Articles | Volume 5, issue 3
https://doi.org/10.5194/cp-5-297-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-5-297-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ecosystem effects of CO2 concentration: evidence from past climates
I. C. Prentice
QUEST, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol BS8 1RJ, UK
S. P. Harrison
School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
Related subject area
Subject: Atmospheric Dynamics | Archive: Historical Records | Timescale: Centennial-Decadal
Technical note: An improved methodology for calculating the Southern Annular Mode index to aid consistency between climate studies
Could old tide gauges help estimate past atmospheric variability?
Reassessing long-standing meteorological records: an example using the national hottest day in Ireland
Extreme historical droughts and floods in the Hanjiang River Basin, China, since 1426
Influence of warming and atmospheric circulation changes on multidecadal European flood variability
Assimilating monthly precipitation data in a paleoclimate data assimilation framework
Historical droughts in the Qing dynasty (1644–1911) of China
Impact of different estimations of the background-error covariance matrix on climate reconstructions based on data assimilation
Causes of increased flood frequency in central Europe in the 19th century
A 305-year continuous monthly rainfall series for the island of Ireland (1711–2016)
Changes in the strength and width of the Hadley Circulation since 1871
Laura Velasquez-Jimenez and Nerilie J. Abram
Clim. Past, 20, 1125–1139, https://doi.org/10.5194/cp-20-1125-2024, https://doi.org/10.5194/cp-20-1125-2024, 2024
Short summary
Short summary
The Southern Annular Mode (SAM) influences climate in the Southern Hemisphere. We investigate the effects of calculation method and data used to calculate the SAM index and how it influences the relationship between the SAM and climate. We propose a method to calculate a natural SAM index that facilitates consistency between studies, including when using different data resolutions, avoiding distortion of SAM impacts and allowing for more reliable results of past and future SAM trends.
Paul Platzer, Pierre Tandeo, Pierre Ailliot, and Bertrand Chapron
EGUsphere, https://doi.org/10.5194/egusphere-2023-2997, https://doi.org/10.5194/egusphere-2023-2997, 2024
Short summary
Short summary
Old observations are necessary to understand the atmosphere. When direct observations are not available, one can use indirect observations such as tide gauges, which measure the sea-level in portal cities. The sea level rises when local air pressure decreases, and when wind pushes water towards the coast. Several centuries-long tide gauge records are available. We show that these can be complementary to direct pressure observations for studying storms and anticyclones in the 19th century.
Katherine Dooley, Ciaran Kelly, Natascha Seifert, Therese Myslinski, Sophie O'Kelly, Rushna Siraj, Ciara Crosby, Jack Kevin Dunne, Kate McCauley, James Donoghue, Eoin Gaddren, Daniel Conway, Jordan Cooney, Niamh McCarthy, Eoin Cullen, Simon Noone, Conor Murphy, and Peter Thorne
Clim. Past, 19, 1–22, https://doi.org/10.5194/cp-19-1-2023, https://doi.org/10.5194/cp-19-1-2023, 2023
Short summary
Short summary
The highest currently recognised air temperature (33.3 °C) ever recorded in the Republic of Ireland was logged at Kilkenny Castle in 1887. This paper reassesses the plausibility of the record using various methods such as inter-station reassessment and 20CRv3 reanalysis. As a result, Boora 1976 at 32.5 °C is presented as a more reliable high-temperature record for the Republic of Ireland. The final decision however rests with the national meteorological service, Met Éireann.
Xiaodan Zhang, Guoyu Ren, Yuda Yang, He Bing, Zhixin Hao, and Panfeng Zhang
Clim. Past, 18, 1775–1796, https://doi.org/10.5194/cp-18-1775-2022, https://doi.org/10.5194/cp-18-1775-2022, 2022
Short summary
Short summary
Applying yearly drought and flood records from historical documents and precipitation data in the period of instrumental measurements, this study constructs a time series of extreme droughts and floods in the Hanjiang River Basin from 1426–2017 and analyzes the temporal and spatial characteristics of the extreme drought and flood event variations.
Stefan Brönnimann, Peter Stucki, Jörg Franke, Veronika Valler, Yuri Brugnara, Ralf Hand, Laura C. Slivinski, Gilbert P. Compo, Prashant D. Sardeshmukh, Michel Lang, and Bettina Schaefli
Clim. Past, 18, 919–933, https://doi.org/10.5194/cp-18-919-2022, https://doi.org/10.5194/cp-18-919-2022, 2022
Short summary
Short summary
Floods in Europe vary on time scales of several decades. Flood-rich and flood-poor periods alternate. Recently floods have again become more frequent. Long time series of peak stream flow, precipitation, and atmospheric variables reveal that until around 1980, these changes were mostly due to changes in atmospheric circulation. However, in recent decades the role of increasing atmospheric moisture due to climate warming has become more important and is now the main driver of flood changes.
Veronika Valler, Yuri Brugnara, Jörg Franke, and Stefan Brönnimann
Clim. Past, 16, 1309–1323, https://doi.org/10.5194/cp-16-1309-2020, https://doi.org/10.5194/cp-16-1309-2020, 2020
Short summary
Short summary
Data assimilation is becoming more and more important for past climate reconstructions. The assimilation of monthly resolved precipitation information has not been explored much so far. In this study we analyze the impact of assimilating monthly precipitation amounts and the number of wet days within an existing paleoclimate data assimilation framework. We find increased skill in the reconstruction, suggesting that monthly precipitation can constitute valuable input for future reconstructions.
Kuan-Hui Elaine Lin, Pao K. Wang, Pi-Ling Pai, Yu-Shiuan Lin, and Chih-Wei Wang
Clim. Past, 16, 911–931, https://doi.org/10.5194/cp-16-911-2020, https://doi.org/10.5194/cp-16-911-2020, 2020
Short summary
Short summary
This study reconstructs drought chronologies of the Qing dynasty (1644–1911) based on Chinese documentary records from the REACHES database. In addition to drought records, ecological and societal records are also retrieved. Tests are performed to cross-check data and time series. Six severe drought periods are identified, and spatial patterns are revealed through multivariable analysis. Drought consequence networks are built highlighting human intervention affecting famine and social turmoil.
Veronika Valler, Jörg Franke, and Stefan Brönnimann
Clim. Past, 15, 1427–1441, https://doi.org/10.5194/cp-15-1427-2019, https://doi.org/10.5194/cp-15-1427-2019, 2019
Short summary
Short summary
In recent years, the data assimilation approach was adapted to the field of paleoclimatology to reconstruct past climate fields by combining model simulations and observations.
To improve the performance of our paleodata assimilation system, we tested various techniques that are well established in weather forecasting and evaluated their impact on assimilating instrumental data and proxy records (tree rings).
Stefan Brönnimann, Luca Frigerio, Mikhaël Schwander, Marco Rohrer, Peter Stucki, and Jörg Franke
Clim. Past, 15, 1395–1409, https://doi.org/10.5194/cp-15-1395-2019, https://doi.org/10.5194/cp-15-1395-2019, 2019
Short summary
Short summary
During the 19th century flood frequency was high in central Europe, but it was low in the mid-20th century. This paper tracks these decadal changes in flood frequency for the case of Switzerland from peak discharge data back to precipitation data and daily weather reconstructions. We find an increased frequency in flood-prone weather types during large parts of the 19th century and decreased frequency in the mid-20th century. Sea-surface temperature anomalies can only explain a small part of it.
Conor Murphy, Ciaran Broderick, Timothy P. Burt, Mary Curley, Catriona Duffy, Julia Hall, Shaun Harrigan, Tom K. R. Matthews, Neil Macdonald, Gerard McCarthy, Mark P. McCarthy, Donal Mullan, Simon Noone, Timothy J. Osborn, Ciara Ryan, John Sweeney, Peter W. Thorne, Seamus Walsh, and Robert L. Wilby
Clim. Past, 14, 413–440, https://doi.org/10.5194/cp-14-413-2018, https://doi.org/10.5194/cp-14-413-2018, 2018
Short summary
Short summary
This work reconstructs a continuous 305-year rainfall record for Ireland. The series reveals remarkable variability in decadal rainfall – far in excess of the typical period of digitised data. Notably, the series sheds light on exceptionally wet winters in the 1730s and wet summers in the 1750s. The derived record, one of the longest continuous series in Europe, offers a firm basis for benchmarking other long-term records and reconstructions of past climate both locally and across Europe.
J. Liu, M. Song, Y. Hu, and X. Ren
Clim. Past, 8, 1169–1175, https://doi.org/10.5194/cp-8-1169-2012, https://doi.org/10.5194/cp-8-1169-2012, 2012
Cited articles
Adams, J. M. and Faure, H.: A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction, Global Planet. Change, 16–17, 3–24, 1998.
Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M., and Woodward, F. I.: Increases in terrestrial carbon storage from the Last Glacial Maximum to the present, Nature, 348, 711–714, 1990.
Ainsworth, E. A. and Long, S. P.: What have we learned from fifteen years of Free Air Carbon Dioxide Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytologist, 165, 351–372, 2005.
Archer, S., Schimel, D. S., and Holland, E. A. Mechanisms of shrubland expansion: land use, climate or CO2?, Clim. Change, 29, 91–99, 1995.
Beerling, D. J.: New estimates of carbon transfer to terrestrial ecosystems between the last glacial maximum and the Holocene, Terra Nova, 11, 162–167, 1999.
Beerling, D. J. and Woodward, F. I.: Ecophysiological responses of plants to global environmental change since the last glacial maximum, New Phytologist, 125, 641–648, 1993.
Bennett, K. D. and Willis, K. J.: Effect of global atmospheric carbon dioxide on glacial-interglacial vegetation change, Global Ecol. Biogeogr., 9, 355–361, 2000.
Bird, M. I., Lloyd, J., and Farquhar, G. D.: Terrestrial carbon storage at the LGM, Nature, 371, p. 566, 1994.
Bird, M. I., Lloyd, J., and Farquhar, G. D.: Terrestrial carbon storage from the last glacial maximum to the present, Chemosphere, 33, 1675–1685, 1996.
Bond, W. J. and Midgley, G.: A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas, Global Change Biol., 6, 865–869, 2000.
Bond, W. J., Midgely, G. F., and Woodward, F. I.: The importance of low CO2 and fire in promoting the spread of grasslands and savannas, Global Change Biol., 9, 973–982, 2003.
Boom, A., Marchant, R., Hooghiemstra, H., and Sinninghe Damsté, J. S.: Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 151–168, 2002.
Brewer, S., Guiot, J., Sánchez-Goñi, M. F., and Klotz, S.: The climate in Europe during the Eemian: a multi-method approach using pollen data, Quaternary Sci. Rev., 25–26, 2303–2315, 2008.
Cerling, T. E., Wang, Y., and Quade, J.: Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene, Nature, 361, 344–345, 1993.
Cole, D. R. and Monger, H. C.: Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation, Nature, 368, 533–536, 1998.
Collatz, G. J., Berry, J. A., and Clark, J. S.: Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future, Oecologia, 114, 441–454, 1998.
Cowling, S. A.: Plants and temperature-CO2 uncoupling, Science, 285, 1500–1501, 1999a.
Cowling, S. A.: Simulated effects of low atmospheric CO2 on structure and composition of North American vegetation at the Last Glacial Maximum, Global Ecol. Biogeogr., 8, 81–93, 1999b.
Cowling, S. A.: Plant carbon balance, evolutionary innovation and extinction in land plants, Global Change Biol., 7, 231–239, 2001.
Cowling, S. A.: Tropical forest stucture: a missing dimension to Pleistocene landscapes, J. Quaternary Sci., 19, 733–743, 2004.
Cowling, S. A. and Field, C. B.: Environmental controls of leaf area production: implications for vegetation and land surface modelling, Global Biogeochem. Cy., 17, 1007, https://doi.org/10.1029/2002GB001915, 2003.
Cowling, S. A. and Sykes, M. T.: Physiological significance of low atmospheric CO2 for plant-climate interactions, Quaternary Res., 52, 237–242, 1999.
Cowling, S. A. and Sykes, M. T.: Reply: Do low CO2 concentrations affect pollen-based reconstruction of LGM climate?, Quaternary Res., 53, 405–406, 2000.
Cowling, S. A. and Sage, R. F.: Interactive effecsts of low atmospheric CO2 and elevated temperature on growth, photosynthesis, and respiration in Phaseolus vulgaris, Plant, Cell and Environ., 21, 427–435, 1998. Cowling, S. A. and Shin, Y.: Simulated ecosystem threshold responses to co-varying temperature, precipitation and atmospheric CO2 within a region of Amazonia, Global Ecol. Biogeogr., 15, 553–566, 2006.
Cowling, S. A., Maslin, M. A., and Sykes, M. T.: Paleovegetation simulations of lowland Amazonia and implications for theories of neotropical allopatry and speciation, Quaternary Res., 55, 140–149, 2001.
Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. Friend, A. D., Kucharik, C. Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling C.: Global responses of terrestrial ecosystems to changes in CO2 and climate, Global Change Biol., 7, 357–373, 2001.
Crowley, T. J.: Ice age carbon, Nature, 352, 575–576, 1991.
Crowley, T. J.: Ice age terrestrial carbon changes revisited, Global Biogeochem. Cy., 9, 377–389, 1995.
Curry, W. B., Duplessy, J. C., Labeyrie, L. D., and Shackleton, N. J.: Changes in the distribution of δ13C of deepwater $§igma $CO2 between the last glaciation and the Holocene, Paleoceanography, 3, 327–337, 1988.
Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S. da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: Couplings Between Changes in the Climate System and Biogeochemistry, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007
Duplessy, J.-C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.: Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3, 343–360, 1988.
Eamus, D. and Palmer, A. R.: Is climate change a possible explanation for woody thickening in arid and semi-arid regions?, Res. Lett. Ecol, 2007, 37364, https://doi.org/10.1155/2007/37364, 2007.
Ehleringer, J. R., Cerling, T. E., and Helliker, B. R.: C4 photosynthesis, atmospheric CO2 and climate, Oecologia, 112, 285–299, 1997.
Esser, G. and Lautenschlager, M.: Estimating the change of carbon in the terrestrial biosphere from 18 000 BP to present using a carbon cycle model, Environ. Pollut., 83, 45–53, 1994.
Farquhar, G. D.: Climate change: carbon dioxide and vegetation, Science, 278, 1411, https://doi.org/0.1126/science.278.5342.1411, 1997.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Faure, H., Adams, J. M., Debenay, J. P., Faure-Denard, L., Grant, D. R., Pirazzoli, P. A., Thomasin, B., Velichko, A. A., and Zazo, C.: Carbon storage and continental land surface change since the last glacial maximum, Quaternary Sci. Rev., 15, 843–849, 1996.
Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B., Kubiske, M. E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D. R., Schlesinger, W. H., and Ceulemans, R.: Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2, Proceedings of the National Academy of Sciences, 104, 14014–14019, 2007.
François, L. M., Delire, C., Warnant, P., and Munhoven, G.: Modelling the glacial-interglacial changes in the continental biosphere, Global Planet. Change, 16–17, 37–52, 1998.
François, L. M., Goddéris, Y., Warnant, P., Ramstein, G., de Noblet, N., and Lorenz, S.: Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times, Chem. Geol., 159, 163–189, 1999.
Friedlingstein, P., Delire, C., Müller, J. F., and Gérard, J. C.: The climate-induced variation of the continental biosphere: a model simulation of the Last Glacial Maximum, Geophys. Res. Lett., 19, 897–900, 1992.
Friedlingstein, P., Prentice, K. C., Fung, I. Y., John, J. G., and Brasseur, G. P.: Carbon-biosphere-climate interactions in the last glacial maximum, J. Geophys. Res., 100, 7203–7221, 1995.
Gerber, S., Joos, F., and Prentice, I. C.: Sensitivity of a dynamic global vegetation model to climate and atmospheric CO2, Global Change Biol., 10, 1223–1239, 2004.
Giresse, P., Maley, J., and Brenac, P.: Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter, Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 65–78, 1994.
Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J. J., and Cheddadi, R.: Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region, Ecol. Modell., 127, 119–140, 2000.
Guiot, J., Prentice, I. C., Peng, C., Jolly, D., Laarif, F., and Smith, B.: Reconstructing and modelling past changes in terrestrial primary production, in: Terrestrial Global Productivity, edited by: Roy, J., Mooney, H. A., and Saugier, B., Academic Press, 479–498, 2001.
Guiot, J., Wu, H. B., Garreta, V., Hatté, C., and Magny, M.: A few prospective ideas on climate reconstruction: from a statistical single proxy approach towards a multi-proxy and dynamical approach, Clim. Past Discuss., 5, 99–125, 2009.
Guiot, J., Hai Bin Wu, Wen Ying Jiang, and Yun Li Luo: East Asian Monsoon and paleoclimatic data analysis: a vegetation point of view, Clim. Past, 4, 137–145, 2008.
Harrison, S. P. and Prentice, I. C.: Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modeling and palaeoclimate simulations., Global Change Biol., 9, 983–1004, 2003.
Hatté, C. and Guiot, J.: Paleoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nu{ß}loch loess sequence (Rhine Valley, Germany), Clim.Dynam., 25, 315-327, https://doi.org/10.1007/s00382-005-0034-3, 2005.
Hatté, C., Rousseau, D.-D., and Guiot, J.: Climate reconstruction from pollen and δ13C records using inverse vegetation modeling - Implication for past and future climates, Clim. Past, 5, 147–156, 2009.
Haxeltine, A. and Prentice, I. C.: A general model for the light use efficiency of primary production, Functional Ecology, 10, 551–561, 1996a.
Haxeltine, A. and Prentice, I. C.: BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types, Global Biogeochem. Cy., 10, 693–709, 1996b.
Huang, Y., Street-Perrott, F. A., Perrott, R. A., Metzger, P., and Eglinton, G.: Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya, Geochimica et Cosmochimica Acta, 9, 1383–1404, 1999.
Idso, S. B.: A problem for paleoclimatology?, Quaternary Res., 31, 433–434, 1989.
Ikeda, T. and Tajika, E.: Carbon cycling and climate change during the last glacial cycle inferred from the isotope records using an ocean biogeochemical carbon cycle model, Global Planet. Change, 35, 131–141, 2003.
Joos, F. and Prentice, I. C. A palaeoperspective on changes in atmospheric CO2 and climate, in: The Global Carbon Cycle, edited by: Field, C. B. and Raupach, M. R., SCOPE 62, Island Press, Washington, 165–186, 2004.
Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., and Valdes, P. J.: Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Global Biogeochem. Cy., 18, GB2002, https://doi.org/2010.1029/2003GB002156, 2004.
Kaplan, J. O., Prentice, I. C., Knorr, W., and Valdes, P. J.: Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum, Geophys. Res. Lett., 29, 2074, https://doi.org/10.1029/2002GL015230, 2002.
Kaplan, J. O., Bigelow, N. H., Prentice, I. C., Harrison, S. P., Bartlein, P. J., Christensen, T. R., Cramer, W., Matveyeva, N. V., McGuire, A. D., Murray, D. F., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev, A. A., Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V.: Climate change and Arctic ecosystems II: Modeling, palaeodata-model comparisons, and future projections, J. Geophys. Res., 108(D19), 8171, https://doi.org/10.1029/2002JD002559, 2003.
Köhler, P. and Fischer, H.: Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition, Global Planet. Change, 43, 33–55, 2004.
Körner, C.: Biosphere responses to CO2 enrichment, Ecological Applications, 10, 1590–1619, 2000.
Körner, C., Asshoff, R., Bignucolo, O., Hättenschwiler, S., Keel, S. J., Peláez-Riedl, S., Pepin, S., Siegwolf, R. T. W., and Zotz, G.: Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2, Science, 309, 1360–1362, 2005.
Ku, T. L. and Luo, S.: Carbon isotopic variations on glacial-to-interglacial time scales in the ocean: modeling and implications, Paleoceanography, 7, 543–562, 1992.
Loehle, C.: Predicting Pleistocene climate from vegetation in North America, Clim. Past, 3, 109–118, 2007.
Lloyd, J. and Farquhar, G. D.: The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interactions with soil nutrient status. I. General principles and forest ecosystems, Funct. Ecol., 10, 4–32, 1996.
Lloyd, J. and Farquhar, G. D.: Do slow-growing species and nutrient-stressed plants consistently respond less to elevated CO2? A clarification of some issues raised by Poorter (1998), Global Change Biol., 6, 871–876, 2000.
Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R. E., Oren, M., Parton, W. J., Pataki, D. E., Shaw, R., Zak, D. R., and Field, C. B.: Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide, BioScience, 54, 731–739, 2004.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F.: High-resolution carbon dioxide concentration record 650 000–800 000 years before present, Nature, 453, 379–382, 2008.
Maslin, M., Adams, J. M., Thomas, E., Faure, H., and Haines-Young, R.: Estimating the carbon transfer between oceans, atmosphere and terrestrial biosphere since the Last Glacial Maximum: a review of two contrasting methods of estimation, Terra Nova, 7, 358–366, 1995.
McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H. Williams, L. J., and Wittenberg, U.: Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models, Global Biogeochem. Cy., 15, 183–206, 2001.
Montenegro, A., Eby, M., Kaplan, J. O., Meissner, K. J., and Weaver, A. J.: Carbon storage on exposed continental shelves during the glacial-interglacial transition, Geophys. Res. Lett., 33, L08703, https://doi.org/10.1029/2005GL025480, 2006.
Monteith, J. L.: A reinterpretation of stomatal responses to humidity, Plant, Cell Environ., 18, 357–364, 1995.
Moore, D. J. P., Aref, S., Ho, R. M., Pippen, J. S., Hamilton, J., and DeLucia, E. H.: Inter-annual variation in the response of Pinus taeda tree growth to long term Free Air Carbon dioxide Enrichment (FACE), Global Change Biol., 12, 1367–1377, 2006.
Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., McCarthy, H. R., Moore, D. J. P., Ceulemans, R., De Angelis, P., Finzi, A. C., Karnosky, D. F., Kubiske, M. E., Lukac, M., Pregitzer, K. S., Scarascia-Mugnozza, G. E., Schlesinger, W. H., and Oren, R.: Forest response to elevated CO2 is conserved across a broad range of productivity, Proceedings of the National Academy of Sciences, 102, 18052–18056, 2005.
Otto, D., Rasse, D., Kaplan, J., Warnant, P., and François, L.: Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures, Global Planet. Change, 33, 117–138, 2002.
Palmroth, S., Oren, R., McCarthy, H. R., Johnsen, K. H., Finzi, A. C., Butnor, J. R. and Ryan, M. G.: Aboveground sink strength in forests controls the allocation of carbon below ground and its [CO2]-induced enhancement, Proceedings of the National Academy of Sciences, 103, 19362–19367, 2006.
Pedersen, T. F., François, R., François, L., Alverson, K., and McManus, J.: The Late Quaternary history of biogeochemical cycling of carbon, in: Paleoclimate, global change and the future, edited by: Alverson, K. D., Bradley, R. S., and Pedersen, T. F., Springer, Berlin, 63–79, 2003.
Peng, C. H., Guiot, J., and van Campo, E.: Reconstruction of past terrestrial carbon storage in the northern hemisphere from the Osnabrück biosphere model and palaeodata, Clim. Res., 5, 107–118, 1995.
Peng, C. H., Guiot, J., and van Campo, E.: Estimating changes in terrestrial vegetation and carbon storage: using palaeoecological data and models, Quaternary Science Reviews, 17, 719–735, 1998.
Polley, H. W., Johnson, H. B., Marino, B. D., and Mayeux, H. S.: Increases in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations, Nature, 361, 61–64, 1993.
Polley, H. W., Johnson, H. B., and Mayeux, H. S.: Nitrogen and water requirements of C3 plants grown at glacial to present carbon dioxide concentrations, Funct. Ecol., 9, 86–96, 1995.
Prentice, I. C.: Biome modelling and the carbon cycle, in: The Global Carbon Cycle, edited by: Heimann, M., Springer, Berlin, 219–238, 1993.
Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., and Wallace, D. W. R.: The carbon cycle and atmospheric carbon dioxide, in: Climate Change 2001: The Scientific Basis, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, 183–237, 2001.
Prentice, I. C. and Sarnthein, M.: Self-regulatory processes in the biosphere in the face of climate change, in: Global Changes in the Perspective of the Past, edited by: Eddy, J. and Oeschger, H., Wiley, Chichester, 29–38, 1993.
Prentice, I. C. and Sykes, M. T.: Vegetation geography and global carbon storage changes, in: Biotic Feedbacks in the Global Climatic System, edited by: Woodwell, G. M. and Mackenzie, F. T., Oxford University Press, New York, 304–312, 1995.
Prentice, I. C., Jolly, D., and BIOME 6000 participants: Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa, J. Biogeogr., 27, 507–519, 2000.
Prentice, I. C., Sykes, M. T., Lautenschlager, M., Harrison, S. P., Denissenko, O., and Bartlein, P. J.: Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum, Global Ecol. Biogeogr., 3, 67–76, 1993.
Prentice, K. C. and Fung, I. Y.: The sensitivity of terrestrial carbon storage to climate change, Nature, 346, 48–50, 1990.
Ramstein, G., Kageyama, M., Guiot, J., Wu, H., Hély, C., Krinner, G., and Brewer, S.: How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison, Clim. Past, 3, 331–339, 2007.
Rousseau, D. D., Hatté, C., Guiot, J., Duzera, D., Schevina, P., and Kukla, G.: Reconstruction of the Grande Pile Eemian using inverse modeling of biomes and δ13C, Quaternary Sci. Rev., 25, 2806–2819, 2006.
Sage, R. F.: The evolution of C4 photosynthesis, New Phytologist, 161, 341–370, 2004.
Sarnthein, M., Winn, K., Duplessy, J.-C., and Fontugne, M. R.: Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21 000 years, Paleoceanography, 3, 361–399, 1988.
Shackleton, N. J.: Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, in: The Fate of Fossil Fuel CO2 in the Oceans, edited by: Andersen, N. R. and Malahoff, A., Plenum, New York, 401–427, 1977.
Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J.: Stable carbon cycle-climate relationship during the Late Pleistocene, Science, 310, 1313–1317, 2005.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9, 161–185, 2003.
Solomon, A. M.: Forest responses to complex interacting full-glacial environmental conditions, AMQUA Abstracts, 8, 120, 1984.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater carbonate concentration on formainiferal carbon and oxygen isotopes, Nature, 390, 497–500, 1997.
Street-Perrott, F. A.: Palaeoperspectives: changes in terrestrial ecosystems, Ambio, 23, 37–43, 1994.
Street-Perrott, F. A., Huang, Y., Perrott, R. A., and Eglinton, G.: Carbon isotopes in lake sediments and peats of last glacial age: implications for the global carbon cycle, in: Stable Isotopes, edited by: Griffiths, H., BIOS, Oxford, 381–396, 1998.
Street-Perrott, F. A., Huang, Y., Perrott, R. A., Eglinton, G., Barker, P., Ben Khelifa, L., Harkness, D. D., and Olago, D. O.: Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems, Science, 278, 1422–1426, 1997.
Talbot, M. R. and Johanessen, T.: A high resolution palaeoclimate reconstruction for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotope composition of lacustrine organic matter, Earth Planet. Sc. Lett., 110, 23–37, 1992.
Terashima, I., Masuzawa, T., Ohba, H., and Yokoi, Y.: Is photosynthesis suppressed at higher elevations due to low CO2 pressure?, Ecology, 76, 2663–2668, 1995.
van Campo, E., Guiot, J., and Peng, C.: A data-based re-appraisal of the terrestrial carbon budget at the last glacial maximum, Global Planet. Change, 8, 189–201, 1993.
Warnant, P., François, L. M., Strivay, D., and Gérard, J.-C.: CARAIB: a global model of terrestrial biological productivity, Global Biogeochem. Cy., 8, 255–270, 1994.
Williams, J. W., Webb III, T., Shuman, B. N., and Bartlein, P. J.: Do low CO2 concentrations affect pollen-based reconstructions of LGM climates? A response to `Physiological significance of low atmospheric CO2 for plant-climate interactions' by Cowling and Sykes, Quaternary Res., 53, 402–404, 2000.
Wong, S. C., Cowan, I. R., and Farquhar, G. D.: Stomatal conductance correlates with photosynthetic capacity, Nature, 282, 424–426, 1979.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and Africa at the Last Glacial Maximum and mid- Holocene: reconstruction from pollen data using inverse vegetation modelling, Clim. Dynam., 29, 211–229, 2007a.
Wu, H., Guiot, J., Brewer, S., Guo, Z., and Peng, C.: Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa, Proceedings of the National Academy of Sciences, 104, 9720–9724, 2007b.
Wu, H., Guiot, J., Peng, C., and Guo, Z.: New coupled model used inversely for reconstructing past terrestrial carbon storage from pollen data: validation of model using modern data, Global Change Biol., 15, 82–96, 2009.
Zeng, N.: Glacial-interglacial atmospheric CO2 change – the glacial burial hypothesis, Adv. Atmos. Sci., 20, 677–693, 2003.
Zimov, S. A., Schuur, E. A. G., and Chapin III, F. S.: Permafrost and the global carbon budget, Science, 312, 1612–1613, 2006.
Special issue