Articles | Volume 7, issue 1
https://doi.org/10.5194/cp-7-299-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-7-299-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles
M. H. M. Groot
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
R. G. Bogotá
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
Universidad Distrital, Facultad del Medio Ambiente y Recursos Naturales, Bogotá, Colombia
L. J. Lourens
University of Utrecht, Faculty of Geosciences, Utrecht, The Netherlands
H. Hooghiemstra
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
M. Vriend
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
deceased
J. C. Berrio
University of Leicester, Department of Geography, Leicester, UK
E. Tuenter
University of Utrecht, Faculty of Geosciences, Utrecht, The Netherlands
J. Van der Plicht
University of Groningen, Centre for Isotope Research, Groningen, The Netherlands
B. Van Geel
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
M. Ziegler
University of Utrecht, Faculty of Geosciences, Utrecht, The Netherlands
S. L. Weber
University of Utrecht, Faculty of Geosciences, Utrecht, The Netherlands
A. Betancourt
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
Fúquene Project Members
L. Contreras
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
Fúquene Project Members
S. Gaviria
Universidad Nacional de Colombia, Facultad de Sciencias, Depto. de Geosciencias, Bogotá, Colombia
Fúquene Project Members
C. Giraldo
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
Fúquene Project Members
N. González
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
Fúquene Project Members
J. H. F. Jansen
Royal Netherlands Institute for Sea Research, Texel, The Netherlands
Fúquene Project Members
M. Konert
Vrije Universiteit Amsterdam, Institute of Earth Sciences, Department of Paleoclimatology and Geomorphology, Amsterdam, The Netherlands
Fúquene Project Members
D. Ortega
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
Fúquene Project Members
O. Rangel
Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Bogotá, Colombia
Fúquene Project Members
G. Sarmiento
Universidad Nacional de Colombia, Facultad de Sciencias, Depto. de Geosciencias, Bogotá, Colombia
Fúquene Project Members
J. Vandenberghe
Vrije Universiteit Amsterdam, Institute of Earth Sciences, Department of Paleoclimatology and Geomorphology, Amsterdam, The Netherlands
Fúquene Project Members
T. Van der Hammen
Fundacion Tropenbos, Bogotá, Colombia
Fúquene Project Members
deceased
M. Van der Linden
University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
Fúquene Project Members
W. Westerhoff
Deltares, Subsurface and Groundwater Systems, Geological Survey of the Netherlands, Utrecht, The Netherlands
Fúquene Project Members
Related subject area
Subject: Vegetation Dynamics | Archive: Terrestrial Archives | Timescale: Millenial/D-O
Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn sediments
A new high-resolution pollen sequence at Lake Van, Turkey: insights into penultimate interglacial–glacial climate change on vegetation history
Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods
Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial
Geochronological database and classification system for age uncertainties in Neotropical pollen records
Abrupt climate and vegetation variability of eastern Anatolia during the last glacial
Climate variability over the last 92 ka in SW Balkans from analysis of sediments from Lake Prespa
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Nadine Pickarski and Thomas Litt
Clim. Past, 13, 689–710, https://doi.org/10.5194/cp-13-689-2017, https://doi.org/10.5194/cp-13-689-2017, 2017
Short summary
Short summary
We present a new detailed pollen and isotope record from Lake Van (Turkey) spanning the period from 250 to 128 ka. In contrast to SW Europe, all three terrestrial warm intervals at Lake Van are characterized by clear interglacial conditions. The largest forest expansion occurred during MIS 7c instead of MIS 7e. Our record also reveals high oscillations between 193 and 157 ka followed by low variations (157 to 131 ka) that highlighted Dansgaard–Oeschger-like events during the penultimate glacial.
Dunia H. Urrego, Henry Hooghiemstra, Oscar Rama-Corredor, Belen Martrat, Joan O. Grimalt, Lonnie Thompson, Mark B. Bush, Zaire González-Carranza, Jennifer Hanselman, Bryan Valencia, and César Velásquez-Ruiz
Clim. Past, 12, 697–711, https://doi.org/10.5194/cp-12-697-2016, https://doi.org/10.5194/cp-12-697-2016, 2016
Short summary
Short summary
We compare eight pollen records reflecting environmental change in the tropical Andes over the past 30 000 years. Our analysis focuses on the signature of millennial-scale climate variability in the tropical Andes: Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the tropical vegetation, with downslope upper forest line (UFL) migrations and cooling during HS and the Younger Dryas.
Andrea Miebach, Phoebe Niestrath, Patricia Roeser, and Thomas Litt
Clim. Past, 12, 575–593, https://doi.org/10.5194/cp-12-575-2016, https://doi.org/10.5194/cp-12-575-2016, 2016
Short summary
Short summary
We analyze the vegetation and climate in northwestern Turkey during the last ca. 31 000 years based on a new pollen data set from lacustrine sediment cores. The study reveals vegetation responses to long-term and rapid climate changes. Moreover, it documents human activities in the catchment of Lake Iznik and shows a clear anthropogenic impact on the vegetation since the Early Bronze Age.
S. G. A. Flantua, M. Blaauw, and H. Hooghiemstra
Clim. Past, 12, 387–414, https://doi.org/10.5194/cp-12-387-2016, https://doi.org/10.5194/cp-12-387-2016, 2016
Short summary
Short summary
We present a review of chronological dating from ca. 1100 fossil pollen records in Central and South America. Additionally, a temporal quality assessment is implemented on 292 records from northwest South America, which include recalibrating 234 age models. This method evaluates uncertainties for inferred sample ages and chronologies. Important time windows on centennial-millennial climate variability are discussed for sample resolution (estimated years/sample) and temporal uncertainty.
N. Pickarski, O. Kwiecien, D. Langgut, and T. Litt
Clim. Past, 11, 1491–1505, https://doi.org/10.5194/cp-11-1491-2015, https://doi.org/10.5194/cp-11-1491-2015, 2015
K. Panagiotopoulos, A. Böhm, M. J. Leng, B. Wagner, and F. Schäbitz
Clim. Past, 10, 643–660, https://doi.org/10.5194/cp-10-643-2014, https://doi.org/10.5194/cp-10-643-2014, 2014
Cited articles
Alfonso, J. A., Martínez, M., Flores, S., and Benzo, T.: Distribution of trace elements in offshore sediments of the Orinoco Delta, J. Coastal Res., 22, 502–510, 2006.
Baisch, S. and Bokelmann, G. H. R.: Spectral analysis with incomplete time series: an example from seismology, Comput. Geosci., 25, 739–750, 1999.
Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C.: Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano, Nature, 409, 698–701, 2001.
Balan, E., Patrick, T., Jupille, J., Fritsch, E., Mueller, J. P., and Calas, G.: Surface chemistry of weathered Zircon, Chem. Geol., 181, 13–22, 2001.
Berger, A. L.: Accurancy and frequency stability of the Earth's orbital elements during the Quaternary, in: Milankovitch and Climate, edited by: Berger, A. L., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., Reidel, Dordrecht, Boston, Lancaster, 3–39, 1984.
Bintanja, R., v. d. Wal, R. S. W., and Oerlemans, J.: Modelled atmospheric temperatures and global sea levels over the past million years, Nature, 437, 125–128, 2005.
Blackman, R. B. and Tuckey, J. W.: The measurement of power spectra from the point of view of communication engeneering, Dover publications, New York, 1958.
Blanchon, P., Eisenhauer, A., Fietzke, J., and Liebetrau, V.: Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand, Nature, 458, 881–885, 2009.
Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science, 291, 109–112, 2001.
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: Correlations between climate record from North Atlantic sediments and Greenland ice, Nature, 365, 143–147, 1993.
Boom, A., Marchant, R., Hooghiemstra, H., and Sinninghe Damste, J. S.: CO2- and temperature-controlled altitudinal shifts of C4- and C3- dominated grasslands allow reconstruction of palaeoatmospheric pCO2, Palaeogeogr. Palaeocl., 177, 151–168, 2002.
Braconnot, P., Loutre, M.-F., Dong, B., Joussaume, S., Valdes, P., and PMIP participating groups: How the simulated change in monsoon at 6 ka BP is related to the simulation of the modern climate: results from the Paleoclimate Modeling Intercomparison Project, Clim. Dynam., 19, 107–121, 2002.
Broecker, W. S.: Massive iceberg discharges as triggers for global climate change, Nature, 372, 421–424, 1994.
Broecker, W. S.: Cooling the Tropics, Nature, 376, 212–213, 1995.
Broecker, W. S. and Denton, G. H.: Implications of global snowline lowering during glacial time to glacial theory, Quaternary Sci. Rev., 9, 305–341, 1990.
Broecker, W. S., Peteet, D. M., and Rind, D.: Does the ocean-atmosphere system have more than one stable mode of operation?, Nature, 315, 21–26, 1985.
Brovkin, V., Ganopolski, A., and Svirezhev, Y.: A continuous climate-vegetation classification for use in climate-biosphere studies, Ecol. Modell., 101, 251–261, 1997.
Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., and Greve, R.: Transient simulation of the last glacial inception, Part I: Glacial inception as a bifurcation of the climate system, Clim. Dynam., 24, 545–561, 2005a.
Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., Brovkin, V., and Kubatzki, C.: Transient simulation of the last glacial inception, Part II: Sensitivity and feedback analysis, Clim. Dynam., 24, 563–576, 2005b.
Cane, M. and Clement, A. C.: A role for the tropical Pacific coupled ocean-atmosphere system on Milankovitch and millennial timescales, Part II: Global Impacts, Geophys. Monogr., 112, 373–383, 1999.
Cheng, H., Edwards, R. L., Wang, Y., Kong, X., Ming, Y., Kelly, M. J., Wang, X., Gallup, C. D., and Liu, W.: Penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations, Geology, 34, 217–220, 2006.
Cheng, H., Edwards, R. L., Broecker, W. S., Denton, G. H., Kong, X., Wang, Y., Zhang, R., and Wang, X.: Ice age Terminations, Science, 326, 248–252, 2009.
Chiang, J. C. H., Biasutti, M., and Battisti, D. S.: Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions, Paleoceanography, 18, 1–18, 2003.
Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P., and Pachur, H.-J.: Simulation of an abrupt change in Saharan vegetation in the mid-Holocene, Geophys. Res. Lett., 26, 2037–2040, 1999.
Clement, A. C. and Peterson, L. C.: Mechanisms of abrupt climate change of the last glacial period, Rev. Geophys., 46, RG4002, https://doi.org/10.1029/2006RG000204, 2008.
Davidson, W.: Iron and manganese in lakes, Earth Sci. Rev., 34, 119–163, 1993.
Denton, G. H., Alley, R. B., Comer, G. C., and Broecker, W. S.: The role of seasonality in abrupt climate change, Quaternary Sci. Rev., 24, 1159–1182, 2005.
Epica Dome C Members: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 196–198, 2006.
Florez, A.: Relacion altitidinal de la temperature del suelo y del aire en los Andes centrales de Colombia, Colomb. Geogr., 12, 5–38, 1986.
Gallup, C. D., Cheng, H., Taylor, F. W., and Edward, R. L.: Direct determination of the timing of sea level change during Termination II, Science, 295, 310–313, 2002.
Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153–158, 2001.
Ganopolski, A., Rahmstorf, S., Petoukhov, V., and Claussen, M.: Simulation of modern and glacial climates with a coupled global model of intermediate complexity, Nature, 391, 351–356, 1998.
GAVESA: Perforaciones en agua Laguna de Fúquene, Departamento de Cundinamarca, Internal Report, Bogotá, 2002.
González, C., Dupont, L. M., Behling, H., and Wefer, G.: Neotropical vegetation response to rapid climate changes during the last glacial period: Palynological evidence from the Cariaco Basin, Quaternary Res., 69, 217–230, 2008.
GRIP-Members: Climate instability during the last interglacial period recorded in the GRIP ice core, Nature, 364, 203–207, 1993.
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S., and Jouzel, J.: Comparison of oxygen isotopes records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552–554, 1993.
Heslop, D. and Dekkers, M. J.: Spectral analysis of unevenly spaced climatic time series using CLEAN: signal recovery and derivation of significance levels using Monte Carlo simulation, Phys. Earth Planet. In., 130, 103–116, 2002.
Hessler, I., Dupont, L. M., Bonnefille, R., Behling, H., González, C., Helmens, K. F., Hooghiemstra, H., Lebamba, J., Ledru, M.-P., Lézine, A.-M., Maley, J., Marret, F., and Vincens, A.: Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial, Quaternary Sci. Rev., 29, 2882–2899, 2010.
Hooghiemstra, H.: Vegetational and climatic history of the high plain of Bogotá, Colombia. J. Cramer, Vaduz, Dissertationes Botanicae, 79, 368 pp., 1984.
Hooghiemstra, H. and Van der Hammen, T.: Late Quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia, Rev. Palaeobot.d Palyno., 77, 235–262, 1993.
Hooghiemstra, H. and Van der Hammen, T.: Quaternary ice-age dynamics in the Colombian Andes: developing an understanding of our legacy, Philos. T. Roy. Soc. Lond. B, 359, 173–181, 2004.
Hooghiemstra, H., Melice, J. L., Berger, A., and Shackleton, N.: Frequency spectra and paleoclimatic variability of the high-resolution 30 1450 ka Funza I pollen record (Eastern Cordillera, Colombia), Quaternary Sci. Rev., 12, 141–156, 1993.
Imbrie, J. and Imbrie, J. Z.: Modelling the climatic response to orbital variations, Science, 207, 943–952, 1980.
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in Milankovitch and Climate, understanding the response to astronomical forcing, editd by: Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., NATO Advanced Science Institute Series C 126, Reidel Publishing Company, Dordrecht, Boston, Lancaster, 1984.
Jansen, J. H. F., Van der Gaast, S. J., Koster, B., and Vaars, A. J.: CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores, Mar. Geol., 151, 143–153, 1998.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800 000 years, Science, 317, 793–797, 2007.
Klein, A. G., Seltzer, G. O., and Isacks, B. L.: Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile, Quaternary Sci. Rev., 18, 63–84, 1999.
Kutzbach, J. E. and Street-Perrott, F. A.: Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP, Nature, 317, 2130–2134, 1985.
Landais, A., Chappellaz, J., Delmotte, M., Jouzel, J., Blunier, T., Bourg, C., Caillon, N., Cherrier, S., Malaize, B., Masson-Delmotte, V., Raynaud, D., and Schwander, J.: A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core, J. Geophys. Res., 108(D18), 4563, https://doi.org/10.1029/2002JD003147, 2003.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrand, B.: A long term numerical solution for the insolation quantities of the Earth, Aston. Astrophys., 428, 261–285, 2004.
Lea, D. W., Pak, D. K., and Spero, H. J.: Climate impact of late Quaternary equatorial Pacific sea surface temperature variations, Science, 289, 1719–1724, 2000.
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., and Bard, E.: Moisture transport across Central America as a positive feedback on abrupt climatic changes, Nature, 445, 908–911, 2007.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Locarnini, R. A., Mishonov, A. V., Antonov, J. L., Boyer, T. P., and Garcia, H. E.: Temperature, in: World Ocean Atlas 2005, edited by: Levitus, S., US Government Printing Office, Washington, DC, 182 pp., 2006.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, F., and Chappellaz, J.: Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years, Nature, 453, 383–386, https://doi.org/10.1038/nature06950, 2008.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F.: High-resolution carbon dioxide concentration record 650,000–800,000 years before present, Nature, 453, 379–382, https://doi.org/10.1038/nature06949, 2008.
Markgraf, V.: Interhemispheric climate linkages, Academic Press, San Diego, USA, 2001.
Martrat, B., Grimalt, J. O., Shackleton, N., De Abreu, L., Hutterli, M. A., and Stocker, T. F.: Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin, Science, 317, 502–507, 2007.
Mommersteeg, H.: Vegetation development and cyclic and abrupt climatic change during the Late Quaternary, Unpublished Ph.D. thesis, University of Amsterdam, Amsterdam, 1998.
Mudelsee, M.: TAUEST: a computer program for estimating persistence in unevenly spaced weather/climate time series, Comput. Geosci., 28, 69–72, 2002.
NGRIP (North GRIP ice core project members): High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
Nyakairu, G. W. A. and Koeberl, C.: Variation of mineral, chemical, and rare earth element composition in size fractions of clay-rich sediments from the Kajjansi and Ntawo clay deposits, Chem. Erde-Geochem., 62, 73–86, 2002.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs time-series analysis, EOS 77, 379, 1996.
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE, Ann. Rev. Earth Planet. Sci., 32, 111–149, 2004.
Peterson, L. C., Haug, G. H., Hughen, K. A., and Rohl, U.: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial, Science, 290, 1947–1951, 2000.
Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: CLIMBER-2: a climate system model of intermediate complexity, Part I: model description and performance for present climate, Clim. Dynam., 16, 1–17, 2000.
Richter, T. O., Van der Gaast, S., Koster, B., Vaasrs, A., Gieles, R., de Stigter, H. C., de Haas, H., Van Weering, T. C. E., and Rothwell, R. G.: The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic Sediments, in: New Techniques in Sediment Core Analysis, edited by: anonymous editors, Special Publications, The Geological Society of London, London, 39–50, 2006.
Roberts, D. H., Lehar, J., and Dreher, J. W.: Time series analysis with CLEAN – Part One – derivation of a spectrum, Astronom. J., 93, 968–989, 1987.
Robertson, A., Overpeck, J., Rind, D., Mosley-Thompson, E., Zielinski, G., Lean, J., Koch, D., Penner, J., and Tegen, I.: Hypothesized climate forcing time series for the last 500 years, J. Geophys. Res.-Atmos., 106, 14783–14803, 2001.
Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., and Van der Hammen, T.: Landscape evolution and origin of Lake Fúquene (Colombia): tectonics, erosion and sedimentation processes during the Pleistocene, Geomorphology, 100, 563–575, 2008.
Schulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series, Comput. Geosci., 28, 421–426, 2002.
Short, D. A., Mengel, J. G., Crowley, T. J., Hyde, W. T., and North, G. R.: Filtering of Milankovitch cycles by Earth's Geography, Quaternary Res., 35, 157–173, 1991.
Stiles, C. A., Mora, C., and Driese, S. G.: Pedogenic processes and domain boundaries in a vertisol climosequence: evidence from titanium and zirconium distribution and morphology, Geoderma, 116, 279–299, 2003.
Stocker, T. F.: The seesaw effect, Science, 282, 61–62, 1998.
Stocker, T. F., Wright, D. G., and Mysak, L. A.: A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies, J. Climate, 5, 773–797, 1992.
Stuiver, P., Reimer, J., and Reimer, R.: CALIB radiocarbon calibration, Execute version 5.0.2html, http://calib.qub.ac.uk/calib/, last access: 2009.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K., Cole-Dai, J., Bolzan, J. F., and Liu, K.-B.: Late Glacial Stage and Holocene tropical ice core records from Huascarán, Peru, Science, 269, 46–50, 1995.
Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson, K., Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., and Cole-Dai, A.: 25,000 year tropical climate history from Bolivian ice cores, Science, 282, 1858–1864, 1998.
Thompson, L. G., Mosley-Thompson, E., and Henderson, K.: Ice-core paleoclimate records in tropical South America since the Last Glacial Maximum, J. Quaternary Sci., 15(4), 377–394, 2000.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K., and Mashiotta, T. A.: Tropical glacier and ice core evidence of climate change on annual to millennial time scales, Climate Change, 59, 137–155, 2003.
Thompson, W. G. and Goldstein, S. L.: A radiometric calibration of the SPECMAP timescale, Quarternary Sci. Rev., 25, 3207–3215, 2006.
Timmermann, A., Timm, O., Stott, L., and Menviel, L.: The roles of CO2 and orbital forcing in driving southern hemispheric temperature variations during the last 21,000 years, J. Climate, 22, 1626–1640, 2009.
Torres, V., Vandenberghe, J., and Hooghiemstra, H.: An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies, Palaeogeogr. Palaeocl., 226, 127–148, 2005.
Tuenter, E., Weber, S. L., Hilgen, F. J., Lourens, L. J., and Ganopolski, A.: Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation, Clim. Dynam., 24, 279–295, 2005.
Urrutia, R. and Vuille, M.: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century, J. Geophys. Res., 114, D02108, https://doi.org/10.1029/2008JD011021, 2009.
Van't Veer, R. and Hooghiemstra, H.: Montane forest evolution during the last 650 000 yr in Colombia: a multivariate approach based on pollen record Funza-I, J. Quaternary Sci., 15, 329–346, 2000.
Van't Veer, R., Ran, R., Mommersteeg, E. T. H., and Hooghiemstra, H. J. P. M.: Multivariate analysis of the Middle and Late Pleistocene Funza pollen records of Colombia, Mededelingen Rijks Geologische Dienst, 52, 195–212, 1995.
Van der Hammen, T.: The Pleistocene changes of vegetation and climate in tropical South America, J. Biogeogr., 1, 3–26, 1974.
Van der Hammen, T. and González, E.: Upper Pleistocene and Holocene climate and vegetation of the Sabana de Bogotá, Leidse Geologische Mededelingen, 25, 261–315, 1960.
Van Geel, B. and Van der Hammen, T.: Upper Quaternary vegetational and climatic sequence of the Fúquene area Eastern Cordillera, Colombia, Palaeogeogr. Palaeocl., 14, 9–92, 1973.
Vimeux, F., Sylvstre, F., and Khodri, M.: Past climate variability in South America and surrounding regions, Springer, Developments in Paleoenvironmentl Research, Berlin, Vol. 14, 2009.
Wang, X. F., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart, P. L., Richards, D. A., and Shen, C. C.: Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies, Nature, 432, 740–743, 2004.
Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z.: Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years, Nature, 451, 1090–1093, 2008.
Weber, S. L. and Tuenter,E.: The impact of varying ice sheets and greenhouse gases on the intensity and timing of boreal summer monsoons, Quaternary Sci. Rev. 30, 469–479, https://doi.org/10.1016/j.quascirev.2010.12.009, 2011.
Wille, M., Hooghiemstra, H., Behling, H., Van der Borg, K., and Negret, A. J.: Environmental change in the Colombian subandean forest belt from 8 pollen records: the last 50 kyr, Veg. Hist. Archaeobot., 10, 61–77, 2001.
Wright Jr., H. E., Kutzbach, J. E., Webb III, T., Ruddiman, W. F., Street-Perrott, F. A., and Bartlein, P. J.: Global climates since the Last Glacial maximum, University of Minnesota Press, Minneapolis, USA, 1993.
Yoshimori, M., Weaver, A. J., Marshall, S. J., and Clarke, G. K. C.: Glacial Terminations: sensitivity to orbital and CO2 forcing in a coupled climate system model, Clim. Dynam., 17, 571–588, 2001.
Ziegler, M., Nurnberg, D., Karas, C., Tiedemann, R., and Lourens, L. J.: Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt cold events, Nat. Geosci., 1, 601–605, 2008.