Articles | Volume 9, issue 4
https://doi.org/10.5194/cp-9-1505-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-9-1505-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Northward advection of Atlantic water in the eastern Nordic Seas over the last 3000 yr
C. V. Dylmer
Université de Bordeaux, CNRS, UMR5805 EPOC, Talence, France
J. Giraudeau
Université de Bordeaux, CNRS, UMR5805 EPOC, Talence, France
F. Eynaud
Université de Bordeaux, CNRS, UMR5805 EPOC, Talence, France
Department of Geology, University of Tromsoe, Tromsoe, Norway
A. De Vernal
GEOTOP, Université du Québec à Montréal, Montréal, Canada
Related authors
C. V. Dylmer, J. Giraudeau, V. Hanquiez, and K. Husum
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-15077-2013, https://doi.org/10.5194/bgd-10-15077-2013, 2013
Revised manuscript has not been submitted
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Kevin Zoller, Jan Sverre Laberg, Tom Arne Rydningen, Katrine Husum, and Matthias Forwick
Clim. Past, 19, 1321–1343, https://doi.org/10.5194/cp-19-1321-2023, https://doi.org/10.5194/cp-19-1321-2023, 2023
Short summary
Short summary
Marine geologic data from NE Greenland provide new information about the behavior of the Greenland Ice Sheet from the last glacial period to present. Seafloor landforms suggest that a large, fast-flowing ice stream moved south through southern Dove Bugt. This region is believed to have been deglaciated from at least 11.4 ka cal BP. Ice in an adjacent fjord, Bessel Fjord, may have retreated to its modern position by 7.1 ka cal BP, and the ice halted or readvanced multiple times upon deglaciation.
Claire Waelbroeck, Jerry Tjiputra, Chuncheng Guo, Kerim H. Nisancioglu, Eystein Jansen, Natalia Vázquez Riveiros, Samuel Toucanne, Frédérique Eynaud, Linda Rossignol, Fabien Dewilde, Elodie Marchès, Susana Lebreiro, and Silvia Nave
Clim. Past, 19, 901–913, https://doi.org/10.5194/cp-19-901-2023, https://doi.org/10.5194/cp-19-901-2023, 2023
Short summary
Short summary
The precise geometry and extent of Atlantic circulation changes that accompanied rapid climate changes of the last glacial period are still unknown. Here, we combine carbon isotopic records from 18 Atlantic sediment cores with numerical simulations and decompose the carbon isotopic change across a cold-to-warm transition into remineralization and circulation components. Our results show that the replacement of southern-sourced by northern-sourced water plays a dominant role below ~ 3000 m depth.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Ingrid Leirvik Olsen, Tom Arne Rydningen, Matthias Forwick, Jan Sverre Laberg, and Katrine Husum
The Cryosphere, 14, 4475–4494, https://doi.org/10.5194/tc-14-4475-2020, https://doi.org/10.5194/tc-14-4475-2020, 2020
Short summary
Short summary
We present marine geoscientific data from Store Koldewey Trough, one of the largest glacial troughs offshore NE Greenland, to reconstruct the ice drainage pathways, ice sheet extent and ice stream dynamics of this sector during the last glacial and deglaciation. The complex landform assemblage in the trough reflects a dynamic retreat with several periods of stabilization and readvances, interrupting the deglaciation. Estimates indicate that the ice front locally retreated between 80–400 m/year.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Aurélie Marcelle Renée Aubry, Stijn De Schepper, and Anne de Vernal
J. Micropalaeontol., 39, 41–60, https://doi.org/10.5194/jm-39-41-2020, https://doi.org/10.5194/jm-39-41-2020, 2020
Short summary
Short summary
We used organic-walled microfossils to better define the Plio–Pleistocene transition (2.56 Ma) that is associated with the intensification of the Northern Hemisphere glaciation. The disappearance of species around 2.75 Ma reflects an ecological response accompanying the Greenland ice sheet growth.
A strong regionalism marks the Labrador Sea and suggests cooler conditions than elsewhere in the North Atlantic, although our zone boundaries are contemporaneous with the eastern North Atlantic.
Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne deVernal, Dmitry Divine, Johannes P. Werner, Anne Hormes, Atte Korhola, and Hans W. Linderholm
Clim. Past, 14, 101–116, https://doi.org/10.5194/cp-14-101-2018, https://doi.org/10.5194/cp-14-101-2018, 2018
Short summary
Short summary
Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from North Atlantic, Siberia and Alaska regionally averaged records. A focus on the last 2 centuries shows a climate variability linked to anthropogenic forcing but also a multidecadal variability likely due to regional natural processes acting on the internal climate system. It is an important issue to understand multidecadal variabilities occurring in the instrumental data.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Aurélie Penaud, Frédérique Eynaud, Antje Helga Luise Voelker, and Jean-Louis Turon
Biogeosciences, 13, 5357–5377, https://doi.org/10.5194/bg-13-5357-2016, https://doi.org/10.5194/bg-13-5357-2016, 2016
Short summary
Short summary
This paper presents new analyses conducted at high resolution in the Gulf of Cadiz over the last 50 ky. Palaeohydrological changes in these subtropical latitudes are discussed through dinoflagellate cyst assemblages but also dinocyst transfer function results, implying sea surface temperature and salinity as well as annual productivity reconstructions. This study is thus important for our understanding of past and future productivity regimes, also implying consequences on the biological pump.
Majda Nourelbait, Ali Rhoujjati, Abdelfattah Benkaddour, Matthieu Carré, Frederique Eynaud, Philippe Martinez, and Rachid Cheddadi
Clim. Past, 12, 1029–1042, https://doi.org/10.5194/cp-12-1029-2016, https://doi.org/10.5194/cp-12-1029-2016, 2016
Short summary
Short summary
The present study is related the climate changes and their environmental impacts during the last 6 ky from a fossil record collected in the Middle Atlas, Morocco. We used the reconstruction of three climate variables and geo-chemical elements to evaluate the relationships between all the environmental variables. In summary, this present study confirms the overall climate stability over the last 6 ky and highlights the presence of a short and abrupt climate event at about 5.2 ka cal BP.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
M. Guillevic, L. Bazin, A. Landais, C. Stowasser, V. Masson-Delmotte, T. Blunier, F. Eynaud, S. Falourd, E. Michel, B. Minster, T. Popp, F. Prié, and B. M. Vinther
Clim. Past, 10, 2115–2133, https://doi.org/10.5194/cp-10-2115-2014, https://doi.org/10.5194/cp-10-2115-2014, 2014
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
G. Milzer, J. Giraudeau, S. Schmidt, F. Eynaud, and J. Faust
Clim. Past, 10, 305–323, https://doi.org/10.5194/cp-10-305-2014, https://doi.org/10.5194/cp-10-305-2014, 2014
S. M. P. Berben, K. Husum, P. Cabedo-Sanz, and S. T. Belt
Clim. Past, 10, 181–198, https://doi.org/10.5194/cp-10-181-2014, https://doi.org/10.5194/cp-10-181-2014, 2014
D. E. Groot, S. Aagaard-Sørensen, and K. Husum
Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, https://doi.org/10.5194/cp-10-51-2014, 2014
T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann
Biogeosciences, 10, 7347–7359, https://doi.org/10.5194/bg-10-7347-2013, https://doi.org/10.5194/bg-10-7347-2013, 2013
C. V. Dylmer, J. Giraudeau, V. Hanquiez, and K. Husum
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-15077-2013, https://doi.org/10.5194/bgd-10-15077-2013, 2013
Revised manuscript has not been submitted
G. Milzer, J. Giraudeau, J. Faust, J. Knies, F. Eynaud, and C. Rühlemann
Biogeosciences, 10, 4433–4448, https://doi.org/10.5194/bg-10-4433-2013, https://doi.org/10.5194/bg-10-4433-2013, 2013
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Holocene
Response of biological productivity to North Atlantic marine front migration during the Holocene
Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene
Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years
Reconstruction of Holocene oceanographic conditions in eastern Baffin Bay
Multiproxy evidence of the Neoglacial expansion of Atlantic Water to eastern Svalbard
Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?
Holocene hydrography evolution in the Alboran Sea: a multi-record and multi-proxy comparison
Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event
The 4.2 ka event, ENSO, and coral reef development
Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea
Neoglacial climate anomalies and the Harappan metamorphosis
Atlantic Water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation
Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea
Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records
Southern Hemisphere anticyclonic circulation drives oceanic and climatic conditions in late Holocene southernmost Africa
Holocene evolution of the North Atlantic subsurface transport
Changes in Holocene meridional circulation and poleward Atlantic flow: the Bay of Biscay as a nodal point
Hydrological variations of the intermediate water masses of the western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals
Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach
Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic
Late Weichselian and Holocene palaeoceanography of Storfjordrenna, southern Svalbard
Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions
The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event
Reconstruction of Atlantic water variability during the Holocene in the western Barents Sea
Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records
Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Annalena A. Lochte, Ralph Schneider, Markus Kienast, Janne Repschläger, Thomas Blanz, Dieter Garbe-Schönberg, and Nils Andersen
Clim. Past, 16, 1127–1143, https://doi.org/10.5194/cp-16-1127-2020, https://doi.org/10.5194/cp-16-1127-2020, 2020
Short summary
Short summary
The Labrador Sea is important for the modern global thermohaline circulation system through the formation of Labrador Sea Water. However, the role of the southward flowing Labrador Current in Labrador Sea convection is still debated. In order to better assess its role in deep-water formation and climate variability, we present high-resolution mid- to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years.
Katrine Elnegaard Hansen, Jacques Giraudeau, Lukas Wacker, Christof Pearce, and Marit-Solveig Seidenkrantz
Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, https://doi.org/10.5194/cp-16-1075-2020, 2020
Short summary
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.
Joanna Pawłowska, Magdalena Łącka, Małgorzata Kucharska, Jan Pawlowski, and Marek Zajączkowski
Clim. Past, 16, 487–501, https://doi.org/10.5194/cp-16-487-2020, https://doi.org/10.5194/cp-16-487-2020, 2020
Short summary
Short summary
Paleoceanographic changes in Storfjorden during the Neoglacial (the last
4000 years) were reconstructed based on microfossil and ancient DNA records. Environmental changes were steered mainly by the interaction between the inflow of Atlantic Water (AW) and sea ice cover. Warming periods were associated with AW inflow and sea ice melting, stimulating primary production. The cold phases were characterized by densely packed sea ice, resulting in limited productivity.
Raymond S. Bradley and Jostein Bakke
Clim. Past, 15, 1665–1676, https://doi.org/10.5194/cp-15-1665-2019, https://doi.org/10.5194/cp-15-1665-2019, 2019
Short summary
Short summary
We review paleoceanographic and paleoclimatic records from the northern North Atlantic to assess the nature of climatic conditions at 4.2 ka BP. There was a general decline in temperatures after ~ 5 ka BP, which led to the onset of neoglaciation. Although a few records do show a distinct anomaly around 4.2 ka BP (associated with a glacial advance), this is not widespread and we interpret it as a local manifestation of the overall climatic deterioration that characterized the late Holocene.
Albert Català, Isabel Cacho, Jaime Frigola, Leopoldo D. Pena, and Fabrizio Lirer
Clim. Past, 15, 927–942, https://doi.org/10.5194/cp-15-927-2019, https://doi.org/10.5194/cp-15-927-2019, 2019
Short summary
Short summary
We present a new high-resolution sea surface temperature (SST) reconstruction for the Holocene (last 11 700 years) in the westernmost Mediterranean Sea. We identify three sub-periods: the Early Holocene with warmest SST; the Middle Holocene with a cooling trend ending at 4200 years, which is identified as a double peak cooling event that marks the transition between the Middle and Late Holocene; and the Late Holocene with very different behaviour in both long- and short-term SST variability.
Bassem Jalali, Marie-Alexandrine Sicre, Julien Azuara, Violaine Pellichero, and Nathalie Combourieu-Nebout
Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, https://doi.org/10.5194/cp-15-701-2019, 2019
Lauren T. Toth and Richard B. Aronson
Clim. Past, 15, 105–119, https://doi.org/10.5194/cp-15-105-2019, https://doi.org/10.5194/cp-15-105-2019, 2019
Short summary
Short summary
We explore the hypothesis that a shift in global climate 4200 years ago (the 4.2 ka event) was related to the El Niño–Southern Oscillation (ENSO). We summarize records of coral reef development in the tropical eastern Pacific, where intensification of ENSO stalled reef growth for 2500 years starting around 4.2 ka. Because corals are highly sensitive to climatic changes, like ENSO, we suggest that records from coral reefs may provide important clues about the role of ENSO in the 4.2 ka event.
Alena Giesche, Michael Staubwasser, Cameron A. Petrie, and David A. Hodell
Clim. Past, 15, 73–90, https://doi.org/10.5194/cp-15-73-2019, https://doi.org/10.5194/cp-15-73-2019, 2019
Short summary
Short summary
A foraminifer oxygen isotope record from the northeastern Arabian Sea was used to reconstruct winter and summer monsoon strength from 5.4 to 3.0 ka. We found a 200-year period of strengthened winter monsoon (4.5–4.3 ka) that coincides with the earliest phase of the Mature Harappan period of the Indus Civilization, followed by weakened winter and summer monsoons by 4.1 ka. Aridity spanning both rainfall seasons at 4.1 ka may help to explain some of the observed archaeological shifts.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Martin Bartels, Jürgen Titschack, Kirsten Fahl, Rüdiger Stein, Marit-Solveig Seidenkrantz, Claude Hillaire-Marcel, and Dierk Hebbeln
Clim. Past, 13, 1717–1749, https://doi.org/10.5194/cp-13-1717-2017, https://doi.org/10.5194/cp-13-1717-2017, 2017
Short summary
Short summary
Multi-proxy analyses (i.a., benthic foraminiferal assemblages and sedimentary properties) of a marine record from Woodfjorden at the northern Svalbard margin (Norwegian Arctic) illustrate a significant contribution of relatively warm Atlantic water to the destabilization of tidewater glaciers, especially during the deglaciation and early Holocene (until ~ 7800 years ago), whereas its influence on glacier activity has been fading during the last 2 millennia, enabling glacier readvances.
Masanobu Yamamoto, Seung-Il Nam, Leonid Polyak, Daisuke Kobayashi, Kenta Suzuki, Tomohisa Irino, and Koji Shimada
Clim. Past, 13, 1111–1127, https://doi.org/10.5194/cp-13-1111-2017, https://doi.org/10.5194/cp-13-1111-2017, 2017
Short summary
Short summary
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the Beaufort Gyre (BG) strength during the Holocene, consistent with a decrease in summer insolation. Multi-centennial variability in BG circulation is consistent with fluctuations in solar irradiance. The Bering Strait inflow shows intensification during the middle Holocene, associated with sea-ice retreat and an increase in marine production in the Chukchi Sea, which is attributed to a weaker Aleutian Low.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Annette Hahn, Enno Schefuß, Sergio Andò, Hayley C. Cawthra, Peter Frenzel, Martin Kugel, Stephanie Meschner, Gesine Mollenhauer, and Matthias Zabel
Clim. Past, 13, 649–665, https://doi.org/10.5194/cp-13-649-2017, https://doi.org/10.5194/cp-13-649-2017, 2017
Short summary
Short summary
Our study demonstrates that a source to sink analysis in the Gouritz catchment can be used to obtain valuable paleoclimatic information form the year-round rainfall zone. In combination with SST reconstructions these data are a valuable contribution to the discussion of Southern Hemisphere palaeoenvironments and climate variability (in particular atmosphere–ocean circulation and hydroclimate change) in the South African Holocene.
Janne Repschläger, Dieter Garbe-Schönberg, Mara Weinelt, and Ralph Schneider
Clim. Past, 13, 333–344, https://doi.org/10.5194/cp-13-333-2017, https://doi.org/10.5194/cp-13-333-2017, 2017
Short summary
Short summary
We reconstruct changes in the warm water transport from the subtropical to the subpolar North Atlantic over the last 10 000 years. We use stable isotope and Mg / Ca ratios measured on surface and subsurface dwelling foraminifera. Results indicate an overall stable warm water transport at surface. The northward transport at subsurface evolves stepwise and stabilizes at 7 ka BP on the modern mode. These ocean transport changes seem to be controlled by the meltwater inflow into the North Atlantic.
Yannick Mary, Frédérique Eynaud, Christophe Colin, Linda Rossignol, Sandra Brocheray, Meryem Mojtahid, Jennifer Garcia, Marion Peral, Hélène Howa, Sébastien Zaragosi, and Michel Cremer
Clim. Past, 13, 201–216, https://doi.org/10.5194/cp-13-201-2017, https://doi.org/10.5194/cp-13-201-2017, 2017
Short summary
Short summary
In the boreal Atlantic, the subpolar and subtropical gyres (SPG and STG respectively) are key elements of the Atlantic Meridional Overturning Circulation (AMOC) cell and contribute to climate modulations over Europe. Here we document the last 10 kyr evolution of sea-surface temperatures over the North Atlantic with a focus on new data obtained from an exceptional sedimentary archive retrieved the southern Bay of Biscay, enabling the study of Holocene archives at (infra)centennial scales.
Quentin Dubois-Dauphin, Paolo Montagna, Giuseppe Siani, Eric Douville, Claudia Wienberg, Dierk Hebbeln, Zhifei Liu, Nejib Kallel, Arnaud Dapoigny, Marie Revel, Edwige Pons-Branchu, Marco Taviani, and Christophe Colin
Clim. Past, 13, 17–37, https://doi.org/10.5194/cp-13-17-2017, https://doi.org/10.5194/cp-13-17-2017, 2017
Mercè Cisneros, Isabel Cacho, Jaime Frigola, Miquel Canals, Pere Masqué, Belen Martrat, Marta Casado, Joan O. Grimalt, Leopoldo D. Pena, Giulia Margaritelli, and Fabrizio Lirer
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, https://doi.org/10.5194/cp-12-849-2016, 2016
Short summary
Short summary
We present a high-resolution multi-proxy study about the evolution of sea surface conditions along the last 2700 yr in the north-western Mediterranean Sea based on five sediment records from two different sites north of Minorca. The novelty of the results and the followed approach, constructing stack records from the studied proxies to preserve the most robust patterns, provides a special value to the study. This complex period appears to have significant regional changes in the climatic signal.
C. Consolaro, T. L. Rasmussen, G. Panieri, J. Mienert, S. Bünz, and K. Sztybor
Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, https://doi.org/10.5194/cp-11-669-2015, 2015
Short summary
Short summary
A sediment core collected from a pockmark field on the Vestnesa Ridge (~80N) in the Fram Strait is presented. Our results show an undisturbed sedimentary record for the last 14 ka BP and negative carbon isotope excursions (CIEs) during the Bølling-Allerød interstadials and during the early Holocene. Both CIEs relate to periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere, suggesting an apparent correlation with warm climatic events.
M. Łącka, M. Zajączkowski, M. Forwick, and W. Szczuciński
Clim. Past, 11, 587–603, https://doi.org/10.5194/cp-11-587-2015, https://doi.org/10.5194/cp-11-587-2015, 2015
Short summary
Short summary
Storfjordrenna was deglaciated about 13,950 cal yr BP. During the transition from the sub-glacial to glaciomarine setting, Arctic Waters dominated its hydrography. However, the waters were not uniformly cold and experienced several warmer spells. Atlantic Water began to flow onto the shelves off Svalbard and into Storfjorden during the early Holocene, leading to progressive warming and significant glacial melting. A surface-water cooling and freshening occurred in late Holocene.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
A. D. Tegzes, E. Jansen, and R. J. Telford
Clim. Past, 10, 1887–1904, https://doi.org/10.5194/cp-10-1887-2014, https://doi.org/10.5194/cp-10-1887-2014, 2014
D. E. Groot, S. Aagaard-Sørensen, and K. Husum
Clim. Past, 10, 51–62, https://doi.org/10.5194/cp-10-51-2014, https://doi.org/10.5194/cp-10-51-2014, 2014
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
G. Siani, M. Magny, M. Paterne, M. Debret, and M. Fontugne
Clim. Past, 9, 499–515, https://doi.org/10.5194/cp-9-499-2013, https://doi.org/10.5194/cp-9-499-2013, 2013
Cited articles
Andersen, C., Koc, N., Jennings, A., and Andrews, J. T.: Non-uniform response of the major surface currents in the Nordic Seas to insolation forcing: Implications for the Holocene climate variability, Paleoceanography, 19, PA2003, https://doi.org/10.1029/2002PA000873, 2004.
Andersson, C., Risebrobakken, B., Jansen, E., and Dahl, S. O.: Late Holocene surface ocean conditions of the Norwegian Sea (Vøring Plateau), Paleoceanography, 18, PA1044, https://doi.org/10.1029/2001PA000654, 2003.
Andresen, C. S., McCarthy, D. J., Dylmer, C. V., Seidenkrantz, M.-S., Kuijpers, A., and Lloyd, J. M.: Interaction between subsurface ocean waters and calving of the Jakobshavn Isbræ during the late Holocene, Holocene, 21, 211–224, 2011.
Andresen, C. S., Hansen, M. J., Seidenkrantz, M-S., Jennings, A. E., Knudsen, M. F., Nørgaard-Pedersen, N., Larsen, N. K., Kuijpers, A., and Pearce, C.: Mid- to late-Holocene oceanographic variability on the Southeast Greenland shelf, Holocene, 23, 167–178, 2012.
Andrews, J. T. and Giraudeau, J.: Multi-proxy records showing significant Holocene variability: the inner N. Iceland shelf (Húnaflói), Quaternary Sci. Rev., 22, 175–193, 2003.
Andruleit, H.: A filtration technique for quantitative studies of coccoliths, Mar. Micropaleontol., 42, 403–406, 1996.
Andruleit, H.: Coccolithophore fluxes in the Norwegian-Greenland Sea: Seasonality and assemblage alterations, Mar. Micropaleontol., 31, 45–64, 1997.
Andruleit, H. and Baumann, K.-H.: History of the last deglaciation and Holocene in the Nordic Seas as revealed by coccolithophore assemblages, Mar. Micropaleontol., 35, 179–201, 1998.
Baumann, K.-H., Andruleit, H., and Samtleben, C.: Coccolithosphores in the Nordic Seas: Comparison of living communities with surface sediment assemblages, Deep-Sea Res. Pt. II, 47, 1743–1772, 2000.
Beaufort, L. and Heussner, S.: Seasonal dynamics of calcareous nannoplankton on a West European continental margin: the Bay of Biscay, Mar. Micropaleontol., 43, 27–55, 2001.
Berben, S., Husum, K., Cabedo-Sanz, P., and Belt, S.: Holocene sub centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea, in preparation, 2013.
Birks, C. J. A. and Koç, N.: A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea, Boreas, 31, 323–344, 2002.
Bjune, A. E., Seppä, H., and Birks, H. J. B.: Quantitative summer-temperature reconstructions for the last 2000 yr based on pollen-stratigraphical data from northern Fennoscandia, J. Paleolimnol., 41, 43–56, 2009.
Blindheim, J. and Østerhus, S.: The Nordic seas, main oceanographic features, in: The Nordic Seas: an integrated perspective Oceanography, Climatology, Biochemistry, and Modelling, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., Geophys. Monogr. Ser., 158, 11–37, 2005.
Blindheim, J., Borovkov, V., Hansen, B., Malmberg, S. Aa., Turrell, W. R., and Østerhus, S.: Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing, Deep-Sea Res. Pt. I, 47, 655–680, 2000.
Buch, E.: A monograph on the physical oceanography of the Greenland waters, Danish Meteorological Institute Scientific Report 00-12, Greenland Fisheries Research Insitute publication 15 series, 0-244, 1990.
Cachão, M. and Moita, M. T.: Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia, Mar. Micropaleontol., 39, 131–155, 2000.
Calvo, E., Grimalt, J., and Jansen, E.: High resolution U^k37 sea surface temperature reconstruction in the Norwegian Sea during the Holocene, Quaternary Sci. Rev., 21, 1385–1394, 2002.
Carstens, J., Hebbeln, D., and Wefer, G.: Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait), Mar. Micropaleontol., 29, 257–269, 1997.
Cronin, T. M., Thunell, R., Dwyer, G. S., Saenger, C., Mann, M. E., Vann, C., and Seal, R. R.: Multiproxy evidence of Holocene climate variability from estuarine sediments, eastern North America, Paleoceanography, 20, PA4006, https://doi.org/10.1029/2005PA001145, 2005.
D'Andrea, W. J., Vaillencourt, D. A., Balascio, N. L., Werner, A., Roof, S. R., Reteller, M., and Bradley, R. S.: Mild Little Ice Age and unprecedented recent warmth in an 800 year lake sediment record from Svalbard, Geology, 40, P1007, https://doi.org/10.1130/G33365.1, 2012.
Divine, D. V. and Dick, C.: Historical variability of sea ice edge position in the Nordic Seas, J. Geophys. Res., 111, CO1001, https://doi.org/10.1029/2004JC002851, 2006.
Duplessy, J.-C., Ivanova, E., Murdmaa, I., Paterne, M., and Labeyrie, L.: Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean, Boreas, 30, 2–16, 2001.
Dylmer, C. V., Giraudeau, J., Hanquiez, V., and Husum, K.: The coccolithophores Emiliania Huxleyi and Coccolithus pelagicus: extant populations from the Norwegian-Iceland Sea and Fram Strait, in preparation, 2013.
Furevik, T. and Nilsen, J. E. Ø.: Large-Scale Atmospheric Circulation Variability and its Impacts on the Nordic Seas Ocean Climate – A Review, Geophys. Monogr. Ser., 158, 105–136, 2005.
Gillett, N. P., Graf, H. F., and Osborn, T. J.: Climate Change and the North Atlantic Oscillation, AGU Geophys. Monogr., 134, in: The North Atlantic Oscillation: Climatic Significance and Environmental Impact, edited by: Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., American Geophysical Union,Washington, DC, 1–36, 2003.
Giraudeau, J., Grelaud, M., Solignac, S., Andrews, J. T., Moros, M., and Jansen, E.: Millenial-scale variability in Atlantic water advection to the Nordic Seas derived from Holocene coccolith concentration records, Quaternary Sci. Rev., 29, 1276–1287, 2010.
Graf, H. F., Perlwitz, J., and Kirchner, I.: Northern Hemisphere tropospheric mid-latitude circulation after violent volcanic eruptions, report no. 107, Max-Planck-Institut füur Meteorologie, Hamburg, 1–18, 1993.
Gray, S. T., Graumlich, L. J., Betancourt, J. L., and Pederson, G. T.: A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D., Geophys. Res. Lett., 31, L12205, https://doi.org/10.1029/2004GL019932, 2004.
Groot, D. E., Sørensen, S. Aa., and Husum, K.: Holocene Atlantic Water inflow to the western Barents Sea margin, in preparation, 2013.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D., Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and Telford, R. J.: Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26, 3423–3440, 2007.
Hald, M., Salomonsen, G. R., Husum, K., and Wilson, L. J.: A 2000 year record of Atlantic Water temperature variability from the Malangen Fjord, northeastern North Atlantic, Holocene, 21, 1049–1059, 2011.
Hansen, B. and Østerhus, S.: North-Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45, 109–208, 2000.
Hebbeln, D., Henrich, R., and Baumann, K. -H.: Paleoceanography of the Last Interglacial/ Glacial Cycle in the Polar North Atlantic, Quaternary Sci. Rev., 17, 125–153, 1998.
Herrle, J. O. and Bollmann, J.: Accuracy and reproducibility of absolute nannoplankton abundances using filtration techniques in combination with a rotary splitter, Mar. Micropaleontol., 53, 389–404, 2004.
Hopkins, T. S.: The GIN sea – a synthesis of its physical oceanography and literature review 1972–1985, Earth-Sci. Rev., 30, 175–318, 1991.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 269, 676–679, 1995.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An overview of the North Atlantic Oscillation, AGU Geophys. Monogr., 134, in: The North Atlantic Oscillation: Climatic Significance and Environmental Impact, edited by: Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., American Geophysical Union, Washington, DC, 1–36, 2003.
Husum, K. and Hald, M.: Arctic planktic foraminiferal assemblages: Implications for subsurface temperature reconstructions, Mar. Micropaleontol., 96–97, 38–47, 2012.
Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J. T.: A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf, Holocene, 12, 49–58, 2002.
Kaufman, D. S., Schneider, D. P., Mckay, N. P., Ammann, C. M., Bradley, R. S., Briffa, K. R., Miller, G. H., Otto-Bliesner, B. L., Overpeck, J. T., and Vinther, B. M., Arctic Lakes 2k Projekt members: Recent warming reverses long-term Arctic cooling, Science, 325, 1236–1239, 2009.
Kinnard, C., Zdanowicz, C. M., Fisher, D. A., Isaksson, E., de Vernal, A., and Thompson, L. G.: Reconstructed changes in Arctic sea ice over the past 1.450 years, Nature, 479, 509–512, 2011.
Kwok, R., Cunningham, G. F., and Pang, S. S.: Fram Strait sea-ice outflow, J. Geophys. Res., 109, C01009, https://doi.org/10.1029/2003JC001785, 2004.
Lund, D. C., Lynch-Stieglitz, J., and Curry, W. B.: Gulf Stream density structure and transport during the past millenium, Nat. Lett., 444, 601–604, 2006.
Macias-Fauria, M., Grinsted, A., Helama, S., Moore, J., Timonen, M., Martma, T., Isaksson, E., and Eronen, M.: Unprecedented low twentieth century winter sea-ice extent in the Western Nordic Seas since A.D. 1200, Clim. Dynam., 34, 781–795, 2009.
Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickson, R., Hurrell, J., McCartney, M., Saravanan, R., and Visbeck, M.: North Atlantic Climate Variability: Phenomena impacts and mechanisms, Int. J. Climatol., 21, 1863–1898, 2001.
Matthiessen, J., Baumann, K. H., Schröder-Ritzrau, A., Hass, C., Andruleit, H., Baumann, A., Jensen, S., Kohly, A., Pflaumann, U., Samtleben, C., Schäfer, P., and Thiede, J.: Distribution of calcareous, siliceous and organic-walled planktic microfossils in surface sediments of the Nordic Seas and their relation to surface-water masses, in: The northern North Atlantic: a changing environment, edited by: Schäfer, P., Ritzrau, W., Schlüter, M., and Thiede, J., Springer-Verlag, Berlin, 105–127, 2001.
Miettinen, A., Koç, N., Hall, I. R., Godtliebsen, F., and Divine, D.: North Atlantic sea surface temperatures and their relation to the North Atlantic Oscillation during the last 230 years, Clim. Dynam., 36, 533–543, 2011.
Miller, G. H., Geirsdòttir, A., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012.
Moros, M., Emeis, K., Risebrobakken, B., Snowball, I., Kuijpers, A., McManus, J., and Jansen, E.: Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland, Quaternary Sci. Rev., 23, 2113–2126, 2004.
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., and Jansen, E.: Holocene cooling culminates in sea-ice oscillations in Fram Strait, Quaternary Sci. Rev., 47, 1–14, 2012.
Nesje, A., Kvamme, M., Rye, N., and Løvlie, R.: Holocene glacial and climate history of the Jostedalsbreen region, western Norway; evidence from lake sediments and terrestrial deposites, Quaternary Sci. Rev., 10, 87–114, 1991.
Nesje, A., Matthews, J. A., Dahl, S. O., Berrisford, M. S., and Andersson, C.: Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records, Holocene, 11, 267–280, 2001.
Nilsen, J. E. Ø., Gao, Y., Drange, H., Furevik, T., and Bentsen, M.: Simulated North Atlantic-Nordic Seas water mass exchanges in an isopycnic coordinate OGCM, Geophys. Res. Lett., 30, 1536, https://doi.org/10.1029/2002GL016597, 2003.
Olsen, J., Anderson, N. J., and Knudsen, M. F.: Variability of the North Atlantic Oscillation over the last 5,200 years, Nat. Geosci., 5, 808–812, 2012.
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G.: Arctic environmental change of the last four centuries, Science, 278, 1251–1256, 1997.
Porter, S. C. and Denton, G. H.: Chronology of neoglaciation in the North American Cordillera, Am. J. Sci., 265, 177–210, 1967.
Reimer, P. J.: IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 51, 1111–1150, 2009.
Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., and Hevrøy, K.: A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas, Paleoceanography, 18, PA1017, https://doi.org/10.1029/2002PA000764, 2003.
Risebrobakken, B., Moros, M., Ivanova, E. V., Chistyakova, N., and Rosenberg, R.: Climate and oceanographic variability in the SW Barents Sea during the Holocene, Holocene, 20, 609–621, 2010.
Rüther, D. C., Bjarnadòttir, L. R., Junttila, J., Husum, K., Rasmussen, T. L., Lucchi, R. G., and Andreassen, K.: Pattern and timing of the northwestern Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition, Boreas, 41, 494–512, 2012
Saloranta, T. M. and Svendsen, H.: Across the Arctic front west of Spitsbergen: high-resolution CTD sections from 1998–2000, Polar Res., 20, 177–184, 2001.
Samtleben, C. and Schröder, A.: Living cocolithophore communities in the Norwegian-Greenland Sea and their record in sediments, Mar. Micropaleontol., 19, 333–354, 1992.
Samtleben, C., Schäfer, P., Andruleit, H., Baumann, A., Baumann, K. H., Kohly, A., Matthiessen, J., and Schröder-Ritzrau, A.: Plankton in the Norwegian-Greenland Sea: from living communities to sediment assemblages – an actualistic approach, Geol. Rundsch., 84, 108–136, 1995.
Sarnthein, M., Van Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M., Pflaumann, U., and Schulz, M.: Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, Boreas, 32, 447–461, 2003.
Schröder-Ritzrau, A., Andruleit, H., Jensen, S., Samtleben, C., Schäfer, P., Matthiessen, J., Hass, C., Kohly, A., and Thiede, J.: Distribution, export and alteration of fossilizable plankton in the Nordic Seas, in: The Northern North Atlantic: A Changing Environment, edited by: Schäfer, P., Ritzrau, W., Schlüter, M., and Thiede, J., Springer, Berlin, 81–104, 2001.
Seidenkrantz, M.-S., Roncaglia, L., Fischel, A., Heilmann-Clausen, C., Kuijpers, A., and Moros, M.: Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland, Mar. Micropaleontol., 68, 66–83, 2008.
Sejrup, H. P., Haflidason, H., and Andrews, J. T.: A Holocene North Atlantic SST record and regional climate variability, Quaternary Sci. Rev., 30, 3181–3195, 2011.
Skagseth, Ø., Furevik, T., Ingvaldsen, R., Loeng, H., Mork, K. A., Orvik, K. A., and Ozhigin, V.: Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Seas, in: Arctic-Subarctic Ocean Fluxes: Defining the role of the Northern Seas in Climate, edited by: Dickson, R., Meincke, J., and Rhines, P., Springer Netherlands, 25–64, 2008.
Sorteberg, A. and Kvingedal B.: Atmospheric forcing on the Barents Sea Winter Ice Extent, J. Climate, 19, 4772–4784, 2006.
Spielhagen, R. F., Werner, K., Aagaard-Sørensen, S., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T. M., and Hald, M.: Enhanced modern heat transfer to the Arctic by Warm Atlantic Water, Science, 331, 450–453, 2011.
Stuiver, M. and Reimer, P. J.: Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon, 35, 215–230, 1993.
Svendsen, J. I. and Mangerud, J.: Holocene glacial and climatic variations on Spitsbergen, Svalbard, Holocene, 7, 45–57, 1997.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank, D. C.: Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly, Science, 324, 78–80, 2009.
Vinje, T.: Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998, J. Climate, 14, 255–267, 2001.
Visbeck, M., Chassignet, E. P., Curry, R. G., Delworth, T. L., Dickson, R. R., and Krahmann, G.: The Ocean's response to North Atlantic Oscillation variability, AGU Geophys. Monogr., 134, in: The North Atlantic Oscillation: Climatic Significance and Environmental Impact, edited by: Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., American Geophysical Union, Washington, D. C., 113–146, 2003.
Wanamaker Jr., A. D., Butle, P. G., Scourse, J. D., Heinemeie, J., Eiríksson, J., Knudsen, K. L., and Richardson, C. A.: Surface changes in the North Atlantic meridional overturning circulation during the last millenium, Nat. Commun., 3, 899, https://doi.org/10.1038/ncomms1901, 2012.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.: Structure and origine of Holocene cold events, Quaternary Sci. Rev., 30, 3109–3123, 2011.
Wassmann, P., Reigstad, M., Haug, T., Rudels, B., Carroll, M. L., Hop, H., Gabrielsen, G. W., Falk-Petersen, S., Denisenko, S. G., Arashkevich, E., Slagstad, D., and Pavlova, O.: Food webs and carbon flux in the Barents Sea, Prog. Oceanogr., 71, 232–287, 2006.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H. C., Kandiano, E., and Zamelczyk, K.: Atlantic Water advection to the eastern Fram Strait – Multiproxy evidence for late Holocene varibility, Palaeogeogr. Palaeocl., 308, 264–276, 2011.
Wilson, L. J., Hald, M., and Godtliebsen, F.: Foraminiferal faunal evidence of twentieth-century Barents Sea warming, Holocene, 21, 527–537, 2011.
Winter, A., Miller, T., Kushnir, Y., Sinha, A., Timmermann, A., Jury, M. R., Gallup, C., Cheng, H., and Edwards, R. L.: Evidence for 800 years of North Atlantic multi-decadal variability from a Puerto Rican speleothem, Earth Planet. Sc. Lett., 308, 23–28, 2011.
Ziveri, P., Kleijne, A., Conte, M., and Weber, J.: Coccolithophorid distribution and alkenone biomarker characterisation from the tropical Equatorial Atlantic, European Geophysical Society (EGS), Nice, XXVI General Assembly, 2001.