Articles | Volume 9, issue 3
https://doi.org/10.5194/cp-9-1345-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-1345-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr
J.-R. Riethdorf
Helmholtz Centre for Ocean Research Kiel (GEOMAR), Wischhofstr. 1–3, 24148 Kiel, Germany
Department of Ocean Floor Geoscience, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
D. Nürnberg
Helmholtz Centre for Ocean Research Kiel (GEOMAR), Wischhofstr. 1–3, 24148 Kiel, Germany
L. Max
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
R. Tiedemann
Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
S. A. Gorbarenko
Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Baltiskaya St. 43, 690041 Vladivostok, Russia
M. I. Malakhov
North Eastern Interdisciplinary Science Research Institute (NEISRI), Far Eastern Branch, Russian Academy of Sciences, Portovaya St. 16, 685000 Magadan, Russia
Related authors
No articles found.
Dirk Nürnberg, Akintunde Kayode, Karl J. F. Meier, and Cyrus Karas
Clim. Past, 18, 2483–2507, https://doi.org/10.5194/cp-18-2483-2022, https://doi.org/10.5194/cp-18-2483-2022, 2022
Short summary
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019, https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Short summary
Seawater salinity is an important factor when trying to reconstruct past ocean conditions. Foraminifera, small organisms living in the sea, produce shells that incorporate more Na at higher salinities. The accuracy of reconstructions depends on the fundamental understanding involved in the incorporation and preservation of the original Na of the shell. In this study, we unravel the Na composition of different components of the shell and describe the relative contribution of these components.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Vera D. Meyer, Jens Hefter, Gerrit Lohmann, Lars Max, Ralf Tiedemann, and Gesine Mollenhauer
Clim. Past, 13, 359–377, https://doi.org/10.5194/cp-13-359-2017, https://doi.org/10.5194/cp-13-359-2017, 2017
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
F. Kersten, R. Tiedemann, J. Fietzke, and M. Frische
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-4425-2013, https://doi.org/10.5194/cpd-9-4425-2013, 2013
Preprint withdrawn
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Millenial/D-O
Leeuwin Current dynamics over the last 60 kyr – relation to Australian ecosystem and Southern Ocean change
Plateaus and jumps in the atmospheric radiocarbon record – potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis
Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate
Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr
Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events
Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka)
Stratification of surface waters during the last glacial millennial climatic events: a key factor in subsurface and deep-water mass dynamics
Parallelisms between sea surface temperature changes in the western tropical Atlantic (Guiana Basin) and high latitude climate signals over the last 140 000 years
Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1
Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg / Ca and stable carbon and oxygen isotopes of benthic foraminifera
Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C)
Millennial meridional dynamics of the Indo-Pacific Warm Pool during the last termination
Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation
Persistent millennial-scale link between Greenland climate and northern Pacific Oxygen Minimum Zone under interglacial conditions
Deglacial intermediate water reorganization: new evidence from the Indian Ocean
Water mass evolution of the Greenland Sea since late glacial times
An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway
Timing and magnitude of equatorial Atlantic surface warming during the last glacial bipolar oscillation
Dirk Nürnberg, Akintunde Kayode, Karl J. F. Meier, and Cyrus Karas
Clim. Past, 18, 2483–2507, https://doi.org/10.5194/cp-18-2483-2022, https://doi.org/10.5194/cp-18-2483-2022, 2022
Short summary
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Pierre Burckel, Claire Waelbroeck, Yiming Luo, Didier M. Roche, Sylvain Pichat, Samuel L. Jaccard, Jeanne Gherardi, Aline Govin, Jörg Lippold, and François Thil
Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, https://doi.org/10.5194/cp-12-2061-2016, 2016
Short summary
Short summary
In this paper, we compare new and published Atlantic sedimentary Pa/Th data with Pa/Th simulated using stream functions generated under various climatic conditions. We show that during Greenland interstadials of the 20–50 ka period, the Atlantic meridional overturning circulation was very different from that of the Holocene. Moreover, southern-sourced waters dominated the Atlantic during Heinrich stadial 2, a slow northern-sourced water mass flowing above 2500 m in the North Atlantic.
M. Wary, F. Eynaud, M. Sabine, S. Zaragosi, L. Rossignol, B. Malaizé, E. Palis, J. Zumaque, C. Caulle, A. Penaud, E. Michel, and K. Charlier
Clim. Past, 11, 1507–1525, https://doi.org/10.5194/cp-11-1507-2015, https://doi.org/10.5194/cp-11-1507-2015, 2015
Short summary
Short summary
This study reports the hydrological variations recorded at different depths of the water column SW of the Faeroe Is. during the last glacial abrupt climatic events (Heinrich events and Dansgaard-Oeschger cycles). Our combined multiproxy and high-resolution approach allows us to evidence that 1) Greenland and Heinrich stadials were characterized by strong stratification of surface waters, 2) this surface stratification seems to have played a key role in the dynamics of the underlying water masses
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
C. M. Chiessi, S. Mulitza, G. Mollenhauer, J. B. Silva, J. Groeneveld, and M. Prange
Clim. Past, 11, 915–929, https://doi.org/10.5194/cp-11-915-2015, https://doi.org/10.5194/cp-11-915-2015, 2015
Short summary
Short summary
Here we show that temperatures in the western South Atlantic increased markedly during the major slowdown event of the Atlantic meridional overturning circulation (AMOC) of the last deglaciation. Over the adjacent continent, however, temperatures followed the rise in atmospheric carbon dioxide, lagging changes in oceanic temperature. Our records corroborate the notion that the long duration of the major slowdown event of the AMOC was fundamental in driving the Earth out of the last glacial.
Y. Kubota, K. Kimoto, T. Itaki, Y. Yokoyama, Y. Miyairi, and H. Matsuzaki
Clim. Past, 11, 803–824, https://doi.org/10.5194/cp-11-803-2015, https://doi.org/10.5194/cp-11-803-2015, 2015
A. Schmittner and D. C. Lund
Clim. Past, 11, 135–152, https://doi.org/10.5194/cp-11-135-2015, https://doi.org/10.5194/cp-11-135-2015, 2015
Short summary
Short summary
Model simulations of carbon isotope changes as a result of a reduction in the Atlantic Meridional Overturning Circulation (AMOC) agree well with sediment data from the early last deglaciation, supporting the idea that the AMOC was substantially reduced during that time period of global warming. We hypothesize, and present supporting evidence, that changes in the AMOC may have caused the coeval rise in atmospheric CO2, owing to a reduction in the efficiency of the ocean's biological pump.
L. Lo, C.-C. Shen, K.-Y. Wei, G. S. Burr, H.-S. Mii, M.-T. Chen, S.-Y. Lee, and M.-C. Tsai
Clim. Past, 10, 2253–2261, https://doi.org/10.5194/cp-10-2253-2014, https://doi.org/10.5194/cp-10-2253-2014, 2014
Short summary
Short summary
1. We have reconstructed new meridional thermal and precipitation stacked records in the Indo-Pacific Warm Pool (IPWP) during the last termination.
2. Meridional thermal gradient variations in the IPWP show tight links to the Northern Hemisphere millennial timescales event.
3. Anomalous warming in the south IPWP region could induce the southward shifting of the Intertropical Convergence Zone (ITCZ) in the IPWP during the Heinrich 1 and Younger Dryas events.
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
O. Cartapanis, K. Tachikawa, O. E. Romero, and E. Bard
Clim. Past, 10, 405–418, https://doi.org/10.5194/cp-10-405-2014, https://doi.org/10.5194/cp-10-405-2014, 2014
S. Romahn, A. Mackensen, J. Groeneveld, and J. Pätzold
Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, https://doi.org/10.5194/cp-10-293-2014, 2014
M. M. Telesiński, R. F. Spielhagen, and H. A. Bauch
Clim. Past, 10, 123–136, https://doi.org/10.5194/cp-10-123-2014, https://doi.org/10.5194/cp-10-123-2014, 2014
J. Zumaque, F. Eynaud, S. Zaragosi, F. Marret, K. M. Matsuzaki, C. Kissel, D. M. Roche, B. Malaizé, E. Michel, I. Billy, T. Richter, and E. Palis
Clim. Past, 8, 1997–2017, https://doi.org/10.5194/cp-8-1997-2012, https://doi.org/10.5194/cp-8-1997-2012, 2012
S. Weldeab
Clim. Past, 8, 1705–1716, https://doi.org/10.5194/cp-8-1705-2012, https://doi.org/10.5194/cp-8-1705-2012, 2012
Cited articles
Adkins, J. F. and Boyle, E. A.: Changing atmospheric Δ14C and the record of deep water paleoventilation ages, Paleoceanography, 12, 337–344, 1997.
Ahagon, N., Ohkushi, K., Uchida, M., and Mishima, T.: Mid-depth circulation in the northwest Pacific during the last deglaciation: Evidence from foraminiferal radiocarbon ages. Geophys. Res. Lett., 30, 2097, https://doi.org/10.1029/2003GL018287, 2003.
Arzhanova, N. V., Zubarevich, V. L., and Sapozhnikov, V. V.: Seasonal variability of nutrient stocks in the euphotic zone and assessment of primary production in the Bering Sea, in: Complex studies of the Bering Sea ecosystem, edited by: Kotenev, B. N. and Sapozhnikov, V. V., VNIRO, Moscow, 162–179, 1995.
Asahara, Y., Takeuchi, F., Nagashima, K., Harada, N., Yamamoto, K., Oguri, K., and Tadai, O.: Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as derived from Sr and Nd isotopes: Implications for recent climate change in the Arctic regions, Deep-Sea Res. Pt. II, 61–64, 155–171, https://doi.org/10.1016/j.dsr2.2011.12.004, 2012.
Bareille, G., Grousset, F. E., Labracherie, M., Labeyrie, L. D., and Petit, J.-R.: Origin of detrital fluxes in the southeast Indian Ocean during the last climatic cycles, Paleoceanography, 9, 799–819, 1994.
Barr, I. D. and Clark, C. D.: Glaciers and climate in Pacific Far NE Russia during the Last Glacial Maximum, J. Quaternary Sci., 26, 227–237, https://doi.org/10.1002/jqs.1450, 2011.
Behl, R. J. and Kennett, J. P.: Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr, Nature, 379, 243–246, 1996.
Bigg, G. R., Clark, C. D., and Hughes, A. L. C.: A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction, Earth Planet. Sci. Lett., 265, 559–570, https://doi.org/10.1016/j.epsl.2007.10.052, 2008.
Blockley, S. P. E., Lane, C. S., Hardiman, M., Rasmussen, S. O., Seierstad, I. K., Steffensen, J. P., Svensson, A., Lotter, A. F., Turney, C. S. M., Ramsey, C. B., and INTIMATE members: Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k, Quaternary Sci. Rev., 36, 2–10, https://doi.org/10.1016/j.quascirev.2011.09.017, 2012.
Boyle, E. A.: Chemical accumulation variations under the Peru current during the past 130,000 years, J. Geophys. Res., 88, 7667–7680, 1983.
Brigham-Grette, J., Hopkins, D. M., Ivanov, V. F., Basilyan, E. B., Benson, S. L., Heiser, P. A., and Pushkar, V. S.: Last Interglacial (isotope stage 5) glacial and sea-level history of coastal Chukotka Peninsula and St. Lawrence Island, Western Beringia, Quaternary Sci. Rev., 20, 419–436, 2001.
Brigham-Grette, J., Gualtieri, L. M., Glushkova, O. Y., Hamilton, T. D., Mostoller, D., and Kotov, A.: Chlorine-35 and 14C chronology support a limited last glacial maximum across central Chukotka, northeastern Siberia, and no Beringian ice sheet, Quaternary Res., 59, 386–398, https://doi.org/10.1016/S0033-5894(03)00058-9, 2003.
Broecker, W. S. and Peng, T.-H.: The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change, Global Biogeochem. Cy., 1, 15–29, 1987.
Brunelle, B. G., Sigman, D. M., Cook, M. S., Keigwin, L. D., Haug, G. H., Plessen, B., Schettler, G., and Jaccard, S. L.: Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes, Paleoceanography, 22, PA1215, https://doi.org/10.1029/2005PA001205, 2007.
Brunelle, B. G., Sigman, D. M., Jaccard, S. L., Keigwin, L. D., Plessen, B., Schettler, G., Cook, M. S., and Haug, G. H.: Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum, Quaternary Sci. Rev., 29, 2579–2590, https://doi.org/10.1016/j.quascirev.2010.03.010, 2010.
Burov, B. V., Nourgaliev, D. K., and Iassonov, P. G.: Paleomagnetic analysis, Kazan University Press, Kazan, 167~pp., 1986 (in Russian).
Caissie, B. E., Brigham-Grette, J., Lawrence, K. T., Herbert, T. D., and Cook, M. S.: Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records, Paleoceanography, 25, PA1206, https://doi.org/10.1029/2008PA001671, 2010.
Calvert, S. E. and Fontugne, M. R.: On the late Pleistocene-Holocene sapropel record of climatic and oceanographic variability in the eastern Mediterranean. Paleoceanography, 16, 78–94, 2001.
Channell, J. E. T., Xuan, C., and Hodell, D. A.: Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500), Earth Planet. Sci. Lett., 283, 14–23, https://doi.org/10.1016/j.epsl.2009.03.012, 2009.
Chen, C.-T. A.: Shelf-vs. dissolution-generated alkalinity above the chemical lysocline, Deep-Sea Res. Pt. II, 49, 5365–5375, https://doi.org/10.1016/S0967-0645(02)00196-0, 2002.
Chikamoto, M. O., Menviel, L., Abe-Ouchi, A., Ohgaito, R., Timmermann, A., Okazaki, Y., Harada, N., Oka, A., and Mouchet, A.: Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models, Deep-Sea Res. Pt. II, 61–64, 114–126, https://doi.org/10.1016/j.dsr2.2011.12.002, 2012.
Cook, M. S.: The paleoceanography of the Bering Sea during the last glacial cycle, Ph.D. thesis, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Massachusetts Institute of Technology, 126~pp., 2006.
Cook, M. S., Keigwin, L. D., and Sancetta, C. A.: The deglacial history of surface and intermediate water of the Bering Sea, Deep-Sea Res. Pt. II, 52, 2163–2173, https://doi.org/10.1016/j.dsr2.2005.07.004, 2005.
Crusius, J., Pedersen, T. F., Kienast, S., Keigwin, L., and Labeyrie, L.: Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bölling-Alleröd interval (14.7–12.9 ka), Geology, 32, 633–636, https://doi.org/10.1130/G20508.1, 2004.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Svelnbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Debret, M., Desmet, M., Balsam, W., Copard, Y., Francus, P., and Laj, C.: Spectrophotometer analysis of Holocene sediments from an anoxic fjord: Saanich Inlet, British Columbia, Canada, Mar. Geol., 229, 15–28, https://doi.org/10.1016/j.margeo.2006.01.005, 2006.
Dehairs, F., Stroobants, N., and Goeyens, L.: Suspended barite as a tracer of biological activity in the Southern Ocean, Mar. Chem., 35, 399–410, 1991.
De La Rocha, C. L.: The biological pump, in: Treatise on Geochemistry, vol. 6, edited by: Elderfield, H., Elsevier, Amsterdam, 83–111, 2007.
DeMaster, D.: The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Ac., 45, 1715–1732, 1981.
Duce, R. A. and Tindale, N. W.: Atmospheric transport of iron and its deposition in the ocean, Limnol. Oceanogr., 36, 1715–1726, 1991.
Dullo, W.-C., Baranov, B., and van den Bogaard, C. (Eds.): FS Sonne Fahrtbericht / Cruise Report SO201-2 KALMAR, Busan/Korea-Tomakomai/Japan, 30.08.-08.10.2009, IFM-GEOMAR Report 35, Leibniz Institute of Marine Sciences, Kiel, 233~pp., 2009.
Dymond, J. and R. Collier, R.: Particulate barium fluxes and their relationships to biological productivity, Deep-Sea Res. Pt. II, 43, 1283–1308, 1996.
Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: a geochemical proxy for paleoproductivity, Paleoceanography, 7, 163–181, 1992.
Emile-Geay, J., Cane, M. A., Naik, N., Seager, R., Clement, A. C., and van Geen, A.: Warren revisited: Atmospheric freshwater fluxes and "Why is no deep water formed in the North Pacific", J. Geophys. Res., 108, 3178, https://doi.org/10.1029/2001JC001058, 2003.
Engel, A. E. J., Engel, C. G., and Havens, R. G.: Chemical characteristics of oceanic basalts and the upper Miocene, Geol. Soc. Am. Bull., 76, 719–734, 1965.
Enkin, R. J., Baker, J., Nourgaliev, D., Iassonov, P., and Hamilton, T. S.: Magnetic hysteresis parameters and Day plot analysis to characterize diagenetic alteration in gas hydrate-bearing sediments, J. Geophys. Res., 112, B06S90, https://doi.org/10.1029/2006JB004638, 2007.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677–680, 1979.
Feely, R. A., Sabine, C. L., Lee, K., Millero, F. J., Lamb, M. F., Greeley, D., Bullister, J. L., Key, R. M., Peng, T.-H., Kozyr, A., Ono, T., and Wong, C. S.: In situ calcium carbonate dissolution in the Pacific Ocean, Global Biogeochem. Cy., 16, 1144, https://doi.org/10.1029/2002GB001866, 2002.
Francois, R., Honjo, S., Manganini, S. J., Ravizza, G. E.: Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction, Global Biogeochem. Cy., 9, 289–303, 1995.
Galbraith, E. D., Jaccard, S. L., Pedersen, T. F., Sigman, D. M., Haug, G. H., Cook, M., Southon, J. R., and Francois, R.: Carbon dioxide release from the North Pacific abyss during the last deglaciation, Nature, 449, 890–893, https://doi.org/10.1038/nature06227, 2007.
Galbraith, E. D., Kienast, M., Jaccard, S. L., Pedersen, T. F., Brunelle, B. G., Sigman, D. M., and Kiefer, T.: Consistent relationship between global climate and surface nitrate utilization in the western subarctic Pacific throughout the last 500 ka, Paleoceanography, 23, PA2212, https://doi.org/10.1029/2007PA001518, 2008.
Ganeshram, R. S., Calvert, S. E., Pedersen, T. F., and Cowie, G. L.: Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: Implications for hydrocarbon preservation, Geochim. Cosmochim. Ac., 63, 1723–1734, 1999.
Ganeshram, R. S., Francois, R., Commeau, J., and Brown-Leger, S. L.: An experimental investigation of barite formation in seawater, Geochim. Cosmochim. Ac., 67, 2599–2605, https://doi.org/10.1016/S0016-7037(03)00164-9, 2003.
Gardner, J. V., Dean, W. E., and Vallier, T. L.: Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea, Mar. Geol., 35, 299–329, 1980.
Gebhardt, H., Sarnthein, M., Grootes, P. M., Kiefer, T., Kühn, H., Schmieder, F., and Röhl, U.: Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V, Paleoceanography, 23, PA4212, https://doi.org/10.1029/2007PA001513, 2008.
Gingele, F., Zabel, M., Kasten, S., Bonn, W. J., and Nürnberg, C. C.: Biogenic barium as a proxy for paleoproductivity: Methods and limitations of application, in: Use of proxies in paleoceanography, Examples from the South Atlantic, edited by: Fischer, G. and Wefer, G., Springer, Berlin, 345–364, 1999.
Goñi, M. A., Ruttenberg, K. C., and Eglinton, T. I.: A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico, Geochim. Cosmochim. Ac., 62, 3055–3075, 1998.
Gorbarenko, S. A.: Stable isotope and lithologic evidence of late-glacial and Holocene oceanography of the northwestern Pacific and its marginal seas, Quaternary Res., 46, 230–250, 1996.
Gorbarenko, S. A., Khusid, T. A., Basov, I. A., Oba, T., Southon, J. R., and Koizumi, I.: Glacial Holocene environment of the southeastern Okhotsk Sea: Evidence from geochemical and paleontological data, Palaeogeogr. Palaeocl., 177, 237–263, https://doi.org/10.1016/S0031-0182(01)00335-2, 2002a.
Gorbarenko, S. A., Nürnberg, D., Derkachev, A. N., Astakhov, A. S., Southon, J. R., and Kaiser, A.: Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: Implication of terrigenous, volcanogenic and biogenic matter supply, Mar. Geol., 183, 107–129, https://doi.org/10.1016/S0025-3227(02)00164-0, 2002b.
Gorbarenko, S. A., Basov, I. A., Chekhovskaya, M. P., Southon, J., Khusid, T. A., and Artemova, A. V.: Orbital and millenium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: Geochemical and paleontological evidence, Deep-Sea Res. Pt. II, 52, 2174–2185, https://doi.org/10.1016/j.dsr2.2005.08.005, 2005.
Gorbarenko, S. A., Wang, P., Wang, R., and Cheng, X.: Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr, Palaeogeogr. Palaeocl., 286, 97–106, https://doi.org/10.1016/j.palaeo.2009.12.014, 2010.
Gromet, L. P., Dymek, R. F., Haskin, L. A., and Korotev, R. L.: The "North American shale composite": Its compilation, major and trace element characteristics, Geochim. Cosmochim. Ac., 48, 2469–2482, 1984.
Grosswald, M. G. and Hughes, T. J.: The Russian component of an Arctic Ice Sheet during the Last Glacial Maximum, Quaternary Sci. Rev., 21, 121–146, https://doi.org/10.1016/S0277-3791(01)00078-6, 2002.
Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature, 391, 572–574, 1998.
Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F., and Sarnthein, M.: Onset of permanent stratification in the subarctic Pacific Ocean, Nature, 401, 779–782, 1999.
Haug, G. H., Ganopolski, A., Sigman, D. M., Rosell-Mele, A., Swann, G. E. A., Tiedemann, R., Jaccard, S. L., Bollmann, J., Maslin, M. A., Leng, M. J., and Eglinton, G.: North Pacific seasonality and the glaciation of North America 2.7 million years ago, Nature, 433, 821–825, https://doi.org/10.1038/nature03332, 2005.
Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., and de M. Santos, U.: Compositions and fluxes of particulate organic material in the Amazon River, Limnol. Oceanogr., 31, 717–738, 1986.
Hedges, J. I., Baldock, J. A., Gélinas,Y., Lee, C., Peterson, M., and Wakeham, S. G.: Evidence for non-selective preservation of organic matter in sinking marine particles, Nature, 409, 801–804, 2001.
Hendy, I. L. and Kennett, J. P.: Dansgaard-Oeschger cycles and the California Current System: Planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program Hole 893A, Paleoceanography, 15, 30–42, 2000.
Honda, M. C., Imai, K., Nojiri, Y., Hoshi, F., Sugawara, T., and Kusakabe, M.: The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997–2000), Deep-Sea Res. Pt. II, 49, 5595–5625, https://doi.org/10.1016/S0967-0645(02)00201-1, 2002.
Honjo, S.: Particle fluxes and modern sedimentation in the polar oceans, in: Polar Oceanography, Part B. Chemistry, Biology, and Geology, edited by: Smith, W. D., Academic Press, New York, 687–739, 1990.
Hu, A., Meehl, G. A., Otto-Bliesner, B. L., Waelbroeck, C., Han, W., Loutre, M.-F., Lambeck, K., Mitrovica, J. X., and Rosenbloom, N.: Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes, Nat. Geosci., 3, 118–121, https://doi.org/10.1038/ngeo729, 2010.
Itaki, T., Uchida, M., Kim, S., Shin, H.-S., Tada, R., and Khim, B.-K.: Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments: Evidence from the radiolarian species Cycladophora davisiana, J. Quaternary Sci., 24, 856–865, https://doi.org/10.1002/jqs.1356, 2009.
Jaccard, S. L. and Galbraith, E. D.: Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation, Geophys. Res. Lett., 40, 199–203, https://doi.org/10.1029/2012GL054118, 2013.
Jaccard, S. L., Haug, G. H., Sigman, D. M., Pedersen, T. F., Thierstein, H. R., and Röhl, U.: Glacial/interglacial changes in subarctic North Pacific stratification, Science, 308, 1003–1008, https://doi.org/10.1126/science.1108696, 2005.
Jaccard, S. L., Galbraith, E. D., Sigman, D. M., Haug, G. H., Francois, R., Pedersen, T. F., Dulski, P., and Thierstein, H. R.: Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool, Earth Planet. Sci. Lett., 277, 156–165, https://doi.org/10.1016/j.epsl.2008.10.017, 2009.
Jaccard, S. L., Galbraith, E. D., Sigman, D. M., and Haug, G. H.: A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs, Quaternary Sci. Rev., 29, 206–212, https://doi.org/10.1016/j.quascirev.2009.10.007, 2010.
Jansen, J. H. F., van der Gaast, S. J., Koster, B., and Vaars, A. J.: CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores, Mar. Geol., 151, 143–153, 1998.
Karhu, J. A., Tschudi, S., Saarnisto, M., Kubik, P., and Schlüchter, C.: Constraints for the latest glacial advance on Wrangel Island, Arctic Ocean, from rock surface exposure dating, Global Planet. Change, 31, 447–451, 2001.
Katsuki, K. and Takahashi, K.: Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary, Deep-Sea Res. Pt. II, 52, 2110–2130, https://doi.org/10.1016/j.dsr2.2005.07.001, 2005.
Kaufman, D. S., Forman, S. L., Lea, P. D., and Wobus, C. W.: Age of pre-late-Wisconsin glacial-eastuarine sedimentation, Bristol Bay, Alaska, Quaternary Res., 45, 59–72, 1996.
Keigwin, L. D.: Glacial-age hydrography of the far northwest Pacific Ocean, Paleoceanography, 13, 323–339, 1998.
Keigwin, L. D. and Jones, G. A.: Deglacial climatic oscillations in the Gulf of California, Paleoceanography, 5, 1009–1023, 1990.
Keigwin, L. D., Jones, G. A., and Froelich, P. N.: A 15,000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific, Earth Planet. Sci. Lett., 111, 425–440, 1992.
Keigwin, L. D., Donnelly, J. P., Cook, M. S., Driscoll, N. W., and Brigham-Grette, J.: Rapid sea-level rise and Holocene climate in the Chukchi Sea, Geology, 34, 861–864, https://doi.org/10.1130/G22712.1, 2006.
Kennett, J. P. and Ingram, B. L.: A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin, Nature, 377, 510–514, 1995.
Khim, B.-K., Kim, S., Uchida, M., and Itaki, T.: High organic carbon deposition in the northern margin of the Aleutian Basin (Bering Sea) before the last deglaciation, Ocean Sci., 45, 203–211, https://doi.org/10.1007/s12601-010-0019-y, 2010.
Kienast, S. S., Hendy, I. L., Crusius, J., Pedersen, T. F., and Calvert, S.: Export production in the subarctic North Pacific over the last 800 kyrs: No evidence for iron fertilization? J. Oceanogr., 60, 189–203, 2004.
Kim, S., Khim, B. K., Uchida, M., Itaki, T., and Tada, R.: Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs, Global Planet. Change, 79, 89–98, https://doi.org/10.1016/j.gloplacha.2011.08.004, 2011.
Klump, J., Hebbeln, D., and Wefer, G.: The impact of sediment provenance on barium-based productivity estimates, Mar. Geol., 169, 259–271, 2000.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
Latimer, J. C. and Filippelli, G. M.: Terrigenous input and paleoproductivity in the Southern Ocean, Paleoceanography, 16, 627–643, 2001.
Lisiecki, L. and Raymo, M.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lisitzin, A. P.: Sea ice and iceberg sedimentation in the ocean: Recent and past, Springer-Verlag, Berlin, 563~pp., 2002.
Lund, D. C., Mix, A. C., and Southon, J.: Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation, Nat. Geosci., 4, 771–774, https://doi.org/10.1038/ngeo1272, 2011.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric global dust cycle and iron inputs to the ocean, Global Biogeochem. Cy., 19, GB4025, https://doi.org/10.1029/2004GB002402, 2005.
Malakhov, M. I., Gorbarenko, S. A., Malakhova, G. Y., Harada, N., Vasilenko, Y. P., Bosin, A. A., Goldberg, E. L., and Derkachev, A. N.: Petromagnetic parameters of bottom sediments as indicators of the climatic and environmental changes in the central zone of the Sea of Okhotsk during the last 350 kyr, Russ. Geol. Geophys., 50, 973–982, https://doi.org/10.1016/j.rgg.2009.10.006, 2009.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific interdecadal climate oscillation with impacts on salmon production, B. Am. Meteorol. Soc., 78, 1069–1079, 1997.
Marchitto, T. M., Lynch-Stieglitz, J., and Hemming, S. R.: Deep Pacific CaCO3 compensation and glacial-interglacial atmospheric CO2, Earth Planet. Sci. Lett., 231, 317–336, https://doi.org/10.1016/j.epsl.2004.12.024, 2005.
Matsumoto, K., Oba, T., Lynch-Stieglitz, J., and Yamamoto, H.: Interior hydrography and circulation of the glacial Pacific Ocean, Quaternary Sci. Rev., 21, 1693–1704, https://doi.org/10.1016/S0277-3791(01)00142-1, 2002.
Max, L., Riethdorf, J.-R., Tiedemann, R., Smirnova, M., Lembke-Jene, L., Fahl, K., Nürnberg, D., Matul, A., and Mollenhauer, G.: Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years, Paleoceanography, 27, PA3213, https://doi.org/10.1029/2012PA002292, 2012.
McDonald, D., Pedersen, T. F., and Crusius, J.: Multiple late Quaternary episodes of exceptional diatom production in the Gulf of Alaska, Deep-Sea Res. Pt. II, 46, 2993–3017, 1999.
McKay, J. L., Pedersen, T. F., and Kienast, S. S.: Organic carbon accumulation over the last 16 kyr off Vancouver Island, Canada: Evidence for increased marine productivity during the deglacial, Quaternary Sci. Rev., 23, 261–281, https://doi.org/10.1016/j.quascirev.2003.07.004, 2004.
McLennan, S. M.: Sediments and soils: Chemistry and abundances, in: Rock physics and phase relations: A handbook of physical constants, edited by: Ahrens, T. J., AGU Reference Shelf 3, AGU, Washington, 8–20, 1995.
Menviel, L., Timmermann, A., Elison Timm, O., Mouchet, A., Abe-Ouchi, A., Chikamoto, M. O., Harada, N., Ohgaito, R., and Okazaki, Y.: Removing the North Pacific halocline: Effects on global climate, ocean circulation and the carbon cycle, Deep-Sea Res. Pt. II, 61–64, 106–113, https://doi.org/10.1016/j.dsr2.2011.03.005, 2012.
Middelburg, J. J., Soetaert, K., and Herman, P. M. J.: Empirical relationships for use in global diagenetic models, Deep-Sea Res. Pt. I, 44, 327–344, 1997.
Müller, P.: C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays, Geochim. Cosmochim. Ac., 41, 765–776, 1977.
Müller, P. and Schneider, R.: An automated leaching method for the determination of opal in sediments and particulate matter, Deep-Sea Res. Pt. I, 40, 425–444, 1993.
Nagashima, K., Asahara, Y., Takeuchi, F., Harada, N., Toyoda, S., and Tada, R.: Contribution of detrital materials from the Yukon River to the continental shelf sediments of the Bering Sea based on the electron spin resonance signal intensity and crystallinity of quartz, Deep-Sea Res. Pt. II, 61–64, 145–154, https://doi.org/10.1016/j.dsr2.2011.12.001, 2012.
Nakatsuka, T., Watanabe, K., Handa, N., Matsumoto, E., and Wada, E.: Glacial to interglacial surface nutrient variations of Bering deep basins recorded by δ13C and δ15N of sedimentary organic matter, Paleoceanography, 10, 1047–1061, 1995.
Nameroff, T. J., Calvert, S. E., and Murray, J. W.: Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals, Paleocanography, 19, PA1010, https://doi.org/10.1029/2003PA000912, 2004.
Narita, H., Sato, M., Tsunogai, S., Murayama, M., Ikehara, M., Nakatsuka, T., Wakatsuchi, M., Harada, N., and Ujiié, Y.: Biogenic opal indicating less productive northwestern North Pacific during the glacial ages, Geophys. Res. Lett., 29, 1732, https://doi.org/10.1029/2001GL014320, 2002.
Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A., and Quéguiner, B.: Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochem. Cy., 9, 359–372, 1995.
Niebauer, H. J.: Effects of El Nino–-Southern Oscillation and North Pacific weather patterns on interannual variability in the subarctic Bering Sea, J. Geophys. Res., 93, 5051–5068, 1988.
Niebauer, H. J.: Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947–1996, J. Geophys. Res., 103, 27717–27737, 1998.
Niebauer, H. J., Alexander, V., and Henrichs, S.M.: A time-series study of the spring bloom at the Bering Sea ice edge I. Physical processes, chlorophyll and nutrient chemistry. Cont. Shelf Res., 15, 1859–1877, 1995.
Niebauer, H. J., Bond, N. A., Yakunin, L. P., and Plotnikov, V. V.: An update on the climatology and sea ice of the Bering Sea, in: Dynamics of the Bering Sea, edited by: Loughlin, T. R. and Ohtani, K., University of Alaska Sea Grant, Fairbanks, Alaska, 29–59, 1999.
North Greenland Ice Core Project members: High-resolution record of northern hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Nürnberg, C. C.: Bariumfluss und Sedimentation im südlichen Südatlantik-Hinweise auf Produktivitätsänderungen im Quartär, GEOMAR Reports 38, Research Center for Marine Geosciences (GEOMAR), Kiel, 105 pp., 1995.
Nürnberg, D. and Tiedemann, R.: Environmental change in the Sea of Okhotsk during the last 1.1 million years, Paleoceanography, 19, PA4011, https://doi.org/10.1029/2004PA001023, 2004.
Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., Reimnitz, E., and Thiede, J.: Sediments in Arctic sea ice: Implications for entrainment, transport and release, Mar. Geol., 119, 185–214, 1994.
Nürnberg, C. C., Bohrmann, G., Schlüter, M., and Frank, M.: Barium accumulation in the Atlantic sector of the Southern Ocean: Results from 190,000-year records, Paleoceanography, 12, 594–603, 1997.
Nürnberg, D., Dethleff, D., Tiedemann, R., Kaiser, A., and Gorbarenko, S. A.: Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka – Evidence from ice-rafted debris and planktonic δ18O, Palaeogeogr. Palaeocl., 310, 191–205, https://doi.org/10.1016/j.palaeo.2011.07.011, 2011.
Ohkushi, K., Itaki, T., and Nemoto, N.: Last glacial-Holocene change in intermediate-water ventilation in the northwestern Pacific, Quaternary Sci. Rev., 22, 1477–1484, https://doi.org/10.1016/S0277-3791(03)00082-9, 2003.
Ohkushi, K., Uchida, M., Ahagon, N., Mishima, T., and Kanematsu, T.: Glacial intermediate water ventilation in the northwestern Pacific based on AMS radiocarbon dating, Nucl. Instrum. Meth. B, 223–224, 460–465, https://doi.org/10.1016/j.nimb.2004.04.087, 2004.
Okada, M., Takagi, M., Narita, H., and Takahashi, K.: Chronostratigraphy of sediment cores from the Bering Sea and the subarctic Pacific based on paleomagnetic and oxygen isotopic analyses, Deep-Sea Res. Pt. II, 52, 2092–2109, https://doi.org/10.1016/j.dsr2.2005.08.004, 2005.
Okazaki, Y., Takahashi, K., Asahi, H., Katsuki, K., Hori, J., Yasuda, H., Sagawa, Y., and Tokuyama, H.: Productivity changes in the Bering Sea during the late Quaternary, Deep-Sea Res. Pt. II, 52, 2150–2162, https://doi.org/10.1016/j.dsr2.2005.07.003, 2005.
Okazaki, Y., Timmermann, A., Menviel, L., Harada, N., Abe-Ouchi, A., Chikamoto, M. O., Mouchet, A., and Asahi, H.: Deepwater formation in the North Pacific during the Last Glacial Maximum, Science, 329, 200–204, https://doi.org/10.1126/science.1190612, 2010.
Orians, K. J. and Bruland, K. W.: The biogeochemistry of aluminium in the Pacific Ocean, Earth Planet. Sci. Lett., 78, 397–410, 1986.
Ortiz, J. D., O'Connell, S. B., DelViscio, J., Dean, W., Carriquiry, J. D., Marchitto, T., Zheng, Y., and van Geen, A.: Enhanced marine productivity off western North America during warm climate intervals of the past 52 k.y., Geology, 32, 521–524, https://doi.org/10.1130/G20234.1, 2004.
Overland, J. E., Adams, J. M., and Bond, N. A.: Decadal variability of the Aleutian Low and its relation to high-latitude circulation, J. Climate, 12, 1542–1548, 1999.
Overland, J. E., Bond, N. A., and Adams, J. M.: The relation of surface forcing of the Bering Sea to large-scale climate patterns, Deep-Sea Res. Pt. II, 49, 5855–5868, https://doi.org/10.1016/S0967-0645(02)00322-3, 2002.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs time-series analysis, EOS T. Am. Geophys. Un., 77, p.~379, https://doi.org/10.1029/96EO00259, 1996.
Pondaven, P., Ragueneau, O., Tréguer, P., Hauvespre, A., Dezileau, L., and Reyss, J. L.: Resolving the 'opal paradox' in the Southern Ocean, Nature, 405, 168–172, 2000.
Pushkar, V. S., Roof, S. R., Cherepanova, M. V., Hopkins, D. M., and Brigham-Grette, J.: Paleogeographic and paleoclimatic significance of diatoms from middle Pleistocene marine and glaciomarine deposits on Baldwin Peninsula, northwestern Alaska, Palaeogeogr. Palaeocl., 152, 67–85, 1999.
Pye, K.: Aeolian dust and dust deposits, Academic Press, London, 334 pp., 1987.
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. F., Brzezinski, M. A., DeMaster, D. J., Dugdale, R. C., Dymond, J., Fischer, G., Francois, R., Heinze, C., Maier-Reimer, E., Martin-Jézéquel, V., Nelson, D. M., and Quéguiner, B.: A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26, 317–365, 2000.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core chronology for the last glacial termination, J. Geophys. Res., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of organisms on the composition of seawater, in: The Sea, vol. 2, edited by: Hill, M. N., Wiley-Interscience, New York, 26–77, 1963.
Reed, R. K., Khen, G. V., Stabeno, P. J., and Verkhunov, A. V.: Water properties and flow over the deep Bering Sea basin, summer 1991, Deep-Sea Res. Pt. I, 40, 2325–2334, 1993.
Rella, S. F., Tada, R., Nagashima, K., Ikehara, M., Itaki, T., Ohkushi, K., Sakamoto, T., Harada, N., and Uchida, M.: Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period, Paleoceanography, 27, PA3203, https://doi.org/10.1029/2011PA002205, 2012.
Richter, T., van der Gaast, S., Koster, B., Vaars, A., Gieles, R., de Stigter, H., De Haas, H., and van Weering, T.: The Avaatech XRF core scanner: technical description and applications to NE Atlantic sediments, in: New Techniques in Sediment Core Analyses, edited by: Rothwell, R. G., Geol. Soc. Spec. Publ., 267, 39–50, https://doi.org/10.1144/GSL.SP.2006.267.01.03, 2006.
Riethdorf, J.-R., Max, L., Nürnberg, D., Lembke-Jene, L., and Tiedemann, R.: Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: Implications for upper-ocean stratification, Paleoceanography, 28, 91–104, https://doi.org/10.1002/palo.20014, 2013.
Ronov, A. B. and Migdisov, A. A.: Geochemical history of the crystalline basement and the sedimentary cover of the Russian and North American platforms, Sedimentology, 16, 137–185, 1971.
Rösler, H. J. and Lange, H.: Geochemical tables, Elsevier, New York, 468 pp., 1972.
Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period, J. Geophys. Res., 108, 4098, https://doi.org/10.1029/2002JD002376, 2003.
Sagawa, T. and Ikehara, K.: Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation, Geophys. Res. Lett., 35, L24702, https://doi.org/10.1029/2008GL035133, 2008.
Sancetta, C.: Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea, Deep-Sea Res., 30, 851–869, 1983.
Sarnthein, M., Stattegger, K., Dreger, D., Erlenkeuser, H., Grootes, P., Haupt, B. J., Jung, S., Kiefer, T., Kuhnt, W., Pflaumann, U., Schäfer-Neth, C., Schulz, H., Schulz, M., Seidov, D., Simstich, J., van Kreveld, S., Vogelsang, E., Völker, A., and Weinelt, M.: Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky – Concepts, reconstruction and numerical modeling, in: The northern North Atlantic: A changing environment, edited by: Schäfer, P., Ritzrau, W., Schlüter, M., and Thiede, J., Springer, Berlin, 365–410, 2001.
Sarnthein, M., Grootes, P. M., Kennett, J. P., and Nadeau, M.-J.: 14C reservoir ages show deglacial changes in ocean currents and carbon cycle, in: Past and Future Changes of the Oceanic Meridional Overturning Circulation: Mechanisms and Impacts, edited by: Schmittner, A., Chiang, J. C. H., and Hemming, S. R., AGU Monograph Series 173, AGU, Washington, D.C., 175–196, 2007.
Sato, M. M., Narita, H., and Tsunogai, S.: Barium increasing prior to opal during the last termination of glacial ages in the Okhotsk Sea sediments, J. Oceanogr., 58, 461–467, 2002.
Schlitzer, R.: Ocean Data View, available at:~http://odv.awi.de (last access: 6 August 2012), 2011.
Schmitz, B.: The TiO2/Al2O3 ratio in the Cenozoic Bengal abyssal fan sediments and its use as a paleostream energy indicator, Mar. Geol., 76, 195–206, 1987.
Schneider, R. R., Price, B., Müller, P. J., Kroon, D., and Alexander, I.: Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years, Paleoceanography, 12, 463–481, 1997.
Seki, O., Kawamura, K., Nakatsuka, T., Ohnishi, K., Ikehara, M., and Wakatsuchi, M.: Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: Enhanced transport of terrestrial organic matter from the last deglaciation to the early Holocene, Geophys. Res. Lett., 30, 1001, https://doi.org/10.1029/2001GL014464, 2003.
Shackleton, N. J. and Hall, M. A.: Oxygen and carbon isotope stratigraphy of Deep Sea Drilling Project Hole 552A: Plio-Pleistocene glacial history, in: Initial Reports DSDP, 81, edited by: Roberts, D. G., Schnitker, D., Backman, J., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddlestun, P., Kaltenback, A. J., Krumsiek, K. A. O., Morton, A. C., Murray, J. W., Westberg-Smith, J., and Zimmermann, H. B., US Govt. Printing Office, Washington, 599–609, https://doi.org/10.2973/dsdp.proc.81.116.1984, 1984.
Shigemitsu, M., Narita, H., Watanabe, Y. W., Harada, N., and Tsunogai, S.: Ba, Si, U, Al, Sc, La, Th, C and 13C/12C in a sediment core in the western subarctic Pacific as proxies of past biological production, Mar. Chem., 106, 442–455, https://doi.org/10.1016/j.marchem.2007.04.004, 2007.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859–869, 2000.
Sigman, D. M., Jaccard, S. L., and Haug, G. H.: Polar ocean stratification in a cold climate, Nature, 428, 59–63, https://doi.org/10.1038/nature02357, 2004.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature, 466, 47–55, https://doi.org/10.1038/nature09149, 2010.
Springer, A. M., McRoy, C. P., and Flint, M. V.: The Bering Sea green belt: shelf-edge processes and ecosystem production, Fish. Oceanogr., 5, 205–223, 1996.
Stabeno, P. J., Schumacher, J. D., and Ohtani, K.: The physical oceanography of the Bering Sea, in: Dynamics of the Bering Sea, edited by: Loughlin, T. R. and Ohtani, K., University of Alaska Sea Grant, Fairbanks, Alaska, 1–28, 1999.
Stein, R.: Arctic Ocean sediments: Processes, proxies, and paleoenvironment, in: Developments in Marine Geology, vol. 2, edited by: Chamley, H., Elsevier, Amsterdam, 592 pp., 2008.
Széréméta, N., Bassinot, F., Balut, Y., Labeyrie, L., and Pagel, M.: Oversampling of sedimentary series collected by giant piston corer: Evidence and corrections based on 3.5-kHz chirp profiles, Paleoceanography, 19, PA1005, https://doi.org/10.1029/2002PA000795, 2004.
Takahashi, K.: The Bering and Okhotsk Sea: Modern and past paleoceanographic changes and gateway impact, J. Asian Earth Sci., 16, 49–58, 1998.
Takahashi, K.: Paleoceanographic changes and present environment of the Bering Sea, in: Dynamics of the Bering Sea, edited by: Loughlin, T. R. and Ohtani, K., University of Alaska Sea Grant, Fairbanks, Alaska, 365–385, 1999.
Takahashi, K.: The Bering Sea and paleoceanography, Deep-Sea Res. Pt. II, 52, 2080–2091, https://doi.org/10.1016/j.dsr2.2005.08.003, 2005.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects, Deep-Sea Res. Pt. II, 49, 1601–1622, https://doi.org/10.1016/S0967-0645(02)00003-6, 2002a.
Takahashi, K., Fujitani, N., and Yanada, M.: Long term monitoring of particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990–2000, Progr. Oceanogr., 55, 95–112, https://doi.org/10.1016/S0079-6611(02)00072-1, 2002b.
Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A., and the Expedition 323 Scientists: Bering Sea Paleoceanography, Proceedings of the Integrated Ocean Drilling Program, 323, Tokyo (Integrated Ocean Drilling Program Management International, Inc.), https://doi.org/10.2204/iodp.proc.323.2011, 2011.
Tanaka, S. and Takahashi, K.: Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages, Deep-Sea Res. Pt. II, 52, 2131–2149, https://doi.org/10.1016/j.dsr2.2005.07.002, 2005.
Taylor, S. R.: Abundance of chemical elements in the continental crust: a new table, Geochim. Cosmochim. Ac., 28, 1273–1285, 1964.
Taylor, S. R. and McLennan, S. M.: The geochemical evolution of the continental crust, Rev. Geophys., 33, 241–265, 1995.
Taylor, S. R., McLennan, S. M., and McCulloch, M. T.: Geochemistry of loess, continental crust composition and crustal model ages, Geochim. Cosmochim. Ac., 47, 1897–1905, 1983.
Ternois, Y., Kawamura, L., Keigwin, L., Ohkouchi, N., and Nakatsuka, T.: A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years, Geochim. Cosmochim. Ac., 65, 791–802, 2001.
Thunell, R. C., Varela, R., Llano, M., Collister, J., Muller-Karger, F., and Bohrer, R.: Organic carbon fluxes, degradation, and accumulation in an anoxic basin: Sediment trap results from the Cariaco Basin, Limnol. Oceanogr., 45, 300–308, 2000.
Tjallingii, R., Röhl, U., Kölling, M., and Bickert, T.: Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments, Geochem. Geophy. Geosy., 8, Q02004, https://doi.org/10.1029/2006GC001393, 2007.
Tomczak, M. and Godfrey, J. S.: Regional oceanography: An introduction, Elsevier Science Ltd., Oxford, 391 pp., 1994.
Tyrrell, T., Merico, A., Waniek, J. J., Wong, C. S., Metzl, N., and Whitney, F.: Effect of seafloor depth on phytoplankton blooms in high-nitrate, low-chlorophyll (HNLC) regions, J. Geophys. Res., 110, G02007, https://doi.org/10.1029/2005JG000041, 2005.
van Geen, A., Zheng, Y., Bernhard, J. M., Cannariato, K. G., Carriquiry, J., Dean, W. E., Eakins, B. W., Ortiz, J. D., and Pike, J.: On the preservation of laminated sediments along the western margin of North America, Paleoceanography, 18, 1098, https://doi.org/10.1029/2003PA000911, 2003.
VanLaningham, S., Pisias, N. G., Duncan, R. A., and Clift, P. D.: Glacial-interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean: Evidence for timing of Beringian outwashing, Earth Planet. Sci. Lett., 277, 64–72, https://doi.org/10.1016/j.epsl.2008.09.033, 2009.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McMannus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China, Science, 294, 2345–2348, 2001.
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z.: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, Nature, 451, 1090–1093, https://doi.org/10.1038/nature06692, 2008.
Warren, B.: Why is no deepwater formed in the North Pacific? J. Mar. Res., 41, 327–347, 1983.
Wedepohl, K. H.: Environmental influences on the chemical composition of shales and clays, in: Physics and chemistry of the Earth, edited by: Ahrens, L., Press, K., Runcorn, S., and Urey, H., Pergamon Press, Oxford, 307–333, 1971.
Yarincik, K. M., Murray, R. W., and Peterson, L. C.: Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al, Paleoceanography, 15, 210–228, 2000.
Yasonov, P. G., Nourgaliev, D. C., Bourov, B. V., and Heller, F.: A modernized coercivity spectrometer, Geol. Carpath., 49, 224–226, 1998.
Yasuda, I.: The origin of the North Pacific Intermediate Water, J. Geophys. Res., 102, 893–909, 1997.
Zhang, J., Woodgate, R., and Moritz, R.: Sea ice response to atmospheric and oceanic forcing in the Bering Sea, J. Phys. Oceanogr., 40, 1729–1747, https://doi.org/10.1175/2010JPO4323.1, 2010.
Zheng, Y., van Geen, A., Anderson, R. F., Gardner, J. V., and Dean, W. E.: Intensification of the northeast Pacific oxygen minimum zone during the Bölling-Alleröd warm period, Paleoceanography, 15, 528–536, 2000.
Ziegler, M., Jilbert, T., de Lange, G. J., Lourens, L. J., and Reichart, G.-J.: Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores, Geochem. Geophy. Geosy., 9, Q05009, https://doi.org/10.1029/2007GC001932, 2008.