Articles | Volume 7, issue 3
https://doi.org/10.5194/cp-7-847-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-7-847-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Regional climate model experiments to investigate the Asian monsoon in the Late Miocene
H. Tang
Department of Geosciences and Geography, P.O. Box 64, 00014, University of Helsinki, Finland
A. Micheels
Biodiversity and Climate Research Centre (LOEWE BiK-F), Senckenberganlage 25, 60325, Frankfurt/Main, Germany
Senckenberg Research Institute and Nature Museum, Senckenberganlage 25, 60325, Frankfurt/Main, Germany
J. Eronen
Department of Geosciences and Geography, P.O. Box 64, 00014, University of Helsinki, Finland
M. Fortelius
Department of Geosciences and Geography, P.O. Box 64, 00014, University of Helsinki, Finland
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Cenozoic
CO2-driven and orbitally driven oxygen isotope variability in the Early Eocene
The warm winter paradox in the Pliocene northern high latitudes
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison
Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O
Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction
A model–model and data–model comparison for the early Eocene hydrological cycle
A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime
The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison
The early Eocene equable climate problem revisited
High resolution climate and vegetation simulations of the Late Pliocene, a model-data comparison over western Europe and the Mediterranean region
Julia Campbell, Christopher J. Poulsen, Jiang Zhu, Jessica E. Tierney, and Jeremy Keeler
Clim. Past, 20, 495–522, https://doi.org/10.5194/cp-20-495-2024, https://doi.org/10.5194/cp-20-495-2024, 2024
Short summary
Short summary
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on Early Eocene (~ 55 million years ago) climate and compare our modeled results to fossil records to determine the context for the Paleocene–Eocene Thermal Maximum, the most extreme hyperthermal in the Cenozoic. Our conclusions consider limitations and illustrate the importance of climate models when interpreting paleoclimate records in times of extreme warmth.
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
Guido W. Grimm and Alastair J. Potts
Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016, https://doi.org/10.5194/cp-12-611-2016, 2016
Short summary
Short summary
We critically assess, for the first time since its inception in 1997, the theory behind the Coexistence Approach. This method has reconstructed purportedly accurate, often highly precise, palaeoclimates for a wide range of Cenozoic Eurasian localities. We argue that its basic assumptions clash with modern biological and statistical theory and that its modus operandi is fundamentally flawed. We provide guidelines on how to establish robust taxon-based palaeoclimate reconstruction methods.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
V. Pujalte, J. I. Baceta, and B. Schmitz
Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, https://doi.org/10.5194/cp-11-1653-2015, 2015
Short summary
Short summary
An abrupt increase in seasonal precipitation during the PETM in the Pyrenean Gulf has been proposed, based on the occurrence of extensive fine-grained siliciclastic deposits. This paper provides evidence that coarse-grained siliciclastics were also delivered, indicative of episodes of intense rainy intervals in an otherwise semiarid PETM climate. Further, evidence is presented that PETM kaolinites were most likely resedimented from Cretaceous lateritic profiles developed in the basement.
C. D. Bradshaw, D. J. Lunt, R. Flecker, U. Salzmann, M. J. Pound, A. M. Haywood, and J. T. Eronen
Clim. Past, 8, 1257–1285, https://doi.org/10.5194/cp-8-1257-2012, https://doi.org/10.5194/cp-8-1257-2012, 2012
M. Huber and R. Caballero
Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, https://doi.org/10.5194/cp-7-603-2011, 2011
A. Jost, S. Fauquette, M. Kageyama, G. Krinner, G. Ramstein, J.-P. Suc, and S. Violette
Clim. Past, 5, 585–606, https://doi.org/10.5194/cp-5-585-2009, https://doi.org/10.5194/cp-5-585-2009, 2009
Cited articles
An, Z. S., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times, Nature, 411, 62–66, 2001.
Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., and Worden, R. H.: Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: Implications for paleoenvironment and diagenesis, Chemie Der Erde-Geochemistry, 69, 45–60, 2009.
Ashfaq, M., Shi, Y., Tung, W. W., Trapp, R. J., Gao, X. J., Pal, J. S., and Diffenbaugh, N. S.: Suppression of south Asian summer monsoon precipitation in the 21st century, Geophys. Res. Lett., 36, L01704, https://doi.org/10.1029/2008GL036500, 2009.
Beck, C., Grieser, J., and Rudolf, B.: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000, Climate status report 2004, German Weather Service, Offenbach, Germany, 2005.
Blisniuk, P. M., Hacker, B. R., Glodny, J., Ratschbacher, L., Bi, S. W., Wu, Z. H., McWilliams, M. O., and Calvert, A.: Normal faulting in central Tibet since at least 13.5 Myr ago, Nature, 412, 628–632, 2001.
Böhm, U., Kücken, M., Ahrens, W., Block, A., Hauffe, D., Keuler, K., Rockel, B., and Will, A.: CLM – the climate version of LM: brief description and long-term applications, COSMO Newsletter, 6, 225–235, 2006.
Boos, W. R. and Kuang, Z. M.: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating, Nature, 436, 218–223, 2010.
Cane, M. A. and Molnar, P.: Closing of the Indonesian seaway as a precursor to east African aridircation around 3–4 million years ago, Nature, 411, 157–162, 2001.
Chakraborty, A., Nanjundiah, R. S., and Srinivasan, J.: Role of Asian and African orography in Indian summer monsoon, Geophys. Res. Lett., 29, 1989, https://doi.org/10.1029/2002GL015522, 2002.
Chang, C. P., Zhang, Y. S., and Li, T.: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge, J. Climate, 13, 4310–4325, 2000.
Charreau, J., Chen, Y., Gilder, S., Barrier, L., Dominguez, S., Augier, R., Sen, S., Avouac, J. P., Gallaud, A., Graveleau, F., and Wang, Q. C.: Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China), Tectonics, 28, TC2008, https://doi.org/10.1029/2007TC002137, 2009.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Climatic Change, 81, 7–30, 2007.
Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., and Calves, G.: Correlation of Himalayan exhumation rates and Asian monsoon intensity, Nat. Geosci., 1, 875–880, 2008.
Coleman, M. and Hodges, K.: Evidence for Tibetan Plateau Uplift before 14-Myr Ago from a New Minimum Age for East-West Extension, Nature, 374, 49–52, 1995.
Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M. P., and Zhang, J. J.: The late Miocene Panama isthmian strait, Geology, 24, 687–690, 1996.
Derry, L. A. and FranceLanord, C.: Neogene Himalayan weathering history and river Sr-87/Sr-86: Impact on the marine Sr record, Earth Planet. Sci. Lett., 142, 59–74, 1996.
Dettman, D. L., Kohn, M. J., Quade, J., Ryerson, F. J., Ojha, T. P., and Hamidullah, S.: Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y, Geology, 29, 31–34, 2001.
Dettman, D. L., Fang, X. M., Garzione, C. N., and Li, J. J.: Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau, Earth Planet. Sci. Lett., 214, 267–277, 2003.
Ding, Y. H.: Summer Monsoon Rainfalls in China, Journal of the Meteorological Society of Japan, 70, 373–396, 1992.
Ding, Z. L., Xiong, S. F., Sun, J. M., Yang, S. L., Gu, Z. Y., and Liu, T. S.: Pedostratigraphy and paleomagnetism of a similar to 7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution, Palaeogeogr. Palaeocl., 152, 49–66, 1999.
Dobler, A. and Ahrens, B.: Analysis of the Indian summer monsoon system in the regional climate model COSMO-CLM, J. Geophys. Res.-Atmos., 115, D16101, https://doi.org/10.1029/2009JD013497, 2010.
Doms, G. and Schattler, U.: A Description of the nonhydrostatic regional model LM (Part I): dynamics and numerics, available at: http://www.cosmo-model.org/, 2002.
Doms, G., Forstner, J., Heis, E., Herzog, H. J., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J. P., and Vogel, G.: A description of nonhydrostatic regional model LM (Part II): physical parameterization, available at: http://www.cosmo-model.org/, 2007.
Dong, M. X., Li, F. L., Gao, D. Z., Geng, M. S., and Li, L. Y.: A study of the Late Miocene dry event based on sporo-pollen variations in Sunid Zuoqi, Inner Mongolia, Acta Geoscientica Sinica, 27, 207–212, 2006.
Dutton, J. F. and Barron, E. J.: Miocene to present vegetation changes: A possible piece of the Cenozoic cooling puzzle, Geology, 25, 39–41, 1997.
Eronen, J. T., Ataabadia, M. M., Micheels, A., Karme, A., Bernor, R. L., and Fortelius, M.: Distribution history and climatic controls of the Late Miocene Pikermian chronofauna, P. Nal. A. Sci. USA, 106, 11867–11871, 2009.
Eronen, J. T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., and Fortelius, M.: Precipitation and large herbivorous mammals , part I: Estimates from present-day communities, Evol. Ecol. Res., 12, 217–233, 2010{a}.
Eronen, J. T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., and Fortelius, M.: Precipitation and large herbivorous mammals , part II: Application to fossil data, Evol. Ecol. Res., 12, 235–248, 2010{b}.
Fluteau, F., Ramstein, G., and Besse, J.: Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model, J. Geophys. Res.-Atmos., 104, 11995–12018, 1999.
Fortelius, M., Eronen, J., Jernvall, J., Liu, L. P., Pushkina, D., Rinne, J., Tesakov, A., Vislobokova, I., Zhang, Z. Q., and Zhou, L. P.: Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years, Evol. Ecol. Res., 4, 1005–1016, 2002.
Gadgil, S.: The Indian monsoon and its variability, Annu. Rev. Earth Pl. Sc., 31, 429–467, 2003.
Gao, X. J., Xu, Y., Zhao, Z. C., Pal, J. S., and Giorgi, F.: On the role of resolution and topography in the simulation of East Asia precipitation, Theor. Appl. Climatol., 86, 173–185, 2006.
Gao, X. J., Shi, Y., Song, R., Giorgi, F., Wang, Y., and Zhang, D.: Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM, Meteorol. Atmos. Phys., 100, 73–86, 2008.
Goswami, B. N. and Mohan, R. S. A.: Intraseasonal oscillations and interannual variability of the Indian summer monsoon, J. Climate, 14, 1180–1198, 2001.
Goswami, B. N., Krishnamurthy, V., and Annamalai, H.: A broad-scale circulation index for the interannual variability of the Indian summer monsoon, Q. J. Roy. Meteorol. Soc., 125, 611–633, 1999.
Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y., and Liu, T. S.: Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature, 416, 159–163, 2002.
Guo, Z. T., Sun, B., Zhang, Z. S., Peng, S. Z., Xiao, G. Q., Ge, J. Y., Hao, Q. Z., Qiao, Y. S., Liang, M. Y., Liu, J. F., Yin, Q. Z., and Wei, J. J.: A major reorganization of Asian climate by the early Miocene, Clim. Past, 4, 153–174, https://doi.org/10.5194/cp-4-153-2008, 2008.
Harris, N.: The elevation history of the Tibetan Plateau and its implications for the Asian monsoon, Palaeogeogr. Palaeocl., 241, 4–15, 2006.
Harzhauser, M. and Piller, W. E.: Benchmark data of a changing sea – Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene, Palaeogeogr. Palaeocl., 253, 8–31, 2007.
Herold, N., Seton, M., Muller, R. D., You, Y., and Huber, M.: Middle Miocene tectonic boundary conditions for use in climate models, Geochem. Geophys. Geosyst., 9, Q10009, https://doi.org/10.1029/2008GC002046, 2008.
Hollweg, H. D., Bohm, U., Fast, I., Hennemuth, B., Keuler, K., Keup-Thiel, E., Lautenschlager, M., and Legutke, S.: Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios, Tech. Rep. 3, M&D, Max Planck Institute for Meteorology, 2008.
Hoorn, C., Ohja, T., and Quade, J.: Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal), Palaeogeogr. Palaeocl., 163, 133–161, 2000.
Huang, Y. S., Clemens, S. C., Liu, W. G., Wang, Y., and Prell, W. L.: Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula, Geology, 35, 531–534, 2007.
Jacques, F. M. B., Guo, S. X., Su, T., Xing, Y. W., Huang, Y. J., Liu, Y. S., Ferguson, D. K., and Zhou, Z. K.: Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province, Palaeogeogr. Palaeocl., 304, 318–327, 2011.
Jaeger, E. B., Anders, I., Luthi, D., Rockel, B., Schar, C., and Seneviratne, S. I.: Analysis of ERA40-driven CLM simulations for Europe, Meteorologische Zeitschrift, 17, 349–367, 2008.
Jia, G. D., Peng, P. A., Zhao, Q. H., and Jian, Z. M.: Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea, Geology, 31, 1093–1096, 2003.
Jiang, H. C. and Ding, Z. L.: Spatial and temporal characteristics of Neogene palynoflora in China and its implication for the spread of steppe vegetation, J. Arid Environ., 73, 765–772, 2009.
Jiang, H. C. and Ding, Z. L.: A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China, Palaeogeogr. Palaeocl., 265, 30–38, 2008.
Ju, L. X., Wang, H. K., and Jiang, D. B.: Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model, Palaeogeogr. Palaeocl., 248, 376–390, 2007.
Kaakinen, A., Sonninen, E., and Lunkka, J. P.: Stable isotope record in paleosol carbonates from the Chinese Loess Plateau: Implications for late Neogene paleoclimate and paleovegetation, Palaeogeogr. Palaeocl., 237, 359–369, 2006.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate classification updated, Meteorologische Zeitschrift, 15, 259–263, 2006.
Kroon, D., Steens, T., and Troelstra, S. R.: Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers, Proceedings of the Ocean Drilling Program, 117, 257–263, 1991.
Kutzbach, J. E., Prell, W. L., and Ruddiman, W. F.: Sensitivity of Eurasian Climate to Surface Uplift of the Tibetan Plateau, J. Geol., 101, 177–190, 1993.
Lacombe, O., Mouthereau, F., Kargar, S., and Meyer, B.: Late Cenozoic and modern stress fields in the western Fars (Iran): Implications for the tectonic and kinematic evolution of central Zagros, Tectonics, 25, TC1003, https://doi.org/10.1029/2005TC001831, 2006.
Li, J. G. and Zhang, Y. Y.: Neogene palynofloras from east offshore, Hainan Island, Acta Palaeontologica Sinica, 15, 323–330, 1998.
Liu, G. W.: Late Cenozoic palynological sequence of Eastern Qinghai-Xizang Plateau and its bearing on palaeogeography, Acta Micropalaeontologica Sinica, 13, 363–372, 1996.
Liu, G. W.: A Miocene palynoflora from Huanan County of Heilongjiang Province, Northeastern China, Acta Micropalaeontologica Sinica, 15, 48–54, 1998.
Liu, J., Wang, B., and Yang, J.: Forced and internal modes of variability of the East Asian summer monsoon, Clim. Past, 4, 225–233, https://doi.org/10.5194/cp-4-225-2008, 2008.
Liu, L. P., Eronen, J. T., and Fortelius, M.: Significant mid-latitude aridity in the middle Miocene of East Asia, Palaeogeogr. Palaeocl., 279, 201–206, 2009.
Liu, X. D. and Yin, Z. Y.: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau, Palaeogeogr. Palaeocl., 183, 223–245, 2002.
Liu, Y. S., Utescher, T., Zhou, Z., and Sun, B.: The evolution of Miocene climates in North China: Preliminary results of quantitative reconstructions from plant fossil records, Palaeogeogr. Palaeocl., 304, 308–317, 2011.
Liu-Zeng, J., Tapponnier, P., Gaudemer, Y., and Ding, L.: Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution, J. Geophys. Res.-Earth Surface, 113, F04018, https://doi.org/10.1029/2007jf000897, 2008.
Lunt, D. J., Flecker, R., Valdes, P. J., Salzmann, U., Gladstone, R., and Haywood, A. M.: A methodology for targeting palaeo proxy data acquisition: A case study for the terrestrial late Miocene, Earth Planet. Sci. Lett., 271, 53–62, 2008.
Ma, Y. Z., Li, J. J., and Fang, X. M.: Pollen assemblage in 30.6-5.0 Ma redbeds of Linxia region and climate evolution, Chinese Science Bulletin, 43, 301–304, 1998.
Ma, Y. Z., Fang, X. M., Li, J. J., Wu, F. L., and Zhang, J.: The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin, China, Science in China Series D-Earth Sciences, 48, 676–688, 2005.
Micheels, A., Bruch, A. A., Uhl, D., Utescher, T., and Mosbrugger, V.: A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data, Palaeogeogr. Palaeocl., 253, 251–270, 2007.
Micheels, A., Bruch, A., and Mosbrugger, V.: Miocene climate modelling sensitivity experiments for different CO2 concentrations, Palaeontologia Electronica, 12(5A), p. 20, 2009{a}.
Micheels, A., Eronen, J., and Mosbrugger, V.: The Late Miocene climate response to a modern Sahara desert, Global Planet. Change, 67, 193–204, 2009{b}.
Micheels, A., Bruch, A. A., Eronen, J., Fortelius, M., Harzhauser, M., Utescher, T., and Mosbrugger, V.: Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model, Palaeogeogr. Palaeocl., 304, 337–350, 2011.
Mikolajewicz, U. and Crowley, T. J.: Response of a coupled ocean/energy balance model to restricted flow through the central American isthmus, Paleoceanography, 12, 429–441, 1997.
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693–712, 2005.
Molnar, P., Boos, W. R., and Battisti, D. S.: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau, Annu. Rev. Earth Pl. Sc., 38, 77–102, 2010.
Park, S. and Hong, S. Y.: The role of surface boundary forcing over south Asia in the Indian summer monsoon circulation: A regional climate model sensitivity study, Geophys. Res. Lett., 31, L12112, https://doi.org/10.1029/2004GL019729, 2004.
Passey, B. H., Ayliffe, L. K., Kaakinen, A., Zhang, Z. Q., Eronen, J. T., Zhu, Y. M., Zhou, L. P., Cerling, T. E., and Fortelius, M.: Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China, Earth Planet. Sci. Lett., 277, 443–452, 2009.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695–699, 2000.
Popov, S. V., Rögl, F., Rozanov, A. Y., Steininger, F., Shcherba, I., and Kovac, M.: Lithological-Paleogeographic maps of Paratethys: 10 Maps Late Eocene to Pliocene, Courier Forschungsinstitut Senckenberg, 250, 1–46, 2004.
Qiang, X. K., Li, Z. X., Powell, C. M., and Zheng, H. B.: Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet, Earth Planet. Sci. Lett., 187, 83–93, 2001.
Quade, J., Cerling, T. E., and Bowman, J. R.: Development of Asian monsoon revealed by marked ecological shift during the Latest Miocene in Northern Pakistan, Nature, 342, 163–166, 1989.
Ramstein, G., Fluteau, F., Besse, J., and Joussaume, S.: Effect of orogeny, plate motion and land sea distribution on Eurasian climate change over the past 30 million years, Nature, 386, 788–795, 1997.
Raschendorfer, M.: The new turbulence parameterization of LM, COSMO newsletter, 1, 90–98, 2001.
Rea, D. K., Snoeckx, H., and Joseph, L. H.: Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere, Paleoceanography, 13, 215–224, 1998.
Rockel, B. and Geyer, B.: The performance of the regional climate model CLM in different climate regions, based on the example of precipitation, Meteorologische Zeitschrift, 17, 487–498, 2008.
Rowley, D. B. and Currie, B. S.: Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet, Nature, 439, 677–681, 2006.
Rowley, D. B., Pierrehumbert, R. T., and Currie, B. S.: A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene, Earth Planet. Sci. Lett., 188, 253–268, 2001.
Ruddiman, W. F. and Kutzbach, J. E.: Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in Southern Asia and the American West, J. Geophys. Res.-Atmos., 94, 18409–18427, 1989.
Sakai, K. and Kawamura, R.: Remote response of the East Asian winter monsoon to tropical forcing related to El Niño-Southern Oscillation, J. Geophys. Res.-Atmos., 114, D06105, https://doi.org/10.1029/2008JD010824, 2009.
Sanyal, P., Sarkar, A., Bhattacharya, S. K., Kumar, R., Ghosh, S. K., and Agrawal, S.: Intensification of monsoon, microclimate and asynchronous C4 appearance: Isotopic evidence from the Indian Siwalik sediments, Palaeogeogr. Palaeocl., 296, 165–173, 2010.
Schrodin, R. and Heise, E.: A new multi-layer soil model, COSMO Newsletter, 2, 149–151, 2002.
Shu, J. W., Wang, W. M., Leopold, E. B., Wang, J. S., and Yin, D. S.: Pollen stratigraphy of coal-bearing deposits in the Neogene Jidong Basin, Heilongjiang Province, NE China: New insights on palaeoenvironment and age, Rev. Palaeobot. Palyno., 148, 163–183, 2008.
Singh, G. P. and Oh, J. H.: Impact of Indian Ocean sea-surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model, Int. J. Climatol., 27, 1455–1465, 2007.
Skamarock, W. C. and Klemp, J. B.: The stability of time-split numerical-methods for the hydrostatic and the nonhydrostatic elastic equations, Mon. Weather Rev., 120, 2109–2127, 1992.
Smiatek, G., Rockel, B., and Schattler, U.: Time invariant data preprocessor for the climate version of the COSMO model (COSMO-CLM), Meteorologische Zeitschrift, 17, 395–405, 2008.
Spicer, R. A., Harris, N. B. W., Widdowson, M., Herman, A. B., Guo, S. X., Valdes, P. J., Wolfe, J. A., and Kelley, S. P.: Constant elevation of southern Tibet over the past 15 million years, Nature, 421, 622–624, 2003.
Steinke, S., Groeneveld, J., Johnstone, H., and Rendle-Buhring, R.: East Asian summer monsoon weakening after 7.5 Ma: Evidence from combined planktonic foraminifera Ma/Ca and δ18O (ODP site 1146; northern South China Sea), Palaeogeogr. Palaeocl., 289, 33–43, 2010.
Steppuhn, A., Micheels, A., Geiger, G., and Mosbrugger, V.: Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction, Palaeogeogr. Palaeocl., 238, 399–423, 2006.
Steppuhn, A., Micheels, A., Bruch, A. A., Uhl, D., Utescher, T., and Mosbrugger, V.: The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data, Global Planet. Change, 57, 189–212, 2007.
Sun, D. H.: Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of Northern China, Global Planet. Change, 41, 63–80, 2004.
Sun, D. H., Shaw, J., An, Z. S., Cheng, M. Y., and Yue, L. P.: Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau, Geophys. Res. Lett., 25, 85–88, 1998.
Sun, J. M. and Zhang, Z. Q.: Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China, Global Planet. Change, 64, 53–68, 2008.
Sun, J. M., Zhang, Z. Q., and Zhang, L. Y.: New evidence on the age of the Taklimakan Desert, Geology, 37, 159–162, 2009.
Sun, X. J. and Wang, P. X.: How old is the Asian monsoon system? Palaeobotanical records from China, Palaeogeogr. Palaeocl., 222, 181–222, 2005.
Tang, L. Y. and Shen, C. M.: Late Cenozoic vegetational history and climatic characteristics of Qinghai-Xizang Plateau, Acta Micropalaeontologica Sinica, 13, 321–337, 1996.
Tapponnier, P., Xu, Z. Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J. S.: Oblique stepwise rise and growth of the Tibet plateau, Science, 294, 1671–1677, 2001.
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev., 117, 1779–1800, 1989.
Wan, S. M., Li, A. C., Clift, P. D., and Stuut, J. B. W.: Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma, Palaeogeogr. Palaeocl., 254, 561–582, 2007.
Wang, B., Wu, Z. W., Li, J. P., Liu, J., Chang, C. P., Ding, Y. H., and Wu, G. X.: How to measure the strength of the East Asian summer monsoon, J. Climate, 21, 4449–4463, 2008{a}.
Wang, H. J. and Jiang, D. B.: A new East Asian winter monsoon intensity index and atmospheric circulation comparison between strong and weak composite, Quaternary Sci., 24, 19–27, 2004.
Wang, J., Wang, Y. J., Liu, Z. C., Li, J. Q., and Xi, P.: Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia, Palaeogeogr. Palaeocl., 152, 37–47, 1999.
Wang, P. X., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z. M., Kershaw, P., and Sarnthein, M.: Evolution and variability of the Asian monsoon system: state of the art and outstanding issues, Quaternary Sci. Rev., 24, 595–629, 2005.
Wang, W. M., Saito, T., and Nakagawa, T.: Palynostratigraphy and climatic implications of Neogene deposits in the Himi area of Toyama Prefecture, Central Japan, Rev. Palaeobot. Palyno., 117, 281–295, 2001.
Wang, Y., Wang, X. M., Xu, Y. F., Zhang, C. F., Li, Q., Tseng, Z. J., Takeuchi, G., and Deng, T.: Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications, Earth Planet. Sci. Lett., 270, 73–85, 2008{b}.
Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., and Yasunari, T.: Monsoons: Processes, predictability, and the prospects for prediction, J. Geophys. Res.-Oceans, 103, 14451–14510, 1998.
Wolfe, J. A.: Distribution of major vegetation types during the Tertiary, in: The carbon cycle and atmospheric CO2: Natural Variations Archean to Present, edited by Sundquist, E. T. and Broecker, W. S., 357–375, AGU, Washington, D.C., 1985.
Xia, K., Su, T., Liu, Y. S., Xing, Y. W., Jacques, F. M. B., and Zhou, Z. K.: Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China, Palaeogeogr. Palaeocl., 276, 80–86, 2009.
Yue, X., Wang, H. J., Wang, Z. F., and Fan, K.: Simulation of dust aerosol radiative feedback using the Global Transport Model of Dust: 1. Dust cycle and validation, J. Geophys. Res.-Atmos., 114, D10202, https://doi.org/10.1029/2008JD010995, 2009.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, 2001.
Zhang, Z. S., Wang, H. J., Guo, Z. T., and Jiang, D. B.: Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China, Earth Planet. Sci. Lett., 257, 622–634, 2007{a}.
Zhang, Z. S., Wang, H. J., Guo, Z. T., and Jiang, D. B.: What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?, Palaeogeogr. Palaeocl., 245, 317–331, 2007{b}.
Zheng, D. W., Zhang, P. Z., Wan, J. L., Yuan, D. Y., Li, C. Y., Yin, G. M., Zhang, G. L., Wang, Z. C., Min, W., and Chen, J.: Rapid exhumation at similar to 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin, Earth Planet. Sci. Lett., 248, 198–208, 2006.
Zheng, H. B., Powell, C. M., An, Z. S., Zhou, J., and Dong, G. R.: Pliocene uplift of the northern Tibetan Plateau, Geology, 28, 715–718, 2000.
Zheng, Y. H. and Wang, W. X.: Sequence of Miocene Fotan Group in SE Fujian and its palyno-assemblages, Acta Palaeontologica Sinica, 33, 200–218, 1994.
Zheng, Y. Q., Yu, G., Wang, S. M., Xue, B., Zhuo, D. Q., Zeng, X. M., and Liu, H. Q.: Simulation of paleoclimate over East Asia at 6 ka BP and 21 ka BP by a regional climate model, Clim. Dynam., 23, 513–529, 2004.
Zhu, J. H. and Wang, S. W.: 80 yr oscillation of summer rainfall over North China and East Asian Summer Monsoon, Geophys. Res. Lett., 29, 1672, https://doi.org/10.1029/2001GL013997, 2002.
Zhu, Y. M., Zhou, L. P., Mo, D. W., Kaakinen, A., Zhang, Z. Q., and Fortelius, M.: A new magnetostratigraphic framework for late Neogene Hipparion Red Clay in the eastern Loess Plateau of China, Palaeogeogr. Palaeocl., 268, 47–57, 2008.