, https://doi.org/10.5194/os-20-1631-2024, 2024
Short summary
Short summary
In this paper, we use a high-resolution regional ocean model to downscale seasonal ocean forecasts from the Seamless System for Prediction and EArth System Research (SPEAR) model of the Geophysical Fluid Dynamics Laboratory (GFDL). We find that the downscaled model has significantly higher prediction skill in many cases.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Willem Huiskamp and Shayne McGregor
Clim. Past, 17, 1819–1839, https://doi.org/10.5194/cp-17-1819-2021, https://doi.org/10.5194/cp-17-1819-2021, 2021
Short summary
Short summary
This study investigates the reliability of paleo-reconstructions of the Southern Annular Mode (SAM) using climate model data. We find that reconstructions are able to capture ~ 60 % of the SAM variability at best, with poorer reconstructions managing only 35 %. Reconstructions perform best when they use more proxies sourced from the entire Southern Hemisphere land mass. Future reconstructions should endeavour to address both sampling and proxy–SAM correlation stability uncertainties.
Kyung-Sook Yun, Axel Timmermann, and Malte F. Stuecker
Earth Syst. Dynam., 12, 121–132, https://doi.org/10.5194/esd-12-121-2021, https://doi.org/10.5194/esd-12-121-2021, 2021
Short summary
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Andrew E. Kiss, Andrew McC. Hogg, Nicholas Hannah, Fabio Boeira Dias, Gary B. Brassington, Matthew A. Chamberlain, Christopher Chapman, Peter Dobrohotoff, Catia M. Domingues, Earl R. Duran, Matthew H. England, Russell Fiedler, Stephen M. Griffies, Aidan Heerdegen, Petra Heil, Ryan M. Holmes, Andreas Klocker, Simon J. Marsland, Adele K. Morrison, James Munroe, Maxim Nikurashin, Peter R. Oke, Gabriela S. Pilo, Océane Richet, Abhishek Savita, Paul Spence, Kial D. Stewart, Marshall L. Ward, Fanghua Wu, and Xihan Zhang
Geosci. Model Dev., 13, 401–442, https://doi.org/10.5194/gmd-13-401-2020, https://doi.org/10.5194/gmd-13-401-2020, 2020
Short summary
Short summary
We describe new computer model configurations which simulate the global ocean and sea ice at three resolutions. The coarsest resolution is suitable for multi-century climate projection experiments, whereas the finest resolution is designed for more detailed studies over time spans of decades. The paper provides technical details of the model configurations and an assessment of their performance relative to observations.
Michelle Tigchelaar, Axel Timmermann, Tobias Friedrich, Malte Heinemann, and David Pollard
The Cryosphere, 13, 2615–2631, https://doi.org/10.5194/tc-13-2615-2019, https://doi.org/10.5194/tc-13-2615-2019, 2019
Short summary
Short summary
The Antarctic Ice Sheet has expanded and retracted often in the past, but, so far, studies have not identified which environmental driver is most important: air temperature, snowfall, ocean conditions or global sea level. In a modeling study of 400 000 years of Antarctic Ice Sheet variability we isolated different drivers and found that no single driver dominates. Air temperature and sea level are most important and combine in a synergistic way, with important implications for future change.
M. Angeles Gallego, Axel Timmermann, Tobias Friedrich, and Richard E. Zeebe
Biogeosciences, 15, 5315–5327, https://doi.org/10.5194/bg-15-5315-2018, https://doi.org/10.5194/bg-15-5315-2018, 2018
Short summary
Short summary
It is projected that the summer–winter difference in pCO2 levels will be larger in the future. In this paper, we study the causes of this seasonal amplification of pCO2. We found that anthropogenic CO2 enhances the effect of seasonal changes in temperature (T) and dissolved inorganic carbon (DIC) on pCO2 seasonality. This is because the oceanic pCO2 becomes more sensitive to seasonal T and DIC changes when the CO2 concentration is higher.
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, https://doi.org/10.5194/gmd-11-1257-2018, 2018
Short summary
Short summary
MetROMS and FESOM are two ocean/sea-ice models which resolve Antarctic ice-shelf cavities and consider thermodynamics at the ice-shelf base. We simulate the period 1992–2016 with both models, and with two options for resolution in FESOM, and compare output from the three simulations. Ice-shelf melt rates, sub-ice-shelf circulation, continental shelf water masses, and sea-ice processes are compared and evaluated against available observations.
Willem P. Sijp and Matthew H. England
Clim. Past, 12, 543–552, https://doi.org/10.5194/cp-12-543-2016, https://doi.org/10.5194/cp-12-543-2016, 2016
Short summary
Short summary
The polar warmth of the greenhouse climates in the Earth's past represents a fundamentally different climate state to that of today, with a strongly reduced temperature difference between the Equator and the poles. It is commonly thought that this would lead to a more quiescent ocean, with much reduced ventilation of the abyss. Surprisingly, using a Cretaceous cimate model, we find that ocean overturning is not weaker under a reduced temperature gradient arising from amplified polar heat.
R. Batehup, S. McGregor, and A. J. E. Gallant
Clim. Past, 11, 1733–1749, https://doi.org/10.5194/cp-11-1733-2015, https://doi.org/10.5194/cp-11-1733-2015, 2015
Short summary
Short summary
Climate indices of the past are often reconstructed using proxy information from various locations and it is assumed that the relationship between the two does not change over time. As this assumption has been recently questioned, we use a climate model to examine the effect of these changing relationships on the skill of El Nino-Southern Oscillation variance reconstructions. Our study finds that these changes reduce reconstruction skill, while also showing how this impact can be mitigated.
M. Heinemann, A. Timmermann, O. Elison Timm, F. Saito, and A. Abe-Ouchi
Clim. Past, 10, 1567–1579, https://doi.org/10.5194/cp-10-1567-2014, https://doi.org/10.5194/cp-10-1567-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
L. Menviel, A. Timmermann, T. Friedrich, and M. H. England
Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, https://doi.org/10.5194/cp-10-63-2014, 2014
K. Tachikawa, A. Timmermann, L. Vidal, C. Sonzogni, and O. E. Timm
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-1869-2013, https://doi.org/10.5194/cpd-9-1869-2013, 2013
Revised manuscript has not been submitted
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Centennial-Decadal
A sub-fossil coral Sr/Ca record documents meridional variability of the Intertropical Convergence Zone in the eastern Indian Ocean
Can we use sea surface temperature and productivity proxy records to reconstruct Ekman upwelling?
Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA
Development of coccolithophore-based transfer functions in the western Mediterranean sea: a sea surface salinity reconstruction for the last 15.5 kyr
A high-resolution δ18O record and Mediterranean climate variability
Nutrient utilisation and weathering inputs in the Peruvian upwelling region since the Little Ice Age
Multidecadal to millennial marine climate oscillations across the Denmark Strait (~ 66° N) over the last 2000 cal yr BP
An inter-laboratory investigation of the Arctic sea ice biomarker proxy IP25 in marine sediments: key outcomes and recommendations
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Anson Cheung, Baylor Fox-Kemper, and Timothy Herbert
Clim. Past, 15, 1985–1998, https://doi.org/10.5194/cp-15-1985-2019, https://doi.org/10.5194/cp-15-1985-2019, 2019
Short summary
Short summary
We test two assumptions that are often made in paleoclimate studies by using observations and ask whether temperature and productivity proxy records in the Southern California Current can be used to reconstruct Ekman upwelling. By examining the covariation between alongshore wind stress, temperature, and productivity, we found that the dominant covarying pattern does not reflect Ekman upwelling. Other upwelling patterns found are timescale dependent. Multiple proxies can improve reconstruction.
Joanna Pawłowska, Marek Zajączkowski, Magdalena Łącka, Franck Lejzerowicz, Philippe Esling, and Jan Pawlowski
Clim. Past, 12, 1459–1472, https://doi.org/10.5194/cp-12-1459-2016, https://doi.org/10.5194/cp-12-1459-2016, 2016
Short summary
Short summary
The presented study focuses on the last millennium of the palaeoclimatic history of Svalbard region. The investigation was based on classical palaeoceanographic proxies, strengthened by the analysis of ancient foraminiferal DNA in down-core sediment samples. This study is the first attempt to implement the aDNA record in the palaeoenvironmental reconstruction. The aDNA data revealed even small environmetal changes that were not evidenced in the sedimentological and micropalaeontological record.
B. Ausín, I. Hernández-Almeida, J.-A. Flores, F.-J. Sierro, M. Grosjean, G. Francés, and B. Alonso
Clim. Past, 11, 1635–1651, https://doi.org/10.5194/cp-11-1635-2015, https://doi.org/10.5194/cp-11-1635-2015, 2015
Short summary
Short summary
Coccolithophore distribution in 88 surface sediment samples in the Atlantic Ocean and western Mediterranean was mainly influenced by salinity at 10m depth. A quantitative coccolithophore-based transfer function was developed and applied to a fossil sediment core to estimate sea surface salinity (SSS). The quality of this function and the reliability of the SSS reconstruction were assessed by statistical analyses and discussed. Several centennial SSS changes are identified for the last 15.5 ka.
C. Taricco, G. Vivaldo, S. Alessio, S. Rubinetti, and S. Mancuso
Clim. Past, 11, 509–522, https://doi.org/10.5194/cp-11-509-2015, https://doi.org/10.5194/cp-11-509-2015, 2015
Short summary
Short summary
The key to gaining information on climate over the last millennia is the study of proxy records in ice and sediment cores, trees, etc. We measured the oxygen isotopic ratio in planktonic foraminifera of a high-resolution, well-dated central Mediterranean core.
The comparison between the variability detected in this core and that characterizing the Northern Hemisphere allows for local and global (hemispheric) climate variations to be distinguished.
C. Ehlert, P. Grasse, D. Gutiérrez, R. Salvatteci, and M. Frank
Clim. Past, 11, 187–202, https://doi.org/10.5194/cp-11-187-2015, https://doi.org/10.5194/cp-11-187-2015, 2015
J. T. Andrews and A. E. Jennings
Clim. Past, 10, 325–343, https://doi.org/10.5194/cp-10-325-2014, https://doi.org/10.5194/cp-10-325-2014, 2014
S. T. Belt, T. A. Brown, L. Ampel, P. Cabedo-Sanz, K. Fahl, J. J. Kocis, G. Massé, A. Navarro-Rodriguez, J. Ruan, and Y. Xu
Clim. Past, 10, 155–166, https://doi.org/10.5194/cp-10-155-2014, https://doi.org/10.5194/cp-10-155-2014, 2014
Cited articles
Asami, R., Yamada, T., Iryu, Y., Quinn, T. M., Meyer, C. P., and Pauley, G.: Interannual and decadal variability of the western Pacific sea surface condition for the years 1787–2000: Reconstruction based on stable isotope record from a Guam coral, J. Geophys. Res., 110, C05018, https://doi.org/10.1029/2004JC002555, 2005.
Bagnato, S., Linsley, B. K., Howe, S. S., Wellington, G. M., and Salinger, J.: Coral oxygen isotope records of interdecadal climate variations in the South Pacific Convergence Zone region, Geochem. Geophy., Geosys., 6, Q06001, https://doi.org/10.1029/2004GC000879, 2005.
Braganza, K., Gergis, J. L., Power, S. B., Risbey, J. S., and Fowler, A. M.: A multiproxy index of the El Niño-Southern Oscillation, A.D. 1525–1982, J. Geophys. Res., 114, D05106, https://doi.org/10.1029/2008JD010896, 2009.
Bunge, L. and Clarke, A. J.: A verified estimation of the El Niño index NINO3.4 since 1877, J. Climate, 22, 3979–3992, 2009.
Capotondi, A., Wittenberg, A., and Masina, S.: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations, Ocean Model., 15, 274–298, https://doi.org/10.1016/j.ocemod.2006.02.004, 2006.
Chan, J.: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon, Mon. Weather Rev., 113, 599–606, 1985.
Charles, C. D., Hunter D. E., and Fairbanks, R. G.: Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate, Science, 277, 925–928, 1997.
Charles, C. D., Cobb, K., Moore, M. D., and Fairbanks, R. G.: Monsoon-tropical ocean interaction in a network of coral records spanning the 20th century, Mar. Geol., 201, 207–222, 2003.
Cobb, K., Charles, C. D., Cheng, H., and Edwards, R. L.: El Niño-Southern Oscillation and tropical Pacific climate during the last millenium, Nature, 424, 271–276, 2003.
Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E., Cheng, H., Edwards, L., and Charles, C. D.: Highly variable El Niño-Southern Oscillation throughout the Holocene, Science, 339, 67–70, 2013.
Cook, E. R.: Niño 3 Index Reconstruction, in: International Tree-Ring Data Bank, IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series, 2000.
Cook, E. R., D'Arrigo, R. D., and Anchukaitis, K. J.: ENSO reconstructions from long tree-ring chronologies: Unifying the differences, in: Talk presented at a special workshop on Reconciling ENSO Chronologies for the Past 500 Years, held in Moorea, French Polynesia on 2–3 April 2008, 2008.
Danabasoglu, G., Bates, S., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock, S., and Yeager, S. G.: The CCSM4 ocean component, J. Climate, 25, 1361–1389, 2012.
Davis, R. E.: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean, J. Phys. Oceanogr., 6, 249–266, 1976.
DeLong, K. L., Quinn, T. M., Taylor, F. W., Lin, K., and Shen, C.-C.: Sea surface temperature variability in the southwest tropical Pacific since AD 1649, Nature Climate Change, 2, 799–804, https://doi.org/10.1038/NCLIMATE1583, 2012.
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, F., and Zhang, R.: GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics, J. Climate, 19, 643–674, 2006.
Deser, C., Phillips, A. S., Tomas, R. A., Okumura, Y. M., Alexander, M. A., Capotondi, A., Scott, J. D., Kwon, Y.-O., and Ohba, M.: ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4, J. Climate, 25, 2622–2651, https://doi.org/10.1175/JCLI-D-11-00301.1, 2012.
Dunbar, R., Wellington, G. M., Colgan, M. W., and Glynn, P. W.: Eastern Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galápagos corals, Paleoceanography, 9, 291–315, 1994.
Emile-Geay, J., Cobb, K. M., Mann, M. E., and Wittenberg, A. T.: Estimating tropical Pacific SST variability over the past millennium. Part 1: Methodology and validation, J. Climate, 26, 2302–2328, https://doi.org/10.1175/JCLI-D-11-00510.1, 2013a.
Emile-Geay, J., Cobb, K. M., Mann, M. E., and Wittenberg, A. T.: Estimating tropical Pacific SST variability over the past millennium. Part 2: Reconstructions and uncertainties, J. Climate, 26, 2329–2352, https://doi.org/10.1175/JCLI-D-11-00511.1, 2013b.
Evans, M., Kaplan, A., Cane, M. A., and Villalba, R.: Interhemispheric Climate Linkages, in: Globality and optimality in climate field reconstructions from proxy data, Cambridge Univ. Press, 53–72, 2001.
Evans, M., Kaplan, A., and Cane, M. A.: Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis, Paleoceanography, 17, 1007, https://doi.org/10.1029/2000PA000590, 2002.
Federov, A. V. and Philander, S. G.: Is El Niño changing?, Science, 288, 1997–2002, 2000.
Hereid, K. A., Quinn, T. M., Taylor, F. W., Shen, C.-C., Edwards, R. L., and Cheng, H.: Coral record of reduced El Niño activity in the early 15th to middle 17th centuries, Geology, 41, 51–54, https://doi.org/10.1130/G33510.1, 2013.
Heiss, G. A.: Coral reefs in the Red Sea: Growth, production and stable isotopes, GEOMAR Report 32, 1–141, 1994.
Isdale, P. J., Stewart, B. J., Tickle, K. S., and Lough, J. M.: Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia, Holocene, 8, 1–8, https://doi.org/10.1191/095968398670905088, 1998.
Kaplan, A., Cane, M., Kushnir, Y., Clement, A., Blumenthal, M., and Rajagopalan, B.: Analyses of global sea surface temperature 1856–1991, J. Geophys. Res., 103, 567–589, 1998.
Karamperidou, C., Cane, M. A., Lall, U., and Wittenberg, A. T.: Intrinsic modulation of ENSO predictability viewed through a local Lyapunov lens, Clim. Dynam., online first, https://doi.org/10.1007/s00382-013-1759-z, 2013.
Kug, J.-S., Choi, J., An, S.-I., Jin, F.-F., and Wittenberg, A. T.: Warm pool and cold tongue El Niño events as simuilated by the GFDL CM2.1 coupled GCM, J. Climate, 23, 1226–1239, https://doi.org/10.1175/2009JCLI3293.1, 2010.
Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J., Rosenbloom, N., and Teng, H.: Last Millennium Climate and Its Variability in CCSM4, J. Climate, 26, 1085–1111, https://doi.org/10.1175/JCLI-D-11-00326.1, 2013.
Larkin, N. K. and Harrison, D. E.: ENSO Warm (El Niño) and Cold (La Niña) Event Life Cycles: Ocean Surface Anomaly Patterns, Their Symmetries, Asymmetries, and Implications, J. Climate, 15, 1118–1140, 2002.
Le Quesne, C., Stahle, D. W., Cleaveland, M. K., Therrell, M. D., Aravena, J. C., and Barichivich, J.: Ancient Austrocedrus Tree-Ring Chronologies Used to Reconstruct Central Chile Precipitation Variability from a.d. 1200 to 2000, J. Climate, 19, 5731–5744, https://doi.org/10.1175/JCLI3935.1, 2006.
Li, J., Xie, S.-P., Cook, E. R., Huang, G., D'Arrigo, R., Lui, F., Ma, J., and Zheng, X.-T.: Interdecadal modulation of El Niño amplitude during the past millennium, Nature Climate Change, 1, 114–118, 2011.
Li, J., Xie, S.-P., Cook, E. R., Morales, M. S., Christie, D. A., Johnson, N. C., Chen, F., D'Arrigo, R., Fowler, A. M., Gou, X., and Fang, K.: El Niño modulations over the past seven centuries, Nature Climate Change, 3, 822–826, https://doi.org/10.1038/nclimate1936, 2013.
Linsley, B. K., Dunbar, R. B., and Mucciasone, D. A.: A coral-based reconstruction of Inter-Tropical Convergence Zone variability over Central America since 1707, J. Geophys. Res., 99, 9977–9994, 1994.
Linsley, B. K., Wellington, G. M., and Schrag, D. P.: Decadal Sea Surface Temperature Variability in the Subtropical South Pacific from 1726 to 1997 A.D., Science, 290, 1145, https://doi.org/10.1126/science.290.5494.1145, 2000.
Lough, J. M.: Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia, Paleoceanography, 22, PA2218, https://doi.org/10.1029/2006PA001377, 2007.
Mann, M., Bradley, R. S., and Hughes, M. K.: Multiscale Variability and Global and Regional Impacts, in: Long-term variability in the El Niño-Southern Oscillation and associated teleconnections, Cambridge Univ. Press, 357–412, 2000.
McGregor, S., Timmermann, A., and Timm, O.: A unified proxy for ENSO and PDO variability since 1650, Clim. Past, 6, 1–17, https://doi.org/10.5194/cp-6-1-2010, 2010.
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., and Zhang, M.: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments, J. Climate, 26, 5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013.
Nicholls, N.: Predictability of interannual variations of Australian seasonal tropical cyclone activity, Mon. Weather Rev., 113, 1144–1149, 1985.
Ogata, T., Xie, S.-P., Wittenberg, A., and Sun, D.-Z.: Interdecadal amplitude modulation of El Niño/Southern Osciallation and its impacts on tropical Pacific variabiltiy, J. Climate, online first, https://doi.org/10.1175/JCLI-D-12-00415.1, 2013.
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Interdecadal modulation of the impact of ENSO on Australia, Clim. Dynam., 15, 319–324, 1999.
Quinn, T. M., Taylor, F. W., and Crowley, T. J.: A 173 year stable isotope record from a tropical South Pacific coral, Quaternary Sci. Rev., 12, 407–418, 1993.
Quinn, T. M., Crowley, T. J., Taylor, F. W., Henin, C., Joannot, P., and Join, Y.: A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 A.D., Paleoceanography, 13, 412–426, 1998.
Rayner, N., Parker, D., Horton, E., Folland, C., Alexander, L., Rowell, D., Kent, E., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Shen, G. T., Cole, J. E., Lea, D. W., Linn, L. J., McConnaughey, T. A., and Fairbanks, R. G.: Surface ocean variability at Galapagos from 1936–1982: calibration of geochemical tracers in corals, Paleoceanography, 7, 563–588, 1992.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) reference manual, Los Alamos National Laboratory Tech. Rep., LAUR-10-01853, 141 pp., 2010.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.: Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006), J. Climate, 21, 2283–2296, 2008.
Stahle, D., D'Arrigo, R. D., Krusic, P. J., Cleaveland, M. K., Cook, E. R., Allan, R. J., Cole, J. E., Dunbar, R. D., Therrell, M. D., Gay, D. A., Moore, M. D., Stokes, M. A., Burns, B. T., Villanueva-Diaz, J., and Thompson, L. G.: Experimental dendroclimatic reconstruction of the Southern Oscillation, B. Am. Meteorol. Soc., 79, 2137–2152, 1998.
Timmermann, A., Jin, F.-F., and Abshagen, J.: A non-linear theory for El Niño bursting, J. Atmos. Sci., 60, 152–165, 2003.
Wilson, R., Cook, E., D'Arrigo, R., Riedwyl, N., Evans, M. E., Tudhope, A., and Allan, R.: Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections, J. Quat. Sci., 25, 62–78, 2010.
Wittenberg, A.: Are historical records sufficient to constrain ENSO simulations?, Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710, 2009.
Wittenberg, A. T., Rosati, A., Lau, N.-C., and Ploshay, J. J.: GFDL's CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO, J. Climate, 19, 698–722, 2006.
Wolff, C., Haug, G. H., Timmermann, A., Sinninghe Damsté, J. S., Brauer, A., Sigman, D. M., Cane, M. A., and Verschuren, D.: Reduced Interannual Rainfall Variability in East Africa During the Last Ice Age, Science, 333, 743–747, 2011.
Zhang, R. H., Rothstein, L. M., and Busalacchi, A. J.: Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean, Nature, 391, 879–883, 1998.